
Published as Report CSE-TR-243-95, Department of EECS, University of Michigan, Ann Arbor, June 1995.

System-Oriented Evaluation of

I/O Subsystem Performance

by

Gregory Robert Ganger

A dissertation submitted in partial ful�llmen t
of the requiremen ts for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Mic higan
1995

Doctoral Committee:
Professor Yale N. Patt, Chair
Professor Peter M. Banks
Professor Edward S. Davidson
Professor Trevor N. Mudge
Professor Joseph Pasquale, University of California, San Diego

Copyright June 1995

ABSTRACT

System-Oriented Evaluation of I/O Subsystem Performance

by
Gregory Robert Ganger

Chair: Yale N. Patt

This dissertation demonstrates that the conventional approach for evaluating the perfor-
mance of an I/O subsystem design, which is based on standalone subsystem models, is too
narrow in scope. In particular, conventional methodology treats all I/O requests equally,
ignoring di�erences in how individual request response times a�ect system behavior. As a
result, it often leads to inaccurate performance predictions and can thereby lead to incor-
rect conclusions and poor design choices. A new methodology, which expands the model's
scope to include other important system components (e.g., CPUs and system software), is
proposed and shown to enable accurate predictions of both subsystem and overall system
performance.

This dissertation focuses on two speci�c problems with conventional methodology:

1. Benchmark workloads are often not representative of reality in that they do not
accurately reect feedback e�ects between I/O subsystem performance (in particular,
individual request completion times) and the workload of requests (in particular, sub-
sequent request arrivals).

2. Changes in I/O subsystem performance (e.g., as measured by mean request response
times) do not always translate into similar changes in overall system performance
(e.g., as measured by mean elapsed times for user tasks).

These problems are fundamental to the subsystem-oriented approach and are independent of
the model's accuracy. The �rst problem is illustrated with several examples where commonly-
utilized workload generators trivialize feedback e�ects and produce unrealistic workloads. In
each case, quantitative and/or qualitative errors result. The second problem is illustrated
with a disk scheduling algorithm that gives priority to those requests that are most critical
to overall system performance. This change increases overall system performance while
decreasing storage subsystem performance (as indicated by subsystem metrics). In all of
the experiments, the new methodology is shown to avoid the short-comings of conventional
methodology.

To Jennifer, for your extraordinary patience, love and support.

ii

ACKNOWLEDGEMENTS

I could not have survived the Ph.D. process without the guidance, friendship and support
of many people.

I will always be grateful to Yale Patt for all that he has done for me during my years at
the University of Michigan. Yale poured uncountable hours into my development, and his
guidance has been invaluable.

The many hours at the o�ce were made both bearable and enjoyable by the other mem-
bers of the research group, including Mike Butler, Po-Yung Chang, Chris Eberly, Carlos
Fuentes, Eric Hao, Robert Hou, Lea-Hwang Lee, Dennis Marsa, Eric Sprangle, Jared Stark,
and Tse-Yu Yeh. Two, in particular, kept me sane over the years. During my early years of
graduate school, Mike Butler empathized with my various complaints and calmly informed
me that the worst was yet to come. Bruce Worthington, who has been my research part-
ner for the past couple of years, is a godsend. He always seems to come up with practical
solutions to di�cult problems. I will always value his insights and friendship.

My research and personal development has been enhanced by several industry research in-
ternships, and many people at each of the companies have been good friends and
colleagues. During internships at NCR, Jim Browning, Chas Gimarc, Mike Leonard and
Rusty Ransford shared many insights and helped me to understand their systems, which
became the experimental platforms for much of my research. During my internship at DEC,
Bruce Filgate, Fran Habib, Rama Karedla, Doug Sharp and Peter Yakutis patiently weaned
me from academic ideals and exposed me to the frightening reality of the storage sub-
system marketplace. In two intense months at HP Labs, Richard Golding, Tim Sullivan,
Carl Staelin and John Wilkes shared a wide variety of ideas and allowed me to participate
in their unique research environment.

In addition to those mentioned above, I would like to thank Peter Chen,
Garth Gibson, Peter Honeyman, Dave Hudak, Richie Lary, Dave Nagle, Stuart Sechrest,
and Rich Uhlig for their insights on my research problems. I am particularly grateful to
Peter Banks, Ed Davidson, Trevor Mudge and Joe Pasquale for making time in their
extremely busy schedules to be members of my doctoral committee. Also, I thank
Richard Golding, John Wilkes, and Bruce Worthington for reading sections of this dis-
sertation and providing feedback.

Jimmy Pike of NCR Corporation (now AT&T/GIS) provided the initial support for
our group's storage subsystem research. NCR provided most of the funding, equipment
and operating system source code for my research. Hewlett-Packard provided workstations,
disk drives and disk request traces for our research group. Digital Equipment Corporation
provided workstations and disk request traces.

iii

I thank the Computer Measurement Group for awarding me one of their fellowships,
which partially funded my �nal year of graduate school.

Several sta� members at the University of Michigan have kept things from ying apart on
a day-to-day basis. Michelle Chapman, our group's administrative assistant, has consistently
been helpful above and beyond the call of duty. The other ACAL sta�, Paula Denton,
Denise DuPrie and Jeanne Patterson, have also been very helpful. The sta� members of the
departmental computing organization kept the main servers running smoothly and always
went out of their way to provide assistance.

I am extremely grateful to my family, especially my wife and parents, for their uncon-
ditional love, for supporting my decision to stay in graduate school at Michigan, and for
accepting the fact that I was almost always preoccupied with work.

Finally, a global thank you to all of the CSE faculty and students at the University of
Michigan who stopped by my open o�ce door for chats about whatever.

iv

TABLE OF CONTENTS

DEDICATION : ii

ACKNOWLEDGEMENTS : iii

LIST OF FIGURES : vii

LIST OF TABLES : ix

LIST OF APPENDICES : x

CHAPTERS

1 Introduction : 1
1.1 The Problem : 1
1.2 Thesis Statement : 2
1.3 Overview of Dissertation : 2
1.4 Contributions : 3
1.5 The Organization : 3

2 Request Criticality : 5
2.1 Three Classes of Request Criticality : : : : : : : : : : : : : : : : : : 6
2.2 Relation to Workload Generators : 7

3 Previous Work : 8
3.1 Request Criticality : 8
3.2 System-Level Modeling : 9
3.3 Conventional Methodology : 10

3.3.1 Storage Subsystem Models : : : : : : : : : : : : : : : : : : : 11
3.3.2 Storage Performance Metrics : : : : : : : : : : : : : : : : : : 15
3.3.3 Workload Generation : 15
3.3.4 Storage Subsystem Research : : : : : : : : : : : : : : : : : : 17

3.4 Summary : 19

4 Proposed Methodology : 20
4.1 System-Level Models : 20
4.2 Performance Metrics : 24

v

4.3 Workload Generation : 24
4.4 Summary : 26

5 The Simulation Infrastructure : 27
5.1 The Simulator : 27
5.2 Current Library of System-Level Traces : : : : : : : : : : : : : : : : 28
5.3 The Experimental System : 30
5.4 Validation : 31

5.4.1 Predicted vs. Measured Performance : : : : : : : : : : : : : 31
5.4.2 Predicted vs. Measured Response Time Distributions : : : : 33
5.4.3 Predicted vs. Measured Performance Improvements : : : : : 39

5.5 Summary : 40

6 Performance/Workload Feedback : 41
6.1 Storage Subsystem Workload Generators : : : : : : : : : : : : : : : 41

6.1.1 Open Subsystem Models : 41
6.1.2 Closed Subsystem Models : 42

6.2 Quantitative Errors : 42
6.2.1 Disk Request Scheduling Algorithms : : : : : : : : : : : : : : 42
6.2.2 Prediction Error for Open Subsystem Models : : : : : : : : : 43

6.3 Qualitative Errors : 47
6.3.1 Disk Request Collapsing : 47
6.3.2 Flush Policies for Write-Back Disk Block Caches : : : : : : : 48
6.3.3 Cache-Aware Disk Scheduling : : : : : : : : : : : : : : : : : 50

6.4 Summary : 55

7 Criticality-Based Disk Scheduling : 56
7.1 Request Criticality : 56

7.1.1 Sources of Request Criticality : : : : : : : : : : : : : : : : : 56
7.1.2 Measurements of Request Criticality : : : : : : : : : : : : : : 58

7.2 Disk Request Scheduling Algorithms : : : : : : : : : : : : : : : : : : 62
7.3 Performance Comparison : 63

7.3.1 Individual Task Workloads : : : : : : : : : : : : : : : : : : : 76
7.3.2 SynRGen Workloads : 80

7.4 Aging of Time-Noncritical Requests : : : : : : : : : : : : : : : : : : 81
7.5 Summary : 81

8 Conclusions and Future Work : 82
8.1 Conclusions : 82
8.2 Directions for Future Research : 83

APPENDICES : 84

BIBLIOGRAPHY : 125

vi

LIST OF FIGURES

Figure

3.1 Block Diagram of a Storage Subsystem : 12

4.1 Block Diagram of a Computer System : 22

5.1 Measured and Simulated Response Time Distributions (HP C2247A) : : : : 34

5.2 Measured and Simulated Response Time Distributions (DEC RZ26) : : : : : 35

5.3 Measured and Simulated Response Time Distributions (Seagate Elite) : : : : 36

5.4 Measured and Simulated Response Time Distributions (HP C2490A) : : : : 37

5.5 Measured and Simulated Response Time Distributions (HP C3323A) : : : : 38

6.1 Scheduling Algorithm Comparison for the compress Workload : : : : : : : : 44

6.2 Scheduling Algorithm Comparison for the uncompress Workload : : : : : : : 44

6.3 Scheduling Algorithm Comparison for the copytree Workload : : : : : : : : : 45

6.4 Scheduling Algorithm Comparison for the removetree Workload : : : : : : : 45

6.5 Error in Open Subsystem Model Performance Predictions : : : : : : : : : : : 46

6.6 Disk Request Collapsing for the removetree workload : : : : : : : : : : : : : 49

6.7 Disk Request Collapsing for the copytree workload : : : : : : : : : : : : : : : 49

6.8 Disk Cache Flush Policy Comparison for SynRGen Workloads : : : : : : : : 51

6.9 Cache-Aware Disk Scheduling for the compress Workload : : : : : : : : : : : 53

6.10 Cache-Aware Disk Scheduling for the copytree Workload : : : : : : : : : : : 53

7.1 Time Limit Density for the compress Workload : : : : : : : : : : : : : : : : 59

7.2 Time Limit Density for the uncompress Workload : : : : : : : : : : : : : : : 59

7.3 Time Limit Density for the copytree Workload : : : : : : : : : : : : : : : : : 60

7.4 Time Limit Density for the synrgen16 Workload : : : : : : : : : : : : : : : : 60

7.5 Time Limit Density for the synrgen8 Workload : : : : : : : : : : : : : : : : : 61

7.6 Time Limit Density for the synrgen4 Workload : : : : : : : : : : : : : : : : : 61

7.7 Criticality-Based Scheduling of the compress Workload : : : : : : : : : : : : 64

7.8 Criticality-Based Scheduling of the uncompress Workload : : : : : : : : : : : 66

7.9 Criticality-Based Scheduling of the copytree Workload : : : : : : : : : : : : : 68

7.10 Criticality-Based Scheduling of the synrgen16 Workload : : : : : : : : : : : : 70

7.11 Criticality-Based Scheduling of the synrgen8 Workload : : : : : : : : : : : : 72

7.12 Criticality-Based Scheduling of the synrgen4 Workload : : : : : : : : : : : : 74

7.13 Response Time Densities for Time-Limited Requests (compress) : : : : : : : 77

A.1 Internal Storage Subsystem Message Routing : : : : : : : : : : : : : : : : : : 97

vii

A.2 Message Sequences as Exchanged by Storage Components : : : : : : : : : : 99

B.1 Disk Drive Internals : 112

B.2 Top View of a Disk Surface with 3 Zones : 113

B.3 Measured seek curve for a Seagate ST41601N disk drive : : : : : : : : : : : : 114

B.4 On-Board Disk Drive Logic : 115

B.5 Disk Drive Module : 120

viii

LIST OF TABLES

Table

5.1 Basic Characteristics of the Independent Task Workloads : : : : : : : : : : : 29

5.2 Basic Characteristics of the SynRGen Workloads : : : : : : : : : : : : : : : : 30

5.3 Default Characteristics of the HP C2247 Disk Drive : : : : : : : : : : : : : : 31

5.4 Simulator Validation for the compress Workload : : : : : : : : : : : : : : : : 32

5.5 Simulator Validation for the uncompress Workload : : : : : : : : : : : : : : : 32

5.6 Simulator Validation for the copytree Workload : : : : : : : : : : : : : : : : 32

5.7 Simulator Validation for the removetree Workload : : : : : : : : : : : : : : : 33

5.8 Measured and Simulated Improvement for the compress Workload : : : : : : 39

5.9 Measured and Simulated Improvement for the uncompress Workload : : : : : 39

5.10 Measured and Simulated Improvement for the copytree Workload : : : : : : : 40

5.11 Measured and Simulated Improvement for the removetree Workload : : : : : 40

7.1 Request Criticality Breakdown for HP-UX Traces : : : : : : : : : : : : : : : 58

7.2 Request Criticality Breakdown for System-Level Traces : : : : : : : : : : : : 58

7.3 Criticality-Based Scheduling of the compress Workload : : : : : : : : : : : : 65

7.4 Criticality-Based Scheduling of the uncompress Workload : : : : : : : : : : : 67

7.5 Criticality-Based Scheduling of the copytree Workload : : : : : : : : : : : : : 69

7.6 Criticality-Based Scheduling of the synrgen16 Workload : : : : : : : : : : : : 71

7.7 Criticality-Based Scheduling of the synrgen8 Workload : : : : : : : : : : : : 73

7.8 Criticality-Based Scheduling of the synrgen4 Workload : : : : : : : : : : : : 75

A.1 Basic Characteristics of the Storage I/O Request Traces : : : : : : : : : : : : 106

ix

LIST OF APPENDICES

APPENDIX

A Detailed Description of the Simulation Infrastructure : : : : : : : : : : : : : 85

B Disk Drive Module Implementation Details : : : : : : : : : : : : : : : : : : : 111

C A High-Resolution Timestamp Mechanism : : : : : : : : : : : : : : : : : : : 122

x

CHAPTER 1

Introduction

1.1 The Problem

The performance of the input/output (I/O) subsystem plays a large role in determining
overall system performance in many environments. The relative importance of this role has
increased steadily for the past 25 years and should continue to do so for two reasons. First,
the components that comprise the I/O subsystem have improved at a much slower rate
than other system components. For example, microprocessor performance grows at a rate of
35{50 percent per year [Myers86], while disk drive performance grows at only 5{20 percent
per year [Lee93]. As this trend continues, applications that utilize any quantity of I/O will
become more and more limited by the I/O subsystem [Amdahl67]. Second, advances in
technology enable new applications and expansions of existing applications, many of which
rely on increased I/O capability.

