

AEC/APC Symposium XV

Advanced Process Control Implementation in Plasma Etch at Infineon Technologies Richmond Peter Gilgunn, Charles Venditti, Victor Morozov and Patrick Kelly

Never stop thinking.

- Presentation Objective
- About the Environment
- The Opportunity in Plasma Etch
- Our Vision of APC
- An Implementation in 3 Phases
- Applications and Operational Benefits
- Conclusions
- Acknowledgements

Share the IFR Plasma Etch APC experience

Help the community learn from our successes and failure

Tell the Decision Makers:

Return on Investment (ROI) can be achieved with APC

Encourage the Doers:

Focus on ROI to make APC happen in your Fab

Infineon Technologies Richmond

ab (1st Ci in March 1000) 200mm C Deep tren Assuming 300 die per wafer 140nm ted \$2 per die Plasma etch 1 scrap lot (25 wafers) Process, e > 20 manu \$15 000 revenue >10000 w tage

>180 process/chamber combinations under control
 >170 product/parameter combinations under control

About the Environment

Where we came from

- Statistical process control (SPC) on in-line product data
- Equipment health monitoring through blanket wafer qualifications
- Activity based preventive maintenance
- Unscheduled maintenance driven by excursions (SPC, parametric or yield) and hard tool faults

- Irreversible yield critical process
- Sensitive to all incoming variations
- 3-dimensional process output limits the ability of metrology to represent process health and predict yield

Single wafer processing is the rule

Multiple tool subsystems act independently and/or interact with each other to impact yield

Ch 1 goes bad on wafer 13. This could be caused by:

- Pressure
- Temperature
- Gas Flow
- RF power
- Magnetic Field
 - ... or a combination of .

More data

needed from

More sources

Our Vision of APC

- Divergences from optimal conditions will be detected and compensated on first wafer (FDC)
- Every wafer leaves the Fab achieving its maximum yield potential – dynamic artisan processing (R2R)
- Capital equipment time will be utilized solely for production or predictive maintenance (OEE)
- Metrology will be a value added process (R2R)

Our Vision of APC

Future Considerations

- APC systems should be scaleable
- Wafer level → Fab Cluster level

Phase 1 – Demonstrate Return On Investment (ROI)Reduce scrap with FDC

- Deep trench and metal etch
- ~\$3M revenue savings over 12 months

Increase yield with R2R

- Shallow trench isolation depth control (Jowett and Morozov, "Shallow Trench Isolation Run-to-Run Control Proje at Infineon Technologies Richmond", ASMC 2002)
- 3% yield increase over 2 technology nodes
- Identify infrastructure and database requirements
- Justify additional resource allocation

Phase 1 – Demonstrate Return On Investment (ROI)Obstacles

- Inertia reliance on traditional paradigm
- Skepticism uncertainty of new paradigm
- Skills gap no experience in APC

How We Overcame Them

- Charismatic project manager
- Small team of consensual junior engineers
- Utilized internal competence centers
- Workshops and conferences
- Hired for missing skills

Phase 2 – Develop Infrastructure and Applications

- Develop infrastructure based on Phase 1 learning
 - Equipment to CIM communication
 - Server hardware upgrades for functionality
 - "Tool server" creation for each vendor mainframe
- Hardware and software training for engineers
 - Data access
 - Data handling and manipulation
- Identify applications for automation and roll-out
 Justify additional resource allocation

Phase 2 – Develop Infrastructure and Applications Obstacles

- Unrealistic expectations
- Multiple databases with incompatible data structure
- Lack of resources both capital and human

How We Overcame Them

- Prioritized projects
- Pareto and FMEA
- Included product yield and quality groups
- Focused on ROI as top priority

Phase 3 – Automate Applications and Rollout Area-wid

- Automate four applications
 - Statistical machine control (FDC)
 - SPC by chamber (FDC)
 - Run to run (R2R)
 - Qual elimination (OEE)

Monitor progress and stay on timeline

Justify additional resource allocation

Phase 3 – Automate Applications and Rollout Area-wid Obstacles

- Lack of capital
- Lack of human resources
- Managing a large quantity of milestones

How We Overcame Them

- Focused on ROI
- Created a graphical metric
- Tracked unique milestone completion

An Implementation in 3 Phases

00

Phase 3 – APC Implementation Metric

ltem #	Process	Target Completion Week									
		SMC Capability	EP logbooks	Chamber EP Data	SPC by Chamber	Etchrate Qual Elimination	Particle Qual Elimination	SMC Methods	Run to R		
• 1	Proc1	03ww06	03ww07	03ww08	03ww09	03ww45	03ww50	03ww45			
2	Proc2	03ww06	03ww07	03ww08	03ww09	03ww27	03ww50	03ww37	03ww44		
3	Proc3		03ww07	03ww08	03ww28			03ww41			
4	Proc4	03ww06	03ww07	03ww08	03ww33	03ww45	03ww50	03ww45			
5	Proc5	03ww18	03ww07	03ww20	03ww28	03ww45	03ww50	03ww44			

ltem #	Process	Actual Completion Week									
		SMC Capability	EP logbooks	Chamber EP Data	SPC by Chamber	Etchrate Qual Elimination	Particle Qual Elimination	SMC Methods	Run to Ru		
1	Proc1	03ww06	03ww07	03ww08	03ww33	03ww32					
2	Proc2	03ww06	03ww07	03ww08	03ww09	03ww33					
3	Proc3		03ww07	03ww08	03ww26						
4	Proc4	03ww06	03ww07	03ww08	03ww26	03ww33					
5	Proc5	03ww14	03ww07	03ww20	03ww26	03ww33					

