Exploiting iterative-ness for parallel ML computations

Henggang Cui

Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons (Intel), Garth A. Gibson, Eric P. Xing

PARALLEL DATA LABORATORY
Carnegie Mellon University
Iterativeness arises in some ML apps
- Consequence: repeated data operation sequences

Repeating pattern can be exploited
- Detect with minor effort
 - Either in a real or a "virtual" iteration
- Specialize structures and policies to known pattern
 - Data partitioning, prefetching, lock avoidance, pre-marshalled structures, etc.

Next
- Parallel machine learning
- PageRank as one example
Parallel machine learning

Eg. a web graph

One iteration

Input data

Iterative program fits model

Model parameters (solution)

READ, INC

Eg. page ranks
Parallel machine learning

Bulk Synch Parallel: barrier each iter

Input data

Parallel iterative workers

INC: associative updates

Parameter server

READ, INC, CLOCK

Model parameters (solution)
Parallel machine learning

Goal: improve performance by exploiting iterativeness

Input data \rightarrow Parallel iterative workers \rightarrow Model parameters (solution)

Parameter server

READ, INC, CLOCK
Example: PageRank

Input data: a set of links, stored locally

Parameter data: ranks of pages, stored in parameter server

All ranks set to some value

LOOP

FOREACH link from i to j

read Rank(i)

Rank(j) += change of Rank(i)

ENDFOREACH

WHILE NOT CONVERGE
Example: PageRank

Input data: a set of links, stored locally
Parameter data: ranks of pages, stored in parameter server

- **Worker-0:**
  ```plaintext
  LOOP
  # Link-0
  READ page[2].rank
  INC page[0].rank
  # Link-1
  READ page[1].rank
  INC page[2].rank
  CLOCK
  WHILE NOT CONVERGE
  ```

- **Repeated operation sequence depends only on input data**
- **Does not depend on ranks**
Repeated operation sequences

- Many examples of ML applications
 - Including Topic Modeling and Collaborative Filtering
- Knowledge of repeated operation sequence can be exploited to improve efficiency
 - 50x speed up for PageRank

Talk outline
- Ways to obtain per-iter operation sequences
- Optimizations with pre-knowledge of operations
- Experiment results
Obtain per-iter operation sequences

• Parameter server operations
 • READ
 • INC
 • CLOCK
 – Can be thought of as barrier

• Two ways of obtaining it
 • Gather in the first iteration
 • Gather in a "virtual iteration"

```
LOOP
  READ page[2].rank
  INC page[0].rank
  READ page[1].rank
  INC page[2].rank
  CLOCK
  WHILE NOT CONVERGE
```
Gather in the first iteration

// Original
load_data()
init_param_vals()
do {
 do_iteration()
} while (not stop)

// Gather in first iter
load_data()
init_param_vals()
do {
 if (first iteration)
 ps.start_gather()
 do_iteration()
 if (first iteration)
 ps.finish_gather()
} while (not stop)
Gather in the first iteration

+ Little programmer effort
 • Only need to annotate iteration boundaries

- Considerable performance overhead
 • The first iteration runs without optimizations
 • More cost to apply the optimizations
 – States from the first iteration need to be migrated
Gather in a *virtual* iteration

Just to remind you

```c
// Gather in first iter
load_data()
init_param_vals()
do {
    if (first iteration)
        ps.start_gather()
do_iteration()
    if (first iteration)
        ps.finish_gather()
} while (not stop)
```

```c
// Gather in virtual iter
load_data()
ps.start_gather(virtual)
do_iteration()
ps.finish_gather()
init_param_vals()
do {
    do_iteration()
} while (not stop)
```

- Operations between `start_gather(virtual)` and `finish_gather()` are recorded but return *without any action. Nearly free.*
Gather in a *virtual* iteration

- Programmer needs to be more careful
 - `do_iteration()` needs to work with *virtual* READ/INC
 - Computation must be independent of param value

+ Better performance
 - No operations performed during virtual iteration
 - No state migration
 - All real iterations run at optimized speed
Optimizations on informed access

- Optimizations applied at `finish_gather()`
 1. Cross-machine parameter data placement
 2. Prefetching
 3. Static cache policies
 4. More efficient static data structures
 5. NUMA-aware memory management