In response to the growing importance of I/O subsystem performance, researchers and
developers are focusing more attention on the identi�cation of high-performance I/O sub-
system architectures and implementations. The conventional approach to evaluating the
performance of a subsystem design is based on standalone subsystem models (simulation or
analytic). With this approach, a model of the proposed design is exercised with a series of
I/O requests. The model predicts how well the given design will handle the given series of
requests using subsystem performance metrics, such as the mean request response time. The
ability of any performance evaluation methodology to identify good design points depends
upon at least three factors: (1) the accuracy of the model, (2) the representativeness of the
workload, and (3) how well the performance metrics translate into overall system perfor-
mance. The �rst two factors relate to the accuracy of the performance predictions and the
third relates to their usefulness. I/O subsystem model accuracy (the �rst factor) can be
achieved by careful calibration against one or more real I/O subsystems. Within the context
of the conventional methodology, the latter two factors are less well-understood and are the
focus of this dissertation.

1

2

1.2 Thesis Statement

I contend that the conventional methodology for evaluating the performance of
I/O subsystem designs, which focuses on I/O subsystem models in isolation, is too narrow
in scope In particular, conventional methodology treats all I/O requests equally, ignoring
di�erences in how individual response times a�ect system behavior. As a result, it often
leads to inaccurate performance predictions and can thereby lead to incorrect conclusions
and poor designs. This dissertation proposes a new methodology, based on system-level
models, that directly solves the problems with the conventional methodology.

1.3 Overview of Dissertation

The conventional methodology is awed in two important ways:

1. The workloads used are often not representative of reality in that they do not accurately
reect feedback e�ects between I/O subsystem performance (in particular, individual
request completion times) and the incoming workload of I/O requests (in particular,
subsequent request arrivals).

2. Changes in I/O subsystem performance (as measured by response times and through-
put of I/O requests) do not always translate into similar changes in overall system
performance (as measured by elapsed times or throughput of user tasks).

These problems are fundamental to the subsystem-oriented approach and are independent
of the model's accuracy. The proposed system-level modeling methodology directly solves
both of these problems.

Both problems arise because the conventional methodology tends to treat all I/O requests
as equally important. The foundation for the thesis is provided by describing three distinct
classes of request criticality based on how individual requests a�ect overall system perfor-
mance. Generally speaking, one request is more critical than another if it is more likely to
block application processes and thereby waste CPU cycles. Most I/O workloads consist of a
mixture of requests from the three classes. The common approaches to workload generation
fail to accurately recreate the e�ects of request criticality mixtures.

While the thesis of this dissertation applies to other forms of I/O, such as networks
and user interfaces, and other levels of the memory hierarchy, such as processor caches
and tertiary storage, this dissertation focuses on the secondary storage subsystem. The
conventional approach to performance evaluation of storage subsystem designs is described
in detail. Also, previous storage subsystem research is briey reviewed to establish that it
is commonly utilized.

A detailed system-level simulation model is described, providing an existence proof for
the feasibility of the proposed methodology. This simulator satis�es the three requirements of
a good performance evaluation methodology outlined above. (1) Extensive validation estab-
lishes the model's accuracy. (2) The system-level model correctly incorporates the complex
feedback e�ects that destroy the representativeness of most subsystem model workloads.
Workload representativeness is an exercise in choosing the appropriate benchmarks. (3) The
system-level model reports overall system performance metrics directly.

3

The system-level simulation model and a detailed storage subsystem simulation model
are used to provide several concrete examples where the conventional methodology produces
incorrect conclusions (both quantitative and qualitative) regarding subsystem performance.
These examples represent evidence of the �rst problem with standalone I/O subsystem mod-
els, that is, the misrepresentation of feedback e�ects in the workload. A good system-level
model removes this problem by expanding the scope of the model, making the feedback
e�ects part of the model rather than an aspect of the input workload.

The system-level simulation model is used to provide a concrete example where the
conventional methodology promotes an I/O subsystem design that is poor for overall system
performance. This occurs when, independent of the accuracy of the performance predictions,
I/O subsystem performance improvements fail to translate into overall system performance.
In an exploration of criticality-based disk request scheduling, I show that overall system
performance increases while storage subsystem performance decreases. This demonstrates
the existence of the second of the two problems with standalone I/O subsystem models. A
good system-levelmodel solves this problem by providing overall system performance metrics
as well as storage subsystem metrics.

1.4 Contributions

This dissertation makes three main contributions:

� It is shown that the conventional I/O subsystem performance evaluation methodology
is fundamentally awed and can lead to incorrect conclusions and sub-optimal designs.

� The concept of request criticality, which distinguishes I/O requests based on how they
interact with application processes, is identi�ed and de�ned. This is an important
step towards understanding the relationship between I/O performance and system
performance.

� It is shown that a detailed, validated system-level simulation model can accurately
predict both subsystem and system performance changes. The proposed methodology,
which is based on system-level models, directly solves the fundamental problems with
conventional methodology.

The tools described in this dissertation also represent useful, although secondary, contri-
butions.

1.5 The Organization

The remainder of the dissertation is organized as follows. Chapter 2 introduces the
concept of request criticality and explains how it relates to the fundamental problems of
conventional methodology. Chapter 3 describes previous work related to request criticality
and system-level models. Also, the conventional methodology is described in detail. Chap-
ter 4 describes the proposed methodology, including the system-level models on which it
is founded. Chapter 5 describes and validates the simulation infrastructure used in this

4

dissertation. Chapter 6 proves the existence of the �rst problem outlined above with sev-
eral concrete examples where the conventional methodology leads to incorrect conclusions
(quantitative and qualitative) regarding storage subsystem performance by failing to prop-
erly incorporate interactions between request completions and subsequent arrivals. Chapter
7 investigates criticality-based disk scheduling. The results illustrate the existence of the sec-
ond problem outlined above by providing an example where system performance increases
while storage subsystem performance decreases. Chapter 8 summarizes the contributions of
this dissertation and suggests some avenues for future research.

CHAPTER 2

Request Criticality

The two fundamental problems with conventional methodology are caused by variations
in how individual I/O requests interact with the rest of the system. Performance/workload
feedback e�ects are complicated by these variations, making commonly utilized subsystem
workload generators inappropriate. Also, di�erent requests a�ect overall system performance
in di�erent ways and to di�erent degrees, invalidating subsystem metrics that treat all re-
quests as equally important. This chapter de�nes three distinct classes of request criticality
to help explain these variations. Common subsystem workload generators are described in
terms of the three classes.

Storage accesses interfere with system performance in several ways. Some, such as in-
creased system bus and memory bank contention, depend mainly on the quantity and timing
of the accesses and are essentially independent of criticality. Others, such as false idle time
and false computation time, are highly dependent on request criticality. False idle time is
that time during which a processor executes the idle loop because all active processes are
blocked waiting for I/O requests to complete. This is di�erentiated from regular idle time,
which is due to a lack of available work in the system. False computation time denotes
time that is wasted handling a process that blocks and waits for an I/O request to complete.
This includes the time required to disable the process, context switch to a new process and,
upon request completion, re-enable the process. False computation time also includes the
various cache �ll penalties associated with unwanted context switches.

5

6

2.1 Three Classes of Request Criticality

Request criticality refers to how a request's response time (i.e., the time from issue to
completion) a�ects system performance and, in particular, process wait times. I/O requests
separate into three classes: time-critical, time-limited and time-noncritical. This taxonomy
is based upon the interaction between the I/O request and executing processes.

Time-Critical

A request is time-critical if the process that generates it must stop executing until
the request is complete. Examples of time-critical requests include demand page faults,
synchronous �le system writes and database block reads.

Time-critical requests, by de�nition, cause the processes that initiate them to block and
wait until they complete. In addition to false computation time, false idle time is accumulated
if there are no other processes that can be executed when the current process blocks. This
is certainly the largest concern, as it completely wastes the CPU for some period of time
(independent of the processor speed) rather than some number of cycles. To reduce false
idle time, time-critical requests should be expedited.

Time-Limited

Time-limited requests are those that become time-critical if not completed within some
amount of time (the time limit). File system prefetches are examples of time-limited
requests.

Time-limited requests are similar to time-critical requests in their e�ect on performance.
The major di�erence is that they are characterized by a time window in which they must
complete in order to avoid the performance problems described above. If completed within
this window, they cause no process to block. Time-limited requests are often speculative in
nature (e.g., prefetches). When prefetched blocks are unnecessary, performance degradation
(e.g., resource contention and cache pollution) can result.

Time-Noncritical

No process waits for time-noncritical requests. Theymust be completed to maintain the
accuracy of the non-volatile storage, to free the resources (e.g., memory) that are held on their
behalf, and/or to allow some background activity to progress. Examples of time-noncritical
requests are delayed �le system writes, requests issued for background data re-organization,
and database updates for which the log entry has been written.

In reality, there are no truly time-noncritical requests. If background activity is never
handled, some application process will eventually block and wait. For example, if background
disk writes are not handled, main memory will eventually consist entirely of dirty pages
and processes will have to wait for these writes to complete. However, the time limits are
e�ectively in�nite in most real environments, because of their orders of magnitude (e.g., many

7

seconds in a system where a request can be serviced in tens of milliseconds). Given this, it is
useful to make a distinction between time-limited requests (characterized by relatively small
time limits) and time-noncritical requests (characterized by relatively long time limits).

Except when main memory saturates, time-noncritical requests impact performance in-
directly. They can interfere with the completion of time-limited and time-critical requests,
causing additional false idle time and false computation time. Delays in completing time-
noncritical requests can also reduce the e�ectiveness of the in-memory disk cache.

Time-noncritical requests can also have completion time requirements if the guarantees
o�ered by the system require that written data reach stable storage within a speci�ed amount
of time. These requests are not time-limited according to my de�nition,1 but the I/O sub-
system must be designed to uphold such guarantees. Fortunately, these time constraints are
usually su�ciently large to present no problem.

2.2 Relation to Workload Generators

To clarify the request taxonomy and show how conventional methodology fails to ad-
equately deal with criticality mixtures, the two common workload generation approaches
(open and closed) are described in terms of the request criticality classes. The workload
generation approaches are described in more detail in section 3.3.3.

Open subsystem models use predetermined arrival times for requests. They assume
that the workload consists exclusively of time-noncritical requests. That is, changes to the
completion times of I/O requests have no e�ect on the generation of subsequent requests.

Closed subsystem models maintain a constant population of requests. Whenever
completion is reported for a request, a new request is generated, delayed by some think time
and issued into the storage subsystem. Therefore, a closed subsystem model assumes that
the workload consists exclusively of time-critical requests. In most closed models, the think
time between I/O requests is assumed to be zero so that there are a constant number of
outstanding requests.

Most real workloads are neither of these extremes. Far more common than either is a
mixture of time-critical, time-limited and time-noncritical requests. For example, extensive
measurements of three di�erent UNIX systems ([Ruemmler93]) showed that time-critical re-
quests ranged from 51{74 percent of the total workload, time-limited ranged from 4{8 percent
and time-noncritical ranged from 19{43 percent. Because of the complex request critical-
ity mixtures found in real workloads, standalone storage subsystem models (regardless of
how accurately they emulate real storage subsystems) often produce erroneous results. This
problem exists because of the trivialized feedback e�ects assumed by the simple workload
generators that are commonly utilized. Also, variations in how individual I/O requests af-
fect overall system performance make it infeasible to predict (in general) system performance
changes with storage subsystem metrics.

1This is one of several system-behavior-related I/O workload characteristics that are orthogonal to request
criticality. Each such characteristic represents another dimension in a full I/O request taxonomy.

CHAPTER 3

Previous Work

The purpose of this chapter is to motivate and provide a context for the work presented in
this dissertation. Previous work relating both to request criticality and to system-level mod-
els is described. Storage subsystem models, the tools that form the basis of the conventional
methodology for evaluating the performance of a storage subsystem design, are described.
Popular workload generators for such models are also described. These workload generators
are at the root of the conventional methodology's short-comings because they trivialize feed-
back e�ects between storage subsystem performance and system behavior. A brief survey of
previous storage subsystem research demonstrates that, despite its short-comings, storage
subsystem modeling is commonly utilized.

3.1 Request Criticality

Although I have found no previous work which speci�cally attempts to classify
I/O requests based on how they a�ect system performance, previous researchers have noted
di�erences between various I/O requests. Many have recognized that synchronous
(i.e., time-critical) �le system writes generally cause more performance problems than non-
synchronous (i.e., time-limited and time-noncritical) [Ousterhout90, McVoy91, Ruemmler93].
In their extensive traces of disk activity, Ruemmler and Wilkes captured information (as
agged by the �le system) indicating whether or not each request was synchronous. They
found that 50-75% of disk requests are synchronous, largely due to the write-through meta-
data cache on the systems traced.