> 20 processes total

An Implementation in 3 Phases

Phase 3 - Etch APC Implementation Metric

chnologies	Applicat	tions and	Operati	or	nal Ben	efits		
	Wafer-o tracking	chamber d g and impi	ata enable	ed Jbl	chambe leshooti	er leve ng	el yiel	d
STCH TOO	DI: AMTZU4	4FC Re	cipe: <mark>EA</mark>	LV.	1.03			
Wfr#	E E A C B A A	OARC Time 69.80 71.10 68.90 70.20 70.80	BSG, NI Time 104.10 103.20 106.50 103.20 103.60	r	ot Statistics OARC OARC BSG, NIT BSG, NIT STEP 3 STEP 3	Chambe Mean: Range: Mean: Range: Mean: Range:	r A 71.1 0.6 103.5 2.6	Rf Tot: Rf WC: 43.0
	~	60 40	106 20			Chambe	r B	
	B A C B A	69.40 71.40 68.80 69.90 70.90	100.20 104.20 103.20 107.00 104.60 102.80		OARC OARC BSG,NIT BSG,NIT STEP 3 STEP 3	Mean: Range: Mean: Range: Mean: Range:	69.6 1.3 103.9 3.0	Rf WC: 161.0
<u>8^ 8.</u>		05.10	100.00	-	•			

Product etchrate data enabled qual elimination

ETCH To Diff To	ol: D ol: N	PSZ01EA IITR05DB	Recipe:	EG101.03		
Wfr#	Chamb	Dif Nean	fusion Rnq 1%si	ARC EP q Time	<u>Etch</u> Rate	POLY HM EP Time
25	D	-		42.60	-	92.60
24	A	_	<u> </u>	38.20	_	92.70
23	В		Chamber	r Δ		97.00
22	A	ARC E	P Mean:		f Tot	93.80
21	B	ARC E	P Range:	0.8		96.60
20	A	Etcl	h Rate:	1303.3		92.50
🗌 19	B	POLY HM E	P Mean:	92.6 R	f WC:	96.60
	A	POLY HM E	P Range:	3.7	128.0	93.50
17	B		· ·			97.60
🗌 16	A			38.10		94.30
	B			38.70		95.80
14	A	2011.35	47.7 0.7	4 38.30	1303.2	5 92.60
1 3	B	•		39.10	-	96.60

Availability to production increased by 2% on averag test wafer usage reduced by 80% and associate productive time was increased

SMC data enabled improved fault management for OI and predictive maintenance without loss of resolution

Allowing production in the expanded operating regio increased availability by 1% and yield by 0.1%

SMC data provided context to OEE statistics

Productive	Idle	Eng	Unsch	Non Productive	PM	
Wafers	Time		Down	Wafers		
<u>69.5%</u>	6.9%	3.8%	18.4%	1.2%	0.2%	

x – Process 1

Intineon

+ - Process 2

Process 3

SMC data provided context to chamber yield performance

Process dedication increased yield by 0.7%

Happier engineers

- Workload reduced by approx. 15%
- Able to answer more questions
- Able to prove the answer with data
- Fewer excursions to clean up
- More time to focus on interesting engineering projects ... like sensors!

Conclusions

- APC implementation was a long road (3+ years for reasonable functionality and process coverage)
- The payoff is worth the effort
 - Operational benefits in addition to FDC and R2R will be obtained
- Focus on ROI to overcome obstacles
- We still have not reached the final destination

Next step – sensor integration??\$\$??

Acknowledgements

- Contributions to the success of APC in etch were made by:
- The IFR CIM and El team Glenn Thompson, Mike Bussey Norman England, Joyce Hartley and Bennie Fiol, without whose support our APC infrastructure would not exist
- The APC Team James Welsh, Matt England and Gary Skinner, whose support on application development made our ideas reality and opened our minds to new possibilities
- The Etch Cimco Dean Smith, who supported our tool server upgrades and maintained our connectivity to the production equipment
- **IFX APC CoC** Ralf Otto for FDC wisdom
- **Ernst-Günter Mohr** for the inspiration to get started

References

- Thomas Sonderman, AMD, "APC as a Competitive Manufacturing Technology: AMD's Vision for 300mm", Keynote Address, 3rd European AEC/APC Conference, April 2002
- 2. Brian Harrison, "Expanding the Control Paradigm by Excellence in Manufacturing Execution", Keynote Address, AEC/APC Symposium XIV, September 2002
- 3. Hopp and Spearman, Factory Physics, 2nd Edition, page 25
- 4. Jowett and Morozov, "Shallow Trench Isolation Run–to–Run Control Project at Infineon Technologies Richmond", ASMC 2002
- 5. Karzhavin et al, "Advanced Process Control Project at Infineon Technologies Richmond", Future Fab volume 12