- Prototyped on IterStore
 - A “parameter server library”
 - An improved version of LazyTable
IterStore architecture

Machine

App worker App worker

IterStore library

Shared parameter data
IterStore architecture

Machine

App worker

IterStore library

Param data organized as rows

Master store
IterStore architecture

Rows are sharded across machines

Machine-0

App worker

IterStore library

Master shard-0

Machine-1

App worker

Master shard-1
IterStore architecture

Machine-0

App worker

IterStore library

Process cache

Master shard-0

Machine-1

App worker

IterStore library

Master shard-1
IterStore architecture

Machine-0

App worker

IterStore library

Thread cache

Process cache

Master shard-0

Machine-1

App worker

IterStore library

Thread cache

Process cache

Master shard-1
1: Parameter data placement

- Cross-machine parameter data placement
 - Store each row at the machine accessing it most
 - Balance the load for rows without clear affinity
2: Prefetching

- Prefetching
 - Prefetch to process cache at the beginning of clock
 - Rows expected to be read in the clock
 - Fetched in a single message
3: Static cache policies

- Static cache policies
 - Decide rows to be cached based on access sequence
 - Cache rows with higher utilities
 - Never evict rows, no cache eviction overhead
 - Use a 2nd (dynamic) cache for items not in static cache
4: Static data structures

- Static hash map
 - Immutable index
 - No global lock needed for index concurrency
 - Entries stored in a contiguous block of memory
 - Can be sent in a single message without marshalling

- Thread cache and master shared
 - Hash maps
 - Each accessed by one thread
- Process cache
 - Concurrent hash map
5: NUMA memory management

- NUMA effect in multi-socket machines
 - Lower latency to access local memory
- Partition cache and master store structures
 - Place each partition local to managing threads

Faster to access local memory
Experiment setup

• Cluster information
 • 8 machines, each with 64 cores & 128GB RAM
 • 64 application worker threads per machine

• Application benchmarks
 • PageRank:
 twitter-graph (40m nodes, 1.5b edges)
 • Collaborative Filtering:
 netflix (480k-by-18k sparse matrix)
 • Topic Modeling:
 nytimes (100m tokens, 300k docs)
Overall performance: PR, 5 iters

PageRank

http://www.pdl.cmu.edu/
Overall performance: PR, 5 iters

PageRank

12x speed up on overall time, 50x speed up on per iteration time
Overall performance: PR, 5 iters

PageRank

Virtual-iter gathering performs better than first-iter gathering

http://www.pdl.cmu.edu/
Overall performance: PR, 5 iters

PageRank

Faster than GraphLab even on PageRank
Overall performance: CF, 5 iters

Collaborative Filtering

More speed up over GraphLab
Overall performance: CF, 100 iters

Collaborative Filtering

Preprocessing time is amortized over more iterations
Sensitivity to information accuracy

• Inaccurate information can be caused by
 • Work migration
 • Skipped work due to parameter convergence

• Experiment method
 • Keep real operation sequences fixed
 – Report more operations than performed
 – Report less operations than performed
 • Compare normalized time per iteration
 – No inaccuracy as the baseline
Sensitivity to information accuracy

Report more operations than performed
• Can be caused by work migration or skipped work

All are insensitive to extra information
Sensitivity to information accuracy

Report **less** operations than performed
- Can be caused by work migration

CF and TM are insensitive to missing information
Conclusion

• Many ML applications exhibit iterativeness
 • Same sequence of operations every iteration
• Systems can exploit repeated op sequences
 • Speed up real ML benchmarks by up to 50x
• Two ways of gathering such operation sequence
 • Better performance when doing virtual iteration
References

Backup Slides
Optimization break down

Turn **off** one optimization each time

![Graph showing normalized time per iter for different optimizations. The graph compares the time taken for PageRank, Collaborative Filtering, and Topic Modeling when all optimizations are on (All) or none are on (None). The graph indicates that turning off all optimizations results in the highest normalized time, with PageRank being the most significant contributor.](http://www.pdl.cmu.edu/)
Optimization break down

Turn off one optimization each time

PR: prefetch + static_ds
CF: prefetch + numa_aware