Researchers have noted that bursts of delayed (i.e., time-noncritical) writes caused by
periodic update policies can seriously degrade performance by interfering with read requests
(which tend to be more critical) [Carson92, Mogul94]. Carson and Setia argued that disk
cache performance should be measured in terms of its e�ect on read requests. While not
describing or distinguishing between classes of I/O requests, they did make a solid distinction
between read and write requests based on process interaction. This distinction is not new.
The original UNIX system (System 7) used a disk request scheduler that gave non-preemptive
priority to read requests for exactly this reason. The problem with this approach (and this
distinction) is that many write requests are time-limited or time-critical. Such requests are
improperly penalized by this approach.

8

9

When disk blocks are cached in a non-volatile memory, most write requests from the
cache to the disk are time-noncritical. In such environments, the cache should be designed
to minimize read response times while ensuring that the cache does not �ll with dirty blocks
[Reddy92, Biswas93, Treiber94]. With non-volatile cache memory becoming more and more
common, it becomes easy for storage subsystem designers to translate write latency problems
into write throughput problems, which are much easier to handle. This leads directly to the
conclusion that read latencies are the most signi�cant performance problem. Researchers
are currently exploring approaches to predicting and using information about future access
patterns to guide aggressive prefetching activity (e.g., [Patterson93, Gri�oen94, Cao95]),
hoping to utilize high-throughput storage systems to reduce read latencies.

Priority-based disk scheduling has been examined and shown to improve system per-
formance. For example, [Carey89] evaluates a priority-based SCAN algorithm where the
priorities are assigned based on the process that generates the request. Priority-based algo-
rithms have also been studied in the context of real-time systems, with each request using
the deadline of the task that generates it as its own. [Abbott90] describes the FD-SCAN
algorithm, wherein the SCAN direction is chosen based on the relative position of the pend-
ing request with the earliest feasible deadline. [Chen91a] describes two deadline-weighted
Shortest-Seek-Time-First algorithms and shows that they provide lower transaction loss ra-
tios than non-priority algorithms and the other priority-based algorithms described above.
In all of these cases, the priorities assigned to each request reects the priority or the deadline
of the associated processes rather than criticality.

Finally, the Head-Of-Queue [SCSI93] or express [Lary93] request types present in many
I/O architectures show recognition of the possible value of giving priority to certain requests.
While present in many systems, such support is generally not exploited by system software.
Currently, researchers are exploring how such support can be utilized by a distributed disk
request scheduler that concerns itself with both mechanical latencies and system priorities
[Worthington95a].

3.2 System-Level Modeling

This dissertation, in part, proposes the use of system-level models for evaluating I/O
subsystem designs. This section describes previous work relating to system-level models and
their use in storage subsystem performance evaluation.

[Seaman69] and [Chiu78] describe system-level modeling e�orts used mainly for exam-
ining alternative system con�gurations (as opposed to I/O subsystem designs). [Haigh90]
describes a system performance measurement technique that consists of tracing major system
events. The end purpose for this technique is to measure system performance under various
workloads rather than as input to a simulator to study I/O subsystem design options. How-
ever, Haigh's tracing mechanism is very similar to my trace acquisition tool. [Richardson92]
describes a set of tools under development that are intended to allow for studying I/O per-
formance as part of the entire system. These tools are based on instruction-level traces.
While certainly the ideal case (i.e., simulating the entire activity of the system is more ac-
curate than abstracting part of it away), it is not practical. The enormous simulation times

10

and instruction trace storage requirements, as well as the need for instruction level traces of
operating system functionality, make this approach both time- and cost-prohibitive.

There have been a few instances of very simple system-levelmodels being used to examine
the value of caching disk blocks in main memory. For example, [Miller91] uses a simple
system-level model to study the e�ects of read-ahead and write bu�ering on supercomputer
applications. [Busch85] examines the transaction processing performance impact of changes
to hit ratios and ush policies for disk block caches located in main memory. [Dan94]
studies transaction throughput as a function of the database bu�er pool size for skewed access
patterns. My work extends these approaches in two ways: (1) by using a thorough, validated
system-level model, and (2) by using system-level models to evaluate storage subsystem
designs in addition to host system cache designs.

An interesting technique for replaying �le system request traces in a realistic manner
has recently been introduced and used to evaluate reintegration policies for disconnected
and weakly connected distributed �le systems [Mummert95]. Each event in their traces
contains a �le system request and an associated user identi�cation. A trace is re-organized
to consist of per-user sequences of �le system requests. The replay process issues requests
for each sequence in a closed-loop fashion. The measured inter-request time is used if it
exceeds a think threshold parameter, �, and ignored (i.e., replaced with zero) otherwise.
The think threshold's role is to distinguish between user think times, which arguably have
not changed much in the past 50 years, and job computation times, which continue to improve
dramatically with time. Sensitivity analyses are still needed to show that this approach works
and to identify appropriate values for �. Mummert, et al., selected � equal to 1 second and
10 seconds. [Thekkath94] promotes a similar �le system trace replay approach with � set to
zero. Unfortunately, this approach to trace replay is unlikely to be successful with storage
I/O request traces, because the host level cache and background system daemons make
it extremely di�cult to identify who is responsible for what by simply observing the I/O
requests. However, this technique does o�er a healthy supply of input workloads for system-
level models, which would of course need a module that simulates �le system functionality
[Thekkath94].

3.3 Conventional Methodology

The conventional approach to evaluating the performance of a storage subsystem design
is to construct a model (analytic or simulation) of the components of interest, exercise
the model with a sequence of storage I/O requests, and measure performance in terms of
response times and/or throughput. This section describes the conventional methodology in
detail, including a general view of storage subsystem models and a discussion of popular
components and the varying levels of detail with which they may be modeled. Common
performance metrics are briey described. Common approaches to workload generation are
described with special attention given to those aspects that are at the root of the short-
comings of the conventional methodology. A number of examples from the open literature
where subsystem models have been used to investigate storage subsystem design issues are
provided.

11

3.3.1 Storage Subsystem Models

A storage subsystem model consists of modules for one or more storage subsystem
components and an interface to the rest of the computer system. Requests are issued to
the model via the interface and are serviced in a manner that imitates the behavior of the
corresponding storage subsystem. The components comprising a particular model, as well
as the level of detail with which each is simulated, should depend upon the purpose of the
model. Generally speaking, more components and/or �ner detail imply greater accuracy at
the cost of increased development and execution time.

Figure 3.1 shows an example of a storage subsystem. This particular example includes
disk drives, a small disk array, and intelligent cached I/O controller, a simple bus adapter,
several buses, a device driver and an interface to the rest of the system. Each of these storage
subsystem components is briey described below, together with discussion of how they are
commonly modeled.

Interface to Rest of System

The interface between the storage subsystem and the remainder of the system is very
simple. Requests are issued by the system and completion is reported for each request when
appropriate. A request is de�ned by �ve values:

� Device Number: the logical storage device to be accessed. The device number is from
the system's viewpoint and may be remapped several times by di�erent components
as it is routed (through the model) to the �nal physical storage device. This �eld is
unnecessary if there is only one device.

� Starting Block Number: the logical starting address to be accessed. The starting
block number is from the system's viewpoint and may be remapped several times by
di�erent components as it is routed to the �nal physical storage device.

� Size: the number of bytes to be accessed.

� Flags: control bits that de�ne the type of access requested and related characteristics.
The most important request ag component indicates whether the request is a read
or a write. Other possible components might indicate whether written data should be
re-read (to verify correctness), whether a process will immediately block and wait for
the request to complete, and whether completion can be reported before newly written
data are safely in non-volatile storage.

� Main Memory Address: the physical starting address in main memory acting as
the destination (or source). The main memory address may be represented by a vector
of memory regions in systems that support gather/scatter I/O. This �eld is often not
included in request traces and is only useful for extremely detailed simulators.

A detailed model may also emulate the DMA (Direct Memory Access) movement of data
to and from host memory. Some storage subsystem simulators maintain an image of the
data and modify/provide it as indicated by each request. For example, such support is

12

Array Ctlr

Independent Disks

I/O Bus

Device Driver

System Bus

Bus Adapter

Requests Completions

Rest of System

Interface Cache

I/O Controller

Figure 3.1: Block Diagram of a Storage Subsystem.

13

useful when the storage subsystem simulator is attached to a storage management simulator
(e.g., a �le system or database model) [Kotz94].

Device Driver

The device driver deals with device speci�c interactions (e.g., setting/reading controller
registers to initiate actions or clear interrupts), isolating these details from the remainder
of the system software. Device drivers will often re-order (i.e., schedule) and/or combine
requests to improve performance. The device drivers are system software components that
execute on the main computer system processors.

In a storage subsystem model, the device drivers (if included) interface with the rest of
the system. In many models, they are represented as zero-latency resources that deal with
request arrivals/completions and make disk request scheduling decisions. More aggressive
simulators may include delays for the di�erent device driver activities (e.g., request initiation
and interrupt handling) so as to predict the CPU time used to handle storage I/O activity.

Buses

In a computer system, buses connect two or more components for communication pur-
poses. To simplify discussion, the term \bus" will be used for point-to-point (possibly uni-
directional) connections as well as connections shared by several components. The decision
as to which component uses the bus at any point in time, or arbitration, may occur before
each bus cycle (as is common for system buses and general I/O buses, such as MicroChannel
[Muchmore89]) or less frequently (as is common for storage subsystem buses, such as SCSI
[SCSI93]).

In most storage subsystem models, buses are modeled as shared resources with owner-
ship characteristics that depend on the arbitration technique employed. That is, the bus
may be exclusively owned by one component for some period of time or several distinct
data movements may be interleaved. Depending on the level of detail, bus transmission
times can depend on the quantity of data being moved, the maximum bus bandwidth and
characteristics of the communicating components (e.g., bu�er sizes and bus control logic).

Storage Controllers and Bus Adapters

In a computer system, storage controllers manage activity for attached components and
bus adapters enable communication across buses. A storage controller, together with the
attached devices, often acts as a separate storage subsystem with an interface similar to that
for the overall subsystem. Such controllers generally contain CPUs and memory, execute
a simpli�ed operating system (referred to as �rmware) and control the activity of several
storage devices. Disk request scheduling, disk block caching, and disk array management are
increasingly common functions performed by storage controller �rmware. Bus adapters, on
the other hand, generally consist of small amounts of bu�er memory and very simple logic
to deal with bus protocols.

In most storage subsystem models, bus adapters are modeled as zero-latency resources
that simply allow data movement from one bus to another. Any latencies are generally

14

assumed to be included in the associated bus transfer times. Very detailed models might
model each individual bus cycle and the associated adapter activity in order to (for example)
study optimal bu�er sizes within the adapter. Storage controllers, on the other hand, are
much more complex and can therefore be modeled in a much wider variety of ways. Simple
controller models use a zero-latency resource to model various controller activities, including
request processing, bus and device management, internal data movement, scheduling, caching
and array management. More detailed models incorporate the CPU utilization, internal bus
bandwidth and internal memory capacity used for the di�erent activities.

Disk Drives

In most computer systems, the disk drive remains the secondary storage device of choice.
Generally, all permanent data are written to disk locations and disk drives act as the back-
ing store for the entire system. In some very large data storage systems, disk drives are
used as caches for near-line tertiary devices (e.g., robotic tape libraries and optical disk
jukeboxes). Disk drives have grown in complexity over the years, using more powerful
CPUs and increased on-board memory capacity to augment improvements in mechanical
components. Descriptions of disk drive characteristics can be found in appendix B and in
[Ruemmler94, Worthington94].

In a storage subsystem model, disk drives can be simulated as resources with a wide
variety of complexities, ranging from servers with delays drawn from a single probability dis-
tribution (e.g., constant or exponential) to self-contained storage systems with bus control
and speed-matching, request queueing and scheduling, on-board disk block caching, CPU
processing delays and accurate mechanical positioning delays. [Ruemmler94] examines sev-
eral points in this range of options. Appendix B describes the options supported in the disk
module of my simulation environment.

3.3.1.1 Detail and Accuracy

The level of detail in a storage subsystem model should depend largely upon the desired
accuracy of the results. More detailed models are generally more accurate, but require more
implementation e�ort and more computational power. Simple models can be constructed
easily and used to produce \quick-and-dirty" answers. More precise performance studies,
however, must use detailed, validated simulation models (or real implementations) to avoid
erroneous conclusions. For example, [Holland92] uses a more detailed storage subsystem sim-
ulator to refute the results of [Muntz90] regarding the value of piggybacking rebuild requests
on user requests to a failed disk in a RAID 5 array. As another example, [Worthington94]
determines (using an extremely detailed disk simulator) that the relative performance of
seek-reducing algorithms (e.g., Shortest-Seek-Time-First, V-SCAN(R) and C-LOOK) is of-
ten opposite the order indicated by recent studies [Geist87, Seltzer90, Jacobson91].1

It is worth reiterating that the problems addressed in this thesis are independent of how
well a storage subsystem model imitates the corresponding real storage subsystem. Even
the most accurate storage subsystem models su�er from two fundamental problems, because

1This discrepancy in results is also partly due to the non-representative synthetic workloads used in the
older studies.

15

of the simplistic workload generators and narrowly-focused performance metrics. In fact,
many prototypes and real storage subsystems have been evaluated with the same evaluation
techniques (e.g., [Geist87a, Chen90a, Chervenak91, Chen93a, Geist94]).

3.3.2 Storage Performance Metrics

The three most commonly used storage subsystem performance metrics are request re-
sponse times (averages, variances and/or distributions), maximum request throughputs and
peak data bandwidth. The response time for a request is the time from when it is is-
sued (i.e., enters the subsystem via the interface) to when completion is reported to the
system. Request throughput is a measure of the number of requests completed per unit
of time. Data bandwidth is a measure of the amount of data transferred per unit time.
Secondary performance measures, such as disk cache hit rates, queue times, seek times and
bus utilizations, are also used to help explain primary metric values.

3.3.3 Workload Generation

The workloads used in a performance study can be at least as important as model accu-
racy or performance metrics. The \goodness" of an input workload is how well it represents
workloads generated by real systems operating in the user environments of interest. A quan-
ti�ed goodness metric should come from performance-oriented comparisons of systems under
the test workload and the real workload [Ferr84]. The goal of this dissertation is not to ex-
amine the space of possible workloads or the range of reasonable goodness metrics, but to
explore fundamental problems with the manner in which common workload generators for
storage subsystem models trivialize important performance/workload feedback e�ects. In
chapter 6, I utilize performance-oriented comparisons to show how these aws can lead to
both quantitative and qualitative errors regarding storage subsystem performance.

A storage subsystem workload consists of a set of requests and their arrival times
(i.e., the times at which the system issues each request to the subsystem). With this de�ni-
tion, we have broken the workload down into two components, one spatial and one temporal.
The spatial component deals with the �ve values described earlier that de�ne a request. The
temporal component deals with the time that a request arrives for service, which can depend
partially on the response times of previous requests. The two components are of course
related, and both are important. However, I will be focusing on the latter component here,
as it lies at the root of the problems addressed in this dissertation.

Almost all model-based (analytic or simulation) performance studies of the storage sub-
system can be divided into two categories (open and closed) based on how request arrival
times are determined. The remainder of this subsection will describe these two categories,
including how each allows for workload scaling. Workload scaling (i.e., increasing or de-
creasing the arrival rate of requests) is an important component of performance studies as
it allows one to examine how a design will behave under a variety of situations.

16

Open Subsystem Models

Open subsystem models use predetermined arrival times for requests, independent
of the storage subsystem's performance. So, an open subsystem model assumes there is no
feedback between individual request response times and subsequent request arrival times. If
the storage subsystem cannot handle the incoming workload, then the number of outstanding
requests grows without bound. Open queueing models and most trace-driven simulations of
the storage subsystem are examples of open subsystem models.

The central problem with open subsystem models is the assumption that there is no
performance/workload feedback, ignoring real systems' tendency to regulate (indirectly) the
storage workload based on storage performance. That is, when the storage subsystem per-
forms poorly, the system will spend more time waiting for it (rather than generating addi-
tional work for it). One e�ect of this problem is that the workload generator for an open
subsystem model may allow requests to be outstanding concurrently that would never in
reality be outstanding at the same time (e.g., the read and write requests that comprise a
read-modify-write action on some disk block).

The most common approach to workload scaling in an open subsystem model multiplies
each inter-arrival time (i.e., the time between one request arrival and the next) by a constant
scaling factor. For example, the workload can be doubled by halving each inter-arrival time.
This approach to scaling tends to increase the unrealistic concurrency described above. To
avoid this increase, [Treiber94] uses trace folding, wherein the trace is sliced into periods
of time that are then interleaved. The length of each section should be long enough to
prevent undesired overlapping, yet short enough to prevent loss of time-varying arrival rates.
Treiber and Menon used 20 seconds as a convenient middle-ground length for each section.
Trace folding should exhibit less unrealistic concurrency than simple trace scaling, but does
nothing to prevent it.

Closed Subsystem Models

In a closed subsystem model, request arrival times depend entirely upon the comple-
tion times of previous requests. Closed subsystem models maintain a constant population
of requests. Whenever completion is reported for a request, a new request is generated
and issued into the storage subsystem.2 That is, closed subsystem models assume unqual-
i�ed feedback between storage subsystem performance and the incoming workload. Closed
queueing models and simulations that maintain a constant number of outstanding requests
are examples of closed subsystem models.

The main problem with closed subsystem models is that they ignore burstiness in the
arrival stream. Measurements of real storage subsystem workloads have consistently shown
that arrival patterns are bursty, consisting of occasional periods of intense activity inter-

2Requests in a closed model can spend think time in the system before being issued back into the
subsystem model. For example, non-zero think times might be used to represent the processing of one
block before accessing the next. While rare, non-zero think times have been used in published storage
subsystem research. For example, [Salem86] uses a closed workload of <read block, process block, write
block (optional)> sequences to emulate a generic �le processing application.

17

spersed with long periods of idle time (i.e., no incoming requests). With a constant number
of requests in the system, there is no burstiness.

Workload scaling in a closed subsystem model can be accomplished by simply increasing
or decreasing the constant request population. If non-zero think times are used, workload
scaling can also be accomplished by changing the think times, but this approach would be
less exact because of the feedback e�ects, which are independent of the think times.

Other Subsystem Models

Real workloads are neither of these extremes, falling somewhere in between for reasons
that will be explained in the next section. One could conceive of a su�ciently complex
workload generator that would indirectly emulate the feedback behavior of a real system.
Such a workload generator might be a closed subsystem model with a very large population
and very complex think time distributions. Another option might be a combination of the
workloads used in open and closed subsystem models, with (hopefully) less complex think
time distributions. I am not aware of any successful attempts to construct such a workload
generator. This dissertation proposes a more direct solution.

3.3.4 Storage Subsystem Research

This section describes many examples of storage subsystem models being used in design-
stage research. The purpose of this section is to establish that, despite its aws, the method-
ology described above is commonly utilized by storage subsystem designers.

Disk Request Schedulers

Disk (or drum) request schedulers have been an important system software component
since the introduction of mechanical secondary storage into computer systems over 25 years
ago [Denning67, Seaman66]. Over the years, many researchers have introduced, modi�ed
and evaluated disk request scheduling algorithms to reduce mechanical delays. For example,
[Co�72, Gotl73, Oney75, Wilhelm76, Co�man82] all use analytic open subsystem models
to compare the performance of previously introduced seek-reducing scheduling algorithms
(e.g., First-Come-First-Served, Shortest-Seek-Time-First and SCAN). [Teorey72, Hofri80]
use open subsystem simulation models for the same purpose. [Daniel83] introduces a contin-
uum of seek-reducing algorithms, V-SCAN(R), and uses open subsystem simulation (as well
as a real implementation tested in a user environment) to show that VSCAN(0.2) outper-
forms previous algorithms. [Seltzer90] and [Jacobson91] introduce algorithms that attempt
to minimize total positioning times (seek plus rotation) and use closed and open subsystem
simulation models, respectively, to show that they are superior to seek-reducing algorithms.
[Worthington94] uses an open subsystem model to re-evaluate previous algorithms and show
that they should be further modi�ed to recognize and exploit on-board disk caches. All of
this research in disk request scheduling algorithms relied upon storage subsystem models for
design-stage performance comparisons.

Some previous researchers have recognized that open subsystem models can mispredict
disk scheduler performance. For example, [Geist87a] compares simulation results using an

18

open, Poisson request arrival process to measured results from a real implementation, �nding
that the simulator mispredicted performance by over 500 percent. Geist, et al., concluded
from this that no open subsystem model provides useful information about disk scheduling
algorithm performance. There are several problems with their work. Most importantly, they
rated their implementation using an arti�cially constructed workload (of the form used in
closed subsystemmodels) rather than real user workloads. It is not at all surprising that their
open subsystem model failed to replicate the results. Also, they used unrealistic synthetic
arrival times for the open subsystem model rather than traced arrival times. They went
on to construct a simulation workload that better matches their arti�cial system workload.
In a subsequent paper [Geist94], Geist and Westall exploited a pathological aspect of their
arti�cial workload to design a scheduling algorithm that achieves anomalous improvements
in disk performance.

Disk Striping

As disk performance continues to fall relative to the performance of other system com-
ponents (e.g., processors and main memory), it becomes critical to utilize multiple disks
in parallel. The straight-forward approach, using multiple independently-addressed drives,
tends to su�er from substantial load balancing problems and does not allow multiple drives
to cooperate in servicing requests for large amounts of data. Disk striping (or interleaving)
spreads logically contiguous data across multiple disks by hashing on the logical address
[Kim86, Salem86]. The performance impact of disk striping has been studied with both
open subsystem models [Kim86, Kim91] and closed subsystem models [Salem86]. The load
balancing bene�ts of disk striping have been demonstrated with open subsystem models
[Livny87, Ganger93a]. The stripe unit size (i.e., the quantity of data mapped onto one phys-
ical disk before switching to the next) is an important design parameter that has also been
studied with both open subsystem models [Livny87, Reddy89] and closed subsystem models
[Chen90]. Storage subsystem models have also been used to examine other design issues in
striped disk subsystems, including spindle synchronization [Kim86, Kim91] and disk/host
connectivity [Ng88].

Redundant Disk Arrays

As reliability requirements and the number of disks in storage subsystems increase, it
becomes important to utilize on-line redundancy. The two most popular storage redundancy
mechanisms are replication (e.g., mirroring or shadowing) and parity (e.g., RAID 5). Both
have been known for many years (e.g., [Ouchi78]). Storage subsystem models have been used
to evaluate design issues for both replication-based redundancy (e.g., [Bitton88, Bitton89,
Copeland89, Hsiao90]) and parity-based redundancy (e.g., [Muntz90, Lee91, Menon91,
Holland92, Menon92, Ng92, Cao93, Hou93, Hou93a, Stodolsky93, Treiber94, Chen95]). Com-
parisons of replication-based and parity-based redundancy have also relied largely upon
storage subsystem models (e.g., [Patterson88, Chen91, Hou93, Hou93b, Mourad93]) and
measurements of prototypes under similar workloads (e.g., [Chen90a, Chervenak91]).

19

Dynamic Logical-to-Physical Mapping

Disk system performance can be improved in many environments by dynamically mod-
ifying the logical-to-physical mapping of data. This concept can be applied in two ways to
improve performance for reads and for writes, respectively. To improve read performance,
one can occasionally re-organize the data blocks to place popular blocks near the center of
the disk and cluster blocks that tend to be accessed together. [Ruemmler91] uses an open
subsystem model to evaluate the bene�ts of such an approach. [Wolf89, Vongsathorn90], on
the other hand, measure this approach by implementing it in real systems. To improve write
performance, one can write data blocks to convenient locations (i.e., locations that are close
to the disk's read/write head) and change the mapping, rather than writing the data to the lo-
cation indicated by a static mapping, which may require a signi�cant mechanical positioning
delay. Open subsystem models have been used to evaluate this approach for non-redundant
storage systems (e.g., [English91]) and mirrored disk systems (e.g., [Solworth91, Orji93]).
Simple equations for the disk service time improvements provided by dynamically mapping
parity locations and/or data locations in a RAID 5 disk array are derived in [Menon92].

Disk Block Caches

Disk block caches are powerful tools for improving storage subsystem performance. Most
design-stage studies of disk cache designs use open subsystem models, relying on traces of
disk requests collected from user environments to reproduce realistic access patterns. For
example, [Busch85, Smith85, Miyachi86] use trace-driven simulation to quantify the value of
write-thru disk block caches and determine how they should be designed. Storage subsystem
models have also been used to investigate design issues for write-back disk block caches
located in the on-board disk drive control logic [Ruemmler93, Biswas93] or above the disk
drive (e.g., in main memory or an intermediate controller) [Solworth90, Carson92, Reddy92].
Disk block cache design issues speci�c to parity-based redundant disk arrays have also been
examined with open subsystem models (e.g., [Menon91, Brandwajn94, Treiber94]). Data
prefetching is an extremely important aspect of disk block caching that has also been studied
with open subsystem models [Ng92a, Hospodor94]. Finally, storage subsystem models have
been used to evaluate the performance bene�ts of on-board bu�ers for speed-matching media
and bus transfers [Mitsuishi85, Houtekamer85].

3.4 Summary

Previous work relating both to request criticality and to system-level modeling is scarce,
leaving considerable room for improvement. This chapter describes this previous work and
its short-comings. This chapter also describes storage subsystem models and establishes
the fact that they represent a very popular tool for design-stage performance evaluation
of storage subsystems. The workload generators and performance metrics commonly used
with standalone storage subsystem models ignore di�erences in how individual I/O request
response times a�ect system behavior, leading directly to the problems addressed in this
dissertation.

CHAPTER 4

Proposed Methodology

This dissertation proposes an alternative approach to evaluating the performance of stor-
age subsystem designs. Rather than focusing on the storage subsystem in a vacuum, the
scope of the model is expanded to include all major system components, so as to incorporate
the complex performance/workload feedback e�ects. The resulting system-level model is
exercised with a set of application processes, and system performance metrics (e.g., the mean
elapsed time for user tasks) are produced. This section describes the proposed methodology
in detail. Approaches to workload generation are described with special attention given to
avoiding the problems encountered with storage subsystem models.

4.1 System-Level Models

A system-levelmodel consists of modules for each major system component and interfaces
to the outside world (e.g., users and other systems).1 Processes execute within a system-level
model in a manner that imitates the behavior of the corresponding system. Also, external
interrupts may arrive at the interfaces, triggering additional work for the system.

There are several options for the degree of abstraction and the granularity of the events in
a system-level simulation model. For example, one can model the system at the instruction-
level wherein every instruction of each involved process (and possibly the operating system)
is simulated. A second alternative would be to model each memory reference, abstracting
away the particulars of the instructions. Yet a third option might model system activity with
higher-level system events (e.g., system calls and interrupts). More detailed models allow for
more accurate results but require more implementation e�ort, more input (both workload
and con�guration) and more simulation time. The correct level at which to model system
activity depends largely upon how sensitive system performance is to small changes in the
components to be studied. The three options listed above are each appropriate for some
studies (e.g., CPU design, memory system design and I/O subsystem design, respectively).
I believe (and the validation results indicate) that the third option is su�cient for evaluating
storage subsystem designs because of the large granularity of disk activity.

1Users and other systems could both be viewed as components of a system-level model, depending upon
how comprehensive the model is intended to be.

20

21

Figure 4.1 shows an example system that includes processors, main memory, applications,
operating system software, several buses, a bus adapter that also handles interrupt control
activities, storage subsystem components and some other I/O devices (network and user
interface). Each of these system components is very briey described below, together with
discussion of how they might be modeled in a performance evaluation tool targeted for
storage subsystem designs.

Central Processing Units (CPUs)

Streams of instructions execute on the CPUs to accomplish the tasks of users. In a
system-level model, a CPU can be modeled as a resource that decrements computation times
between events. When the computation time reaches zero, an event \occurs," changing the
state of the modeled system in some way. Generally, a CPU can only work on one task
(i.e., process or interrupt service routine) at a time. That is, only one computation time can
be decremented by the CPU resource during each unit of simulated time.

Main Memory

Main memory is the working space for tasks executing on the CPUs. The operating
system uses the physical page frames that comprise main memory to cache virtual memory
pages and �le blocks. In a system-level model used for studying I/O behavior, main memory
can simply be modeled as a cache for disk blocks (i.e., virtual memory pages and �le blocks).
The level of detail in the model will dictate whether or not all data movement into and out
of main memory must be simulated.

Applications

The applications are the inputs to the computer system (together with externally gen-
erated interrupts and data), dictating the tasks performed. An application consists of one
or more processes. I use the term process to refer to any instruction stream other than an
interrupt service routine, independent of the virtual memory context. So, multiple threads
that share a common context are each processes. I treat system call and exception service
routines as part of the process, because they are generally executed within the context and
ow of the process. A process can be modeled as a sequence of events separated by compu-
tation times. The exact form of these events depends upon the level of detail in the model
and the approach to workload generation (see below).

Operating System Software

Operating system software provides commonly required functionality for applications and
handles direct interactions with system hardware. Operating system functions are initiated
by interrupts, exceptions and system calls made by application processes. Three important
functions of most operating systems are process control, memory management and interrupt
handling. Process control includes process creation/deletion, process enabling/disabling
(e.g., sleep/wakeup), context switching between processes and time-sharing of CPU re-

22

I/O Bus

System Bus

Bus Adapter / Interrupt Controller

Array Ctlr

Independent Disks

Interface Cache

I/O Controller

Main
Memory

Network
Controller

Keyboard

Mouse

Monitor

CPUs

Device Drivers

Operating System Software

Applications

Figure 4.1: Block Diagram of a Computer System.

23

sources. Memory management policies involve allocation, replacement, ushing and locking
decisions. An interrupt service routine executes when an interrupt arrives at the CPU, up-
dating system software state and/or hardware controller state. Operating system software
executes on CPUs and can therefore be modeled in the same manner as application software
(i.e., events separated by computation times). Process control and memory management
policy code can be taken almost directly from the operating system being modeled, after
altering the interfaces and structures to �t into the simulation environment [Thekkath94].

Interrupt Controller

An interrupt controller tracks the pending interrupts in the system and routes them to
the CPUs for service. The state of the interrupt controller is updated when new interrupts
are generated and when a CPU begins handling an interrupt. The interrupt controller can
be modeled as a simple resource that performs exactly the above functions. The time delays
for these functions can safely be assumed to be zero in all but the most detailed models.

Non-storage I/O Devices

Non-storage I/O devices communicate with the world outside of the computer system.
User-interface devices (e.g., monitors, keyboards, mice, printers, scanners, etc...) make com-
puter systems useful to people. Network controllers allow the computer to communicate
with other computer systems. There are three basic options regarding how to incorporate
these devices into a system-level model: (1) ignore them and emulate a standalone computer
system operating in batch mode, (2) model the workload generated by these devices in a
manner analogous to the open and closed subsystem models described earlier, or (3) expand
the scope of the model to incorporate these devices.

Storage Subsystem Components

The storage subsystem components perform the same functions as described earlier for
the conventional methodology. The same modeling approaches for the components also
apply, with the exception of the device driver. The device driver is part of the operating
system and should be incorporated into the model as such, with computation times between
events. However, the basic device driver functions described earlier remain unchanged.

24

4.2 Performance Metrics

The two most commonly used system performance metrics are elapsed times (averages,
variances and/or distributions) and throughput for user tasks. The elapsed time for a
task is the wall-clock time from when it is initiated (e.g., by a user command or a batch
script) to when completion is indicated to the initiator. Task throughput is a measure
of the number of tasks completed per unit of time. Secondary performance measures, such
as false idle time, context switch count, storage I/O request count, storage performance
metrics, interrupt count, main memory miss rate (for virtual memory pages and �le blocks)
and memory copy count, can also be used to help explain primary metric values.

4.3 Workload Generation

A system workload consists of a set of processes, a set of external interrupts, the times
at which they start and their interdependencies. The external interrupts are generated
by network and user interface hardware, causing an interrupt handler and possibly one or
more processes to execute. As described earlier, a process can be viewed as a sequence of
events separated by computation times. The particular events used will depend on the level
of detail in the simulator. Each distinct event type represents a signi�cant change to the
simulated system's state. Section A.2.2 describes the process events in my simulator, but
many other options exist. The critical aspect of an input workload is the distinction between
causes of system activity and e�ects (i.e., the resulting system activity). For example, a
system call to read �le data is a cause. Corresponding storage activity, context switches
and completion interrupts are all e�ects. To correctly incorporate feedback e�ects between
system performance and the observed workload, causes must be part of the input workload
and e�ects must not.

If the responsiveness of the system can a�ect the sequence of events in a process, this
approach (which relies on pre-de�ned, static sequences) breaks down. For example, a server
process that performs speci�c actions based on the messages sent by multiple independent
clients may behave improperly when the order of client message arrivals changes. More
work is needed to identify appropriate ways of incorporating these e�ects into a system-level
model.

Note that my de�nition of a system workload does not require that the entire set of
processes be present in the system initially, although at least a few generally are. Processes
are created and deleted by other processes. At various points during execution, a process
may also block and wait for a system event (e.g., such as a lock becoming available, an
I/O request completion, a timer expiration or a key-stroke arrival) caused by an external
interrupt or another process. In many environments, external activities are triggered by
process activities (e.g., interactive users and remote procedure calls). The result is a complex
set of interdependencies among processes and external interrupts. While some of these
interactions can be obviated by assuming that certain components (e.g., the network interface
or the user) are not active, others must be incorporated into a system-level model. The
remainder of this section describes the various interdependencies.

25

Process{Process Dependencies

Processes can limit the progress of other processes in several ways. For example, since
only one process can execute on a CPU at a time, one process's use of a CPU can impede the
progress of another. Also, processes can compete for ownership of various other resources
within the system, such as locks and memory blocks. These indirect dependencies should be
included as part of the model. More direct dependencies, such as parent/child relationships
and inter-process communication, must be speci�ed in the input workload and handled
properly by the model.

Inter-process communication (e.g., UNIX pipe and send/recv commands) creates pro-
ducer/consumer dependencies between processes. That is, one process may only be able
to proceed after receiving particular messages from another process. This can be included
in a system-level model by incorporating the synchronization events into the process event
sequences and emulating the corresponding dependencies.

In a UNIX system, a new process is created by an existing process via the fork system
call. The new child process is an exact duplicate of the original parent process. The
parent process usually gives up the CPU in favor of the child process initially, giving it the
opportunity to begin its work. This is especially true of the fork variant in which the parent
and child processes share the parent's virtual memory context. In this case, the system does
not allow the parent process to execute again until the child process either initiates an exec
system call or it exits. Also, many parent processes (e.g., shell programs) are designed to
wait until child processes complete their tasks and exit.

Interrupt{Process Dependencies

As external interrupts often trigger or enable processes, the progress of a process will
often depend directly upon the arrival of an external interrupt. For example, key-strokes
from a user can cause one or more processes to be created and executed. As another example,
network messages (e.g., remote procedure calls) may wake up a server process. This form of
dependency should be incorporated directly into a system-level model. The point at which
a process stops and waits is part of the process event sequence. The re-enabling of a process
by an interrupt is an event in the corresponding interrupt service routine.

Process{Interrupt Dependencies

Some external interrupt arrival times depend directly upon process activity, especially
output activities. For example, an interactive user will often wait to observe the results of
a previous command before entering the next. Also, network tra�c from other computer
systems often consists of responses to previously sent messages (e.g., remote procedure calls
and remote logins). The time from when a process performs an event that triggers external
activity to when the corresponding interrupt arrives can be referred to as the user think
time (or network think time). With these de�nitions, transmission delays external to the
system are included in the think times. This behavior is analogous to the workload generator
of a closed subsystem model and can be incorporated into a system-level model as such with
the assumption that the think times do not change based on responsiveness.

26

Interrupt{Interrupt Dependencies

External interrupt arrival times can also depend upon previous interrupt arrivals. Most of
these dependencies are indirect, via the dependencies described above, or caused by resource
conicts outside of the system (e.g., network bandwidth). However, clock-based interrupts
often arrive at regular intervals. For example, an NFS client periodically checks with the
server to see if cached �le data have been modi�ed [Sandberg85]. As another example, an
external sensor might interrupt the system periodically with sampled data. This behavior
(together with interrupt arrivals that depend on nothing, such as a user that chooses to
check his/her electronic mail in the morning) is analogous to the workload generator of an
open subsystem model and can be incorporated into a system-level model as such.

4.4 Summary

This chapter describes a methodology for evaluating storage subsystem designs using
system-level models. Note that the contribution here is not a new model of system activity.
Rather, it is the application of this model to storage subsystem design evaluation. To
properly rate a subsystem design, it is necessary to understand how it interacts with user-
level processes and overall system performance. This requires that feedback e�ects between
individual request response times and user-level processes be part of the model (rather than
part of the input workload). Also, interactions between processes (e.g., CPU contention)
must be part of the model to obtain accurate system performance predictions.

CHAPTER 5

The Simulation Infrastructure

This chapter describes the simulation infrastructure used to validate the thesis of this
dissertation. The simulator and support tools are only briey described. More thorough
descriptions can be found in appendix A. The workloads used for the experiments reported
in chapters 6 and 7 are described. The system used both as a base for simulator con�guration
and as a source of traces is also described. Validation of the simulation infrastructure is
presented.

5.1 The Simulator

The simulator is written in C and requires no special system software. General simulation
support has been incorporated both to simplify the implementation of component modules
and to improve simulation e�ciency. The component modules are very detailed and can be
con�gured in a wide variety of ways. The simulator can be con�gured to behave as either a
standalone storage subsystem model or a system-level model.

The simulator contains modules for most secondary storage components of interest, in-
cluding device drivers, buses, controllers, adapters and disk drives. Some of the major
functions (e.g., request queueing/scheduling, disk block caching, logical data mapping) that
can be present in several di�erent components (e.g., operating system software, intermediate
controllers, disk drives) have been implemented as separate modules that are linked into
components as desired. The allowed interconnections are roughly independent of the com-
ponents themselves except that a device driver must be at the \top" of a subsystem and
storage devices (e.g., disk drives) must be at the \bottom." The separation of component
de�nitions and their interconnections greatly reduces the e�ort required to develop and inte-
grate new components, as well as the e�ort required to understand and modify the existing
components [Satya86].

The simulator also contains the host system component modules necessary to function as
a system-levelmodel at a level of detail appropriate for evaluating storage subsystem designs.
Very briey, the system-level model operates as follows. Processes and interrupt service
routines are modeled as sequences of events (i.e., important system software state changes)
separated by computation times. The CPUs \execute" this software by decrementing each
computation time (as simulated time progresses) until it reaches zero, at which time the
next event \occurs" (i.e., the system state is changed). If an interrupt arrives before the

27

28

computation time reaches zero, then the computation time is updated, the new interrupt
is added to the (possibly empty) stack and the �rst event of the service routine becomes
the CPU's current event. Interrupt completion events remove interrupts from the stack and
context switch events replace the current process. I/O request events initiate activity in the
storage subsystem components of the simulator.

The simulator accepts three forms of input: storage I/O request traces, system-level traces
and synthetic I/O workload descriptions. The form of input determines the type of simulation
used. Storage I/O request traces drive storage subsystem simulations. System-level traces
drive system-level simulations. Synthetic I/O workload descriptions utilize components of
the system-level to drive storage subsystem simulations.

5.2 Current Library of System-Level Traces

Several system-level traces have been captured for the work described in this disserta-
tion. All of the traces were captured on the experimental system described below using the
operating system instrumentation described in appendix A. The traced workloads fall into
two categories: independent task workloads and SynRGen workloads.

Independent Task Workloads

The independent task workloads consist of a single, though often substantial, user task.
Each such workload executes as a single csh script with the following form:

START TRACE
DO TASK
sleep 65
sync
sleep 65
STOP TRACE

I/O requests for all dirty �le cache blocks generated during task execution are initiated
by the syncer daemon (see section 5.3) before the �rst sleep command completes. The
sync command and the second sleep command are unnecessary precautions maintained for
historical reasons. Each script command is executed by a new process created by the csh
environment. I refer to the process that performs the \DO TASK" command as the task-
executing process. Several instances of each task have been traced, allowing generation of
statistically signi�cant results. Table 5.1 lists basic characteristics of the four independent
task workloads. They are:

� compress: This task uses the UNIX compress utility to reduce a 30.7 MB �le to 10.7 MB.
The �le being compressed is not resident in the main memory �le block cache when
the task begins.

� uncompress: This task uses the UNIX uncompress utility to return a 10.7 MB �le to its
original 30.7 MB size. The �le being compressed is not resident in the main memory
�le block cache when the task begins.

29

Independent Task Task I/O Wait # of I/O Avg. I/O
Task Elapsed Time CPU Time Time Requests Resp. Time

compress 198 sec. 162 sec. 25.6 sec. 10844 53.3 ms
uncompress 144 sec. 91.0 sec. 47.1 sec. 10983 1076 ms
copytree 89.5 sec. 17.6 sec. 69.7 sec 8995 147 ms
removetree 18.2 sec. 3.05 sec. 14.9 sec 1176 15.6 ms

Table 5.1: Basic Characteristics of the Independent Task Workloads.

� copytree: This task uses the UNIX cp -r command to copy a user directory tree con-
taining 535 �les totaling 14.3 MB of storage. The source directory tree is not resident
in the main memory �le block cache when the task begins.

� removetree: This task uses the UNIX rm -r command to remove a directory tree
containing 535 �les totaling 14.3 MB of storage. The source directory tree is mostly
resident in the main memory �le block cache when the task begins, since the experiment
removes the new copy resulting from an immediately prior copytree execution.

SynRGen Workloads

SynRGen is a synthetic �le reference generator that operates at the system call level
[Ebling94]. For trace collection, SynRGen was con�gured to imitate programmers performing
edit/debug activity on large software systems. [Ebling94] showed that this con�guration
closely matches measurements of such user activity. Each programmer is emulated by a
single process that executes tasks interspersed with user think times. Each task consists of
a series of �le accesses and possibly some computation time (e.g., to emulate compilation or
program execution). Both computation times and user think times are modeled using the
UNIX sleep command.1 The computation times are con�gured to match measurements from
older machines (DEC DS-5000/200s) and probably overestimate current CPU times. I refer
to the computation time portion of a task's elapsed time as the task sleep time, since sleep
is used to realize it. To measure system activity over a range of workloads, I have collected
traces with di�erent numbers of emulated users (1, 2, 4, 8, 16). I refer to each workload
as synrgen#, where # is the number of users. Table 5.2 lists basic characteristics of the
SynRGen workloads.

1For the user think times, sleep is not inappropriate. For computation times, however, it would be better
to have the CPU utilized in some way.

30

Independent Avg. Task Avg. Task Avg. Task # of I/O Avg. I/O
Task Elapsed Time Sleep Time I/O Wait Requests Resp. Time

synrgen1 2.37 sec. 2.02 sec. 79 ms 3022 96.4 ms
synrgen2 3.02 sec. 2.60 sec. 97 ms 3668 86.6 ms
synrgen4 3.19 sec. 2.74 sec. 137 ms 4987 214 ms
synrgen8 3.25 sec. 2.71 sec. 232 ms 5565 232 ms
synrgen16 3.26 sec. 2.55 sec. 679 ms 5598 679 ms

Table 5.2: Basic Characteristics of the SynRGen Workloads.

5.3 The Experimental System

The base system for my experiments (both simulation and implementation) is an
NCR 3433, a 33 MHz Intel 80486 machine equipped with 48 MB of main memory.2 Most of
the experiments use an HP C2247 disk drive, which is a high performance, 3.5-inch, 1 GB
SCSI storage device [HP92]. Table 5.3 lists some basic performance characteristics of this
disk drive and [Worthington94a] provides a thorough breakdown of simulator con�guration
parameter values. The operating system is UNIX SVR4 MP, AT&T/GIS's production op-
erating system for symmetric multiprocessing. The default �le system, ufs, is based on
the Berkeley fast �le system [McKusick84]. The virtual memory system is similar to that of
SunOS [Gingell87, Moran87] and �le system caching is well integrated with the virtual mem-
ory system. Unless otherwise noted, the scheduling algorithm used by the device driver is
LBN-based C-LOOK, which always schedules the request with the smallest starting address
that exceeds the most recent starting address (or zero, if no pending requests are beyond
the most recent request). Command queueing at the disk is disabled. All experiments are
run with the network disconnected.

One important aspect of the �le system's performance (and reliability) is the syncer dae-
mon. This background process wakes up periodically and writes out dirty bu�er cache blocks.
The syncer daemon in UNIX SVR4 MP operates di�erently than the conventional \30 sec-
ond sync." It awakens once each second and sweeps through a fraction of the bu�er cache,
initiating an asynchronous write for each dirty block encountered. This algorithm represents
a signi�cant reduction in the write burstiness associated with the conventional approach (as
studied in [Carson92, Mogul94]) but does not completely alleviate the phenomenon.

In order to accurately model the experimental system, an extensive set of parameters was
obtained from published documentation, operating system source code and direct observation
of system-level activity (as captured by the system-level trace instrumentation) and SCSI
bus activity (as captured by a logic analyzer connected to the SCSI bus).

2For most of the experiments, including trace collection, the available physical memory is partitioned into
40 MB for normal system use and 8 MB for the trace bu�er (see section A.2.2).

31

HP C2247 Disk Drive
Formatted Capacity 1.05 GB
Rotation Speed 5400 RPM
Data Surfaces 13
Cylinders 2051

512-Byte Sectors 2054864
Zones 8

Sectors/Track 56-96
Interface SCSI-2

256 KB Cache, 2 Segments
Track Sparing/Reallocation

Table 5.3: Default Characteristics of the HP C2247 Disk Drive.

5.4 Validation

This section validates the simulation infrastructure described above by comparing its
performance predictions to performance measurements of a real system. The system used for
this validation is described above. Various performance metrics predicted by the simulator
and measured on the real system are compared. The storage subsystem components are
more thoroughly validated by comparing request response time distributions. An additional
level of validation is provided by modifying the simulator and the real system and comparing
the predicted and measured performance change.

5.4.1 Predicted vs. Measured Performance

To verify that the simulator correctly emulates the experimental system described above,
I collected several performance measurements in the form of system-level traces (see A.2.2).
The simulator was con�gured to match the experimental system and driven with these
traces. The simulator results and the system measurements were then compared using
various performance metrics. Tables 5.4{5.7 show the results of these comparisons for four
di�erent independent task workloads. Most of the simulator values are within 1% of the
corresponding measured value. The largest di�erence observed (among these and other
validation experiments) was 5%.

32

Metric Measured Simulated % Di�.
Elapsed Time 198 sec 195 sec -1.5%
CPU utilization 81.3 % 82.0 % 0.9%
Number of interrupts 61225 60092 1.9%
Number of I/O requests 10844 10844 0.0%
Number of I/O waits 370 367 -0.8%
Average I/O wait time 69.2 ms 67.7 ms -2.2%
Average I/O access time 6.43 ms 6.34 ms -1.4%
Average I/O response time 53.3 ms 54.2 ms 1.7%

Table 5.4: Simulator Validation for the compress Workload.

Metric Measured Simulated % Di�.
Elapsed Time 144 sec 143 sec -0.7%
CPU utilization 62.4 % 63.3 % 1.4%
Number of interrupts 79513 78452 -1.3%
Number of I/O requests 10983 10993 0.1%
Number of I/O waits 166 163 -1.8%
Average I/O wait time 284 ms 286 ms 0.7%
Average I/O access time 8.32 ms 8.36 ms 0.5%
Average I/O response time 1076 ms 1067 ms -0.8%

Table 5.5: Simulator Validation for the uncompress Workload.

Metric Measured Simulated % Di�.
Elapsed Time 89.5 sec 88.7 sec -0.9%
CPU utilization 19.3 % 19.5 % 1.0%
Number of interrupts 62872 62474 -0.6%
Number of I/O requests 8995 8995 0.0%
Number of I/O waits 4584 4531 -1.2%
Average I/O wait time 15.2 ms 15.1 ms -0.7%
Average I/O access time 11.1 ms 10.9 ms -1.8%
Average I/O response time 147 ms 145 ms -1.4%

Table 5.6: Simulator Validation for the copytree Workload.

33

Metric Measured Simulated % Di�.
Elapsed Time 18.2 sec 18.4 sec 1.1%
CPU utilization 15.1 % 15.6 % 3.2%
Number of interrupts 21756 21686 -0.3%
Number of I/O requests 1176 1170 -0.1%
Number of I/O waits 1103 1103 0.0%
Average I/O wait time 13.5 ms 13.7 ms 1.5%
Average I/O access time 13.9 ms 14.0 ms 0.7%
Average I/O response time 15.6 ms 15.6 ms -0.1%

Table 5.7: Simulator Validation for the removetree Workload.

5.4.2 Predicted vs. Measured Response Time Distributions

Greater insight into the validity of a storage subsystemmodel can be gained by comparing
measured and simulated response time distributions [Ruemmler94]. The storage subsystem
simulator has therefore been validated by exercising various disk drives and capturing traces
of the resulting I/O activity. Using the observed inter-request delays, each traced request
stream was also run through the simulator, which was con�gured to emulate the correspond-
ing real subsystem. For each disk, this process was repeated for several synthetic workloads
with varying read/write ratios, arrival rates, request sizes, and degrees of sequentiality and
locality. The measured and simulated response time averages match to within 0.8% for
all validation runs. Figures 5.1{5.5 show distributions of measured and simulated response
times for a sample validation workload of 10,000 requests. As with most of our validation
results, one can barely see that two curves are present. [Ruemmler94] de�nes the root mean
square horizontal distance between the two distribution curves as a demerit �gure for disk
model calibration. The demerit �gure for each of the curves shown is given in the corre-
sponding caption. The worst-case demerit �gure observed over all validation runs was only
2.0% of the corresponding average response time.

34

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 5.1: Measured and Simulated Response Time Distributions for an HP C2247A
Disk Drive. The demerit �gure for this validation run is 0.07 ms, or 0.5% of the correspond-

ing mean response time. Characteristics of the HP C2247A can be found in table 5.3 and in

[HP92, Worthington94]. The validation workload parameters are 50% reads, 30% sequential,

30% local [normal with 10000 sector variance], 8KB mean request size [exponential], interarrival

time [uniform 0{22 ms].

35

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 5.2: Measured and Simulated Response Time Distributions for a DEC RZ26 Disk
Drive. The demerit �gure for this validation run is 0.19 ms, or 1.2% of the corresponding mean

response time. The validation workload parameters are 50% reads, 30% sequential, 30% local

[normal with 10000 sector variance], 8KB mean request size [exponential], interarrival time [uniform

0{22 ms].

36

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 5.3: Measured and Simulated Response Time Distributions for a Seagate
Elite ST41601N Disk Drive. The demerit �gure for this validation run is 0.075

ms, or 0.5% of the corresponding mean response time. Characteristics of the Seagate

ST41601N can be found in [Seagate92, Seagate92a]. The validation workload parameters are

50% reads, 30% sequential, 30% local [normal with 10000 sector variance], 8KB mean request

size [exponential], interarrival time [uniform 0{22 ms].

37

0 10 20 30

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 5.4: Measured and Simulated Response Time Distributions for an HP C2490A
Disk Drive. The demerit �gure for this validation run is 0.26 ms, or 2.0% of the corre-

sponding mean response time. Characteristics of the HP C2490A can be found in [HP93].

The validation workload parameters are 50% reads, 30% sequential, 30% local [normal

with 10000 sector variance], 8KB mean request size [exponential], interarrival time [uniform

0{22 ms].

38

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 5.5: Measured and Simulated Response Time Distributions for an HP C3323A
Disk Drive. The demerit �gure for this validation run is 0.31 ms, or 1.9% of the corre-

sponding mean response time. Characteristics of the HP C3323A can be found in [HP94].

The validation workload parameters are 50% reads, 30% sequential, 30% local [normal

with 10000 sector variance], 8KB mean request size [exponential], interarrival time [uniform

0{22 ms].

39

Metric Measured Simulated
Improvement Improvement

Elapsed Time 3.0 % 3.0 %
Average I/O response time 9.2 % 9.4 %
Average I/O access time 4.2 % 4.3 %

Table 5.8: Measured and Simulated Performance Improvement for the compress Workload.
The improvements come from using the C-LOOK disk scheduling algorithm rather than First-

Come-First-Served.

Metric Measured Simulated
Improvement Improvement

Elapsed Time 10.4 % 10.6 %
Average I/O response time 65.2 % 66.1 %
Average I/O access time 17.8 % 17.8 %

Table 5.9: Measured and Simulated Performance Improvement for the uncompressWorkload.
The improvements come from using the C-LOOK disk scheduling algorithm rather than First-Come-

First-Served.

5.4.3 Predicted vs. Measured Performance Improvements

Once a simulator's ability to emulate the corresponding real system has been veri�ed, an
additional level of validation can be achieved by modifying both and comparing the resulting
changes in performance. That is, one can measure the change in performance on the real
system and compare the measurements to the change in performance predicted with the
simulator. Of course, the possible modi�cations are limited to those that can be made on
the real system. So, for example, one can not verify the simulator's ability to predict how
storage components that do not yet exist will a�ect performance.

To validate that the simulator correctly predicts performance changes, I experimented
with two disk scheduling algorithms in the device driver. Tables 5.8{5.11 compare measured
and simulated performance improvements resulting from the use of a C-LOOK disk schedul-
ing algorithm rather than a simple First-Come-First-Served algorithm. The percentages in
each table are averages across �ve independent traces of the corresponding benchmark. The
simulator's predictions match the measured values very closely. The largest di�erence was
observed with the recursive copy experiment (table 5.10). I believe that variations in �le
placement account for the majority of the error.

40

Metric Measured Simulated
Improvement Improvement

Elapsed Time 6.1 % 6.5 %
Average I/O response time 38.2 % 40.8 %
Average I/O access time 6.8 % 7.2 %

Table 5.10: Measured and Simulated Performance Improvement for the copytree Workload.
The improvements come from using the C-LOOK disk scheduling algorithm rather than First-

Come-First-Served.

Metric Measured Simulated
Improvement Improvement

Elapsed Time -0.2 % 0.0 %
Average I/O response time 0.3 % 0.1 %
Average I/O access time 0.2 % 0.1 %

Table 5.11: Measured and SimulatedPerformance Improvement for the removetreeWorkload.
The improvements come from using the C-LOOK disk scheduling algorithm rather than First-Come-

First-Served.

5.5 Summary

This chapter outlines the simulation infrastructure used to validate the thesis of this
dissertation. The benchmark workloads used for the experiments in chapters 6 and 7 are
described. The simulator has been validated, resulting in a high degree of con�dence in its
performance predictions. The simulator can be used either as a standalone storage subsystem
model or as a system-level model. As a system-level model, it represents an existence proof
that accurate and e�cient system-level models can be constructed.

CHAPTER 6

Performance/Workload Feedback

Conventional methodology fails to properly model feedback e�ects between request com-
pletions and request arrivals. Because almost any change to the storage subsystem or to
the system itself will alter individual request response times, the change will also alter (in
a real system) the workload observed by the storage system. Because the purpose of most
performance evaluation is to determine what happens when the components of interest are
changed, the lack of proper feedback can ruin the representativeness of the workload, leading
to incorrect conclusions regarding performance. This chapter demonstrates this problem and
the resulting e�ects via several examples where inaccurate feedback e�ects cause the conven-
tional methodology to produce erroneous results. Using a system-level simulation model and
similar storage subsystem simulation models, examples of quantitative and qualitative errors
are shown. Where possible, performance values measured from the experimental system are
used to corroborate the system-level model's predictions.

6.1 Storage Subsystem Workload Generators

Commonly used workload generators for storage subsystem models fall into two groups.
Open subsystem models use predetermined arrival times for requests, independent of the
storage subsystem's performance. Closed subsystem models maintain a constant population
of requests, generating a new request whenever a previous request completes. This section
describes the workload generation processes used to represent open and closed subsystem
simulation models in this chapter.

6.1.1 Open Subsystem Models

An open subsystem model assumes that there is no feedback between individual request
completions and subsequent request arrivals. This assumption ignores real systems' tendency
to regulate (indirectly) the storage workload based on storage responsiveness. As a result, the
workload intensity does not increase (decrease) in response to improvement (degradation) in
storage performance. This fact often leads to over-estimation of performance improvements,
because performance changes tend to be multiplicative in the presence of request queueing.
The lack of feedback also allows requests to be outstanding concurrently that would never
in reality be outstanding at the same time.

41

42

To exercise open subsystem models in this chapter, I use the trace of I/O requests ex-
tracted from a system-level trace.1 The arrival times in the trace, as well as the physical
access characteristics, are maintained to recreate the observed storage I/O workload. If
the storage subsystem model exactly replicates the observed storage subsystem behavior,
the resulting storage performance metrics will be identical, as the feedback e�ects (or lack
thereof) will not come into play.2 Trace scaling, accomplished by stretching or compressing
the inter-arrival times, is used when necessary to increase or decrease the workload intensity.

6.1.2 Closed Subsystem Models

A closed subsystem model assumes unquali�ed feedback between storage subsystem per-
formance and the workload. Request arrival times depend entirely on the completion times
of previous requests. The main problem with closed subsystem models is their steady ow
of requests, which assumes away arrival stream burstiness (interspersed periods of intense
activity and no activity). As a result, closed subsystem models generally under-estimate
performance improvements, which often consist largely of reduced queueing delays. Also,
the lack of both intense bursts of activity and idle periods can prevent the identi�cation of
optimizations related to each.

To exercise closed subsystem models in this chapter, I use the trace of I/O requests
extracted from a system-level trace. The physical access characteristics are maintained, but
the arrival times are discarded in favor of the closed workload model. Each simulation begins
by reading N requests from the trace, where N is the constant request population, and issuing
them into the storage subsystem simulator. As each request completes, a new request is read
and issued. The value of N is chosen to match (as closely as possible) the average number of
outstanding requests over the duration of the trace. However, the minimum value for N is
one because no inter-request think times are being utilized. Workload scaling, when desired,
is accomplished by simply increasing or decreasing the value of N.

6.2 Quantitative Errors

By misrepresenting performance/workload feedback e�ects, storage subsystem models
frequently over-estimate or under-estimate performance changes. This section provides sev-
eral examples of this behavior.

6.2.1 Disk Request Scheduling Algorithms

Many disk request scheduling algorithms have been proposed and studied over the past
30 years (see section 3.3.4) to reduce the mechanical delays associated with disk drives. In

1The results are usually compared to those produced by the system-level simulator driven by the full
system-level traces.

2For this reason, I have used open subsystem simulation driven by traces of observed disk activity in my
previous work [Ganger93a, Worthington94]. The results match reality in at least one instance. There is no
corresponding trace-based workload generator for closed subsystem models, which never match the reality
of most workloads.

43

this subsection, I compare two of them. The First-Come-First-Served (FCFS) algorithm
services requests in arrival order. TheC-LOOK algorithm always services the closest request
that is logically forward (i.e., has a higher starting block number) of the most recently
serviced request. If all pending requests are logically behind the most recent one, then the
request with the lowest starting block number is serviced. The former algorithm performs no
storage subsystem performance optimizations. The latter is used in many existing systems
and has been shown to outperform other seek-reducing algorithms for many real workloads
[Worthington94].

Figures 6.1{6.4 show the measured and predicted performance e�ects of replacing one
algorithm with the other for the individual task workloads. Each �gure contains two graphs,
representing the change from FCFS to C-LOOK and the reverse, respectively. The distinction
relates to which algorithm was used on the real system during trace collection. Each graph
displays the performance change predicted by an open subsystem model, a system-level
model and a closed subsystem model. Also shown is the performance di�erence measured
on the experimental system, which matches the system-level model's predictions closely in
every case.

In every comparison, the open subsystem model over-estimates the actual performance
change and the closed subsystemmodel under-estimates it. This behavior matches the expec-
tations outlined above and is consistent across all of my modeling methodology comparisons.

Two other insights can be gained from these data. First, the quantitative error associated
with open subsystem modeling is much larger when the modeled subsystem services requests
less quickly than the traced subsystem. This can be seen by comparing the data shown in
the second graph of each �gure to that shown in the �rst, because C-LOOK consistently
outperforms FCFS. The second insight relates to the lack of improvement predicted by the
closed subsystemmodel for the compress and removetree workloads (�gures 6.1 and 6.4). The
nature of the closed subsystem model is such that the scheduler never has the opportunity
to make a decision, and therefore does not a�ect performance, unless the request population
is greater than two.

6.2.2 Prediction Error for Open Subsystem Models

In most cases, open subsystem models approximate real system behavior better than
closed subsystem models, but not as well as system-level models. This subsection quanti�es
and explains the performance prediction error in open subsystemmodels. Figure 6.5 displays
the error in mean response time predictions generated by the open subsystemmodel (relative
to the system-level model) when storage component performance changes. The speedup
factors on the X-axis are applied to all storage performance attributes (e.g., bus transfer
rates, disk rotation speeds and command processing overheads), so all request service times
should change by roughly the same factor. Queueing delays, however, will vary depending
on the burstiness (and feedback) of the request arrival pattern. FCFS disk scheduling is
used, so request service order will be changed only by feedback e�ects in the system-level
model.

44

Open Measured System Closed

Modeling Methodology

0

5

10

15

20

25

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 d

ec
re

as
e)

Open Measured System Closed

Modeling Methodology

0

5

10

15

20

25

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 in

cr
ea

se
)

(a) FCFS =) C-LOOK (b) C-LOOK =) FCFS

Figure 6.1: Scheduling Algorithm Comparison for the compress Workload. The closed sub-

system model maintains a request population of 2 for both (a) and (b).

Open Measured System Closed

Modeling Methodology

0

20

40

60

80

100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 d

ec
re

as
e)

Open Measured System Closed

Modeling Methodology

0

20

40

60

80

100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 in

cr
ea

se
)

355

(a) FCFS =) C-LOOK (b) C-LOOK =) FCFS

Figure 6.2: Scheduling Algorithm Comparison for the uncompress Workload. The closed

subsystem model maintains a request population of 100 for (a) and 42 for (b), corresponding to the

average populations observed with FCFS and C-LOOK. In graph (b), the open subsystem model

predicts a 355% increase in the average response time.

45

Open Measured System Closed

Modeling Methodology

0

10

20

30

40

50

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 d

ec
re

as
e)

Open Measured System Closed

Modeling Methodology

0

20

40

60

80

100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 in

cr
ea

se
)

955

(a) FCFS =) C-LOOK (b) C-LOOK =) FCFS

Figure 6.3: Scheduling Algorithm Comparison for the copytree Workload. The closed subsys-

tem model maintains a request population of 9 for (a) and 5 for (b), corresponding to the average

populations observed with FCFS and C-LOOK. In graph (b), the open subsystem model predicts

a 955% increase in the average response time.

Open Measured System Closed

Modeling Methodology

0

1

2

3

4

5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 d

ec
re

as
e)

Open Measured System Closed

Modeling Methodology

0

1

2

3

4

5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(%
 in

cr
ea

se
)

38.5

(a) FCFS =) C-LOOK (b) C-LOOK =) FCFS

Figure 6.4: Scheduling Algorithm Comparison for the removetree Workload. The closed

subsystem model maintains a request population of 1 for both (a) and (b). In graph (b), the open

subsystem model predicts a 38.5% increase in the average response time.

46

0 1 10

Storage Component Speedup Factor
-50

0

50

100

E
rr

or
 in

 O
pe

n
M

od
el

 (p
er

ce
nt

ag
e)

0 1 10

Storage Component Speedup Factor
-50

0

50

100

E
rr

or
 in

 O
pe

n
M

od
el

 (p
er

ce
nt

ag
e)

(a) compress (b) uncompress

0 1 10

Storage Component Speedup Factor
-50

0

50

100

E
rr

or
 in

 O
pe

n
M

od
el

 (p
er

ce
nt

ag
e)

0 1 10

Storage Component Speedup Factor
-50

0

50

100

E
rr

or
 in

 O
pe

n
M

od
el

 (p
er

ce
nt

ag
e)

(c) copytree (d) removetree

Figure 6.5: Error in Open Subsystem Model Performance Predictions.
All storage subsystem component delays are reduced by the speedup factor on the X-axis. At 1.0,

simulated storage performance matches the traced subsystem. The solid line shows the error in

the mean response time predicted by the open subsystem model relative to the system-level model.

The two dotted lines highlight the points where storage component performance has been halved

and doubled.

47

The general trend is that open subsystem model predictions decrease relative to system-
level model predictions as performance increases.3 For this reason, open subsystem models
tend to overpredict performance changes (in either direction). The magnitude of the error
grows quickly as simulated component performance decreases relative to the traced com-
ponents. When the simulated components outperform the traced components, the error is
much smaller. For example, the error ranges from 4% to 16% for a component speedup
factor of two.

Two factors have the largest impact on the magnitude of open subsystem modeling error:
request criticality and workload intensity. Workloads with many time-critical requests, rela-
tive to the number of time-noncritical requests, tend to cause problems for open subsystem
models (which do not incorporate the corresponding feedback e�ects). For example, the
error for the removetree workload is roughly twice as large as that for the copytree workload,
because the former consists largely of time-critical requests. This di�erence is evident de-
spite the fact that copytree is a much heavier workload. Heavy workloads tend to result in
larger errors because request queueing emphasizes any di�erences. For example, the error
for the uncompress workload is larger than that for the compress and copytree workloads,
which contain more critical requests, because it demands more from the storage subsystem.

Note that the error values shown in �gure 6.5 represent roughly uniform service time
changes for all requests. When the service times for di�erent requests change in di�erent
ways, the expected error becomes more di�cult to predict. In general, changes to response
times for time-critical and time-limited requests will cause signi�cant error and changes to
response times for time-noncritical requests will not. For example, evaluating criticality-
based disk scheduling algorithms (see chapter 7) with open subsystem models results in
large prediction errors in mean response time.

6.3 Qualitative Errors

While quantitative errors in performance predictions are discomforting, one might be
willing to accept them if the qualitative answers (e.g., design A is superior to design B)
were consistently correct. This section provides several examples where this is not the case
and the conventional methodology produces incorrect qualitative conclusions. The �rst two
examples exploit, in an obvious way, the short-comings in open and closed subsystem models,
respectively. Additional (less obvious) examples indicate that these short-comings can result
in erroneous answers because of complex interactions and secondary performance e�ects.

6.3.1 Disk Request Collapsing

As described earlier, a major problem with open subsystem models is that they allow
requests to be outstanding concurrently (in the model) that would never in reality be out-
standing at the same time. This subsection exploits this short-coming by examining the use
of request collapsing in the disk scheduler. In most systems, there are no implied ordering

3The error lines are not perfectly smooth for all benchmarks (e.g., copytree) because increasing some
storage component performance characteristics (e.g., rotation speed) can a�ect each request's service time
in di�erent ways.

48

semantics among requests issued into the storage subsystem. It is this fact that allows disk
schedulers the freedom to reorder requests. If two outstanding requests access the same set
of disk blocks, the scheduler can select one of them for service, perform some memory-to-
memory copies (if necessary) and consider both requests complete, with no externally visible
side e�ects. For example, two write requests for the same disk block can be collapsed into a
single disk access. One of them is serviced and then the two are reported complete in reverse
order. Two read requests for the same block can also be collapsed into a single disk access by
copying the results of one to the destination of the other. A read request and a write request
for the same block can be collapsed by servicing the write, copying the source memory for
the write to the destination of the read, reporting the write completion and then reporting
the read completion. The bene�t of disk request collapsing, of course, depends mainly upon
the frequency with which overlapping requests are outstanding concurrently.

Figures 6.6 and 6.7 evaluate the addition of disk request collapsing to the C-LOOK
scheduling algorithm for two di�erent independent task workloads. Each �gure contains two
graphs, comparing performance with scale factors of 1 and 2. Recall that the open subsystem
model scales a workload upward by shrinking the measured request inter-arrival times. The
system-level model scales a workload by increasing the speed of the host system components
(CPU speed and memory bandwidth). Each graph shows two pairs of bars, comparing the
average response times predicted with the open subsystemmodel and the system-levelmodel,
respectively.

In �gure 6.6, the open subsystem model predicts a reduction in the average response
time of 7% with a trace scaling factor of one and of 99% with a scaling factor of two.
The second workload exhibits less temporal locality and the open subsystem model predicts
no improvement with a scaling factor of one. However, with a scaling factor of two, the
open subsystem model predicts an average response time reduction of 45%. A naive storage
subsystem designer might observe these results and be convinced that request collapsing is
crucial to achieving high performance and that its importance increases as workloads become
heavier.

On the other hand, the system-levelmodel predicts that request collapsing has no e�ect on
performance, since overlapping requests are never outstanding together in the experimental
system. Like most systems, it uses main memory as a cache for disk blocks, in the form
of �le blocks and virtual memory pages. Concurrent requests for the same data will meet
at this cache and either be combined by higher level system components or be issued to
the storage subsystem in sequence. The clear result is that request collapsing in the disk
request scheduler is not useful. This example highlights a major problem with ignoring
performance/workload feedback e�ects, showing that it can lead to incorrect conclusions.

6.3.2 Flush Policies for Write-Back Disk Block Caches

As described earlier, the major problem with closed subsystem models is that they do not
incorporate any of the burstiness that characterizes real workloads, resulting in a complete
lack of idle time in the storage subsystem. This subsection exploits this short-coming by
comparing two ush policies for a 1 MB write-back disk cache residing on an intermediate
SCSI bus controller. The �rst policy cleans dirty blocks only when they must be reclaimed.
As a result, ush activity always impedes the progress of outstanding requests. The second

49

C-LOOKCollapse C-LOOKCollapse

Disk Scheduling Algorithm

0

5

10

15

20

25

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Open Subsystem Model
System-Level Model

C-LOOKCollapse C-LOOKCollapse

Disk Scheduling Algorithm

0

10

20

30

40

50

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Open Subsystem Model
System-Level Model

1628

(a) Scale Factor = 1.0 (b) Scale Factor = 2.0

Figure 6.6: Disk Request Collapsing for the removetree workload. In (b), the open subsystem

model predicts an average response time of 1628 ms for the conventional C-LOOK algorithm.

C-LOOKCollapse C-LOOKCollapse

Disk Scheduling Algorithm

0

50

100

150

200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Open Subsystem Model
System-Level Model

C-LOOKCollapse C-LOOKCollapse

Disk Scheduling Algorithm

0

2000

4000

6000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Open Subsystem Model
System-Level Model

(a) Scale Factor = 1.0 (b) Scale Factor = 2.0

Figure 6.7: Disk Request Collapsing for the copytree workload.

50

policy detects idle time and ushes dirty blocks in the background. The idle detector initiates
cache cleaning activity when 0.5 seconds pass with no outstanding requests [Golding95].
Cleaning activity halts whenever a new request arrives. If a dirty block must be reclaimed,
it is ushed immediately, as with the base policy. The bene�t of detecting and using idle
time in this way depends primarily on the amount of idle time available.

Figure 6.8 compares the two ush policies using SynRGen workloads with di�erent num-
bers of users. The four graphs represent 2 users, 4 users, 8 users and 16 users, respectively.
Each graph shows two pairs of bars, comparing the response times predicted with the closed
subsystem model and the system-level model, respectively.

The closed subsystemmodel predicts no performance di�erence between the ush policies
for any number of users. Because the closed subsystem model maintains a constant, non-zero
number of requests outstanding at any point in time, there is no idle time to be exploited. A
naive storage subsystem designer might observe these results and conclude that attempting
to detect and use idle time is a waste of implementation e�ort, because it results in no
performance improvement.

On the other hand, the system-level model correctly predicts that using idle time to ush
dirty cache blocks improves performance signi�cantly. The average response time reductions
shown in �gure 6.8 range from 45% to 97%. The improvement is larger with fewer users
because there is more idle time to exploit. This example highlights a major problem with
closed subsystem models, showing that they can lead to incorrect conclusions.

6.3.3 Cache-Aware Disk Scheduling

This subsection evaluates the use of disk cache awareness in aggressive disk scheduling
algorithms located at the device driver, providing a non-obvious example where trivializ-
ing feedback e�ects leads to an erroneous conclusion. The Shortest-Positioning-Time-
First (SPTF) algorithm uses full knowledge of processing overheads, logical-to-physical
data block mappings, mechanical positioning delays, and the current read/write head lo-
cation to select for service the pending request that will require the shortest positioning time
[Seltzer90, Jacobson91]. The SPTF algorithm can be modi�ed to track the contents of the
disk's on-board cache and estimate a positioning time of zero for any request that can be
serviced from the cache, resulting in the Shortest-Positioning-(w/Cache)-Time-First
(SPCTF) algorithm [Worthington94]. In my experiments, the on-board disk cache services
only read I/O requests because the HP C2247A disk drive used in the experimental system
was con�gured to store data on the magnetic media before signaling completion for a write
I/O request. The bene�t of cache-awareness in the disk scheduler should depend upon the
frequency with which read I/O requests that would hit in the on-board cache are otherwise
delayed.

Giving preference to requests that hit in the on-board disk cache can improve SPTF
performance in several ways. First, elementary queueing theory tells us that servicing the
quickest requests �rst reduces the average queue time, and cache hits can certainly be ser-
viced in less time than requests that access the media. Second, SPTF will often service a set
of outstanding sequential read requests in non-sequential order. The SPTF algorithm always
selects the request that will incur the smallest positioning delay, so the �rst request selected
from the set may not be the one with the lowest starting address. Further, the second request

51

Reclaim Only Idle Time Reclaim Only Idle Time

Cache Flush Policy

0

20

40

60

80

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
m

s)

Closed Subsystem Model
System-Level Model

Reclaim Only Idle Time Reclaim Only Idle Time

Cache Flush Policy

0

100

200

300

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
m

s)

Closed Subsystem Model
System-Level Model

(a) 2 users (b) 4 users

Reclaim Only Idle Time Reclaim Only Idle Time

Cache Flush Policy

0

100

200

300

400

500

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
m

s)

Closed Subsystem Model
System-Level Model

Reclaim Only Idle Time Reclaim Only Idle Time

Cache Flush Policy

0

200

400

600

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
m

s) Closed Subsystem Model
System-Level Model

(c) 8 users (d) 16 users

Figure 6.8: Disk Cache Flush Policy Comparison for SynRGen Workloads. The request

populations for the closed subsystem models at 2 users, 4 users, 8 users and 16 users are 1, 1, 3

and 19, respectively.

52

serviced is often not the next sequential request. During the bus transfer and completion
processing of the �rst request, the media platter rotates past the beginning of the next se-
quential request (prefetching it, of course). The SPTF algorithm, which is ignorant of the
prefetching, may not select the next sequential request. On the other hand, the SPCTF al-
gorithm selects the next sequential request to exploit the prefetch behavior. Finally, SPCTF
can improve performance when cache segments are re-used in a manner that reduces the
number of cache hits. The HP C2247 uses one of its multiple cache segments exclusively for
write requests. As a result, this problem arises only if there are multiple concurrent read
request streams, which is not true of the workloads examined in this section.

Figures 6.9 and 6.10 compare SPTF and SPCTF with two di�erent independent task
workloads. Each �gure contains two graphs, comparing average response times with scale
factors of 1 and 2, respectively. Recall that the open subsystem model increases workload
intensity by shrinking the measured request inter-arrival times. The system-level model
scales a workload by increasing the speed of the host system components (CPU speed and
memory bandwidth). Each graph shows two pairs of bars, comparing the average response
times predicted with the open subsystem model and the system-level model, respectively.

In �gure 6.9, the open subsystem model predicts that making the disk scheduler aware
of the disk's on-board cache increases the average response time by 17% when using a trace
scaling factor of one. This unexpected result is caused by interactions between the complex
performance/workload feedback e�ects, which remain largely intact in this case, and the
disk's prefetching behavior; this is explained further below. With a trace scaling factor
of two, the open subsystem model predicts that the average response time decreases by
8%. The open subsystem model predicts similar behavior in �gure 6.10 | a 0.6% increase
with a scaling factor of one and a 6% decrease with a scale factor of two. Most of the
performance improvement observed with the scale factor of two comes from servicing groups
of outstanding sequential reads in ascending order, thereby exploiting the disk's prefetch
behavior (as described above). A storage subsystem designer might observe these results
and determine that cache-awareness improves storage subsystem performance under heavy
workloads, but can hurt performance under lighter workloads. A hybrid algorithm that uses
knowledge of cache contents only when the workload is heavy might then be devised.

Although not shown in the �gures, the closed subsystem model also predicts that SPCTF
outperforms SPTF when disk scheduling a�ects performance. For the compress workload,
SPCTF outperforms SPTF by 0.6% for request populations of four, eight, sixteen and thirty-
two. For the copytree workload, SPCTF outperforms SPTF by 0.6% for a request population
of thirty-two and by 0.2% for a population of sixteen requests. For populations of eight and
four requests, no performance di�erence is observed. As with the open subsystem model, the
performance improvement comes mainly from servicing sets of outstanding sequential reads
in ascending order. While these average response time reductions are not large, a storage
subsystem designer would be inclined to incorporate cache-awareness into the disk scheduler
if the implementation e�ort is not unreasonable.

On the other hand, the system-level model predicts that cache-awareness in the disk
scheduler consistently hurts storage subsystem performance. For the compress workload,
the average response time increases by 21% with a scaling factor of one and by 17% with a
scaling factor of two. For the copytree workload, there is no di�erence with a scaling factor
of one, but the average response time increases by 3.2% with a scaling factor of two. The

53

SPTF SPCTF SPTF SPCTF

Disk Scheduling Algorithm

0

10

20

30

40

50

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

Open Subsystem Model
System-Level Model

SPTF SPCTF SPTF SPCTF

Disk Scheduling Algorithm

0

20

40

60

80

100

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

Open Subsystem Model
System-Level Model

(a) Scale Factor = 1.0 (b) Scale Factor = 2.0

Figure 6.9: Cache-Aware Disk Scheduling for the compress Workload.

SPTF SPCTF SPTF SPCTF

Disk Scheduling Algorithm

0

50

100

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

Open Subsystem Model
System-Level Model

SPTF SPCTF SPTF SPCTF

Disk Scheduling Algorithm

0

1000

2000

3000

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

Open Subsystem Model
System-Level Model

172.4 178.0

(a) Scale Factor = 1.0 (b) Scale Factor = 2.0

Figure 6.10: Cache-Aware Disk Scheduling for the copytree Workload.

54

conclusion, given these performance predictions, is that SPTF is superior to SPCTF for
these two workloads.4

Cache-awareness, as represented by the SPCTF scheduling algorithm, hurts performance
because of complex interplay between performance/workload feedback e�ects and the disk's
prefetching behavior. Most of the read I/O request arrivals in both of these workloads are
caused by sequential �le accesses and are therefore largely (but not entirely) sequential. The
read I/O requests are generated in a fairly regular manner. The task-executing process reads
a �le block, works with it and then reads the next. The �le system prefetches �le block N+1
when the process accesses block N. Therefore, the number of pending read I/O requests
ranges between 0 and 2, greatly diminishing SPTF's di�culty with sets of outstanding se-
quential reads. Write I/O requests, arriving in bursts when the syncer daemon awakens to
ush dirty �le blocks, occasionally compete with these read I/O requests. The average re-
sponse time is largely determined by how well the storage subsystem deals with these bursts.
At some point during such a burst, there will be 0 pending read I/O requests and the disk
scheduler (either variant) will initiate one of the write I/O requests.

At this point, SPTF and SPCTF part company. SPTF will continue to service the write
I/O requests, independent of read I/O request arrivals. The writes (like the reads) generally
exhibit spatial locality with other writes and will therefore incur smaller positioning delays.
So, any new read I/O request(s) will wait for the entire group of writes to be serviced and will
then be serviced in sequence as they arrive. On the other hand, SPCTF will immediately
service a new read request if it hits in the on-board disk cache. At this point, the disk
will begin to re-position the read/write head in order to prefetch additional data. After
servicing the read I/O request, SPCTF will initiate one of the pending writes. The disk will
discontinue prefetching at this point (if it even reached the read's cylinder) and re-position
to service the write. Frequently, the disk will not succeed in prefetching any data because
re-positioning the read/write head requires more time than it takes to service a read from
cache and begin the next request. This cycle (read hit, failed prefetch, write I/O request)
may repeat several times before a new read I/O requests misses in the disk's cache. At this
point, SPCTF behaves like SPTF, servicing the remainder of the writes before handling any
reads. The time wasted re-positioning the read/write head for aborted prefetching activity
decreases disk e�ciency and increases the average response time.

Given that initiating internal disk prefetch activity after servicing a read request from
the cache causes this performance problem, one might consider not doing so. However, this
policy does improve performance and should remain in place. For example, for the compress
workload with a scaling factor of one, the system-levelmodel predicts that SPTF performance
drops by 3% when prefetch activity is not initiated after cache hits. Without such prefetch
activity, the system-level model also predicts that SPCTF outperforms SPTF by 1%, which
is not enough to compensate for the elimination of cache hit prefetching. Among the cross-
product of these options, the best storage subsystem performance (for these workloads) is
o�ered by SPTF scheduling and aggressive prefetching after cache hits.

The interactions that cause cache-awareness are obscure and easy to overlook without
some indication that they represent a problem. [Worthington94] compared SPCTF and

4For the example in the next chapter, increased request response times do not translate into increased
elapsed times for the tasks. In this example, they do.

55

SPTF, using extensive open subsystem simulations driven by disk request traces captured
from commercial computer systems, and found SPCTF to be superior. None of the results
suggested that SPCTF is ever inferior to SPTF. While the data presented above do not
disprove the previous results (because the workloads are di�erent), they certainly cast doubt.
This example demonstrates that trivializing performance/workload feedback e�ects can lead
to erroneous conclusions in non-obvious ways.

6.4 Summary

The conventional methodology fails to accurately model feedback e�ects between stor-
age subsystem performance and the workload. This chapter demonstrates that this short-
coming can lead to both quantitative and qualitative errors. Open subsystem models tend to
over-estimate performance changes and often allow unrealistic concurrency in the workload.
Closed subsystemmodels tend to under-estimate performance changes and completely ignore
burstiness in request arrival patterns. The unrealistic concurrency and lack of burstiness can
lead directly to erroneous conclusions in open and closed subsystem models, respectively.
Less direct interactions between complex performance/workload feedback and storage sub-
system behavior can also lead conventional methodology to erroneous conclusions that are
very di�cult to recognize without a more accurate representation of feedback.

CHAPTER 7

Criticality-Based Disk Scheduling

Even when storage subsystem performance is correctly predicted, the conventional
subsystem-oriented methodology can promote sub-optimal designs because commonly used
subsystem performance metrics (e.g., request response times) do not always correlate with
overall system performance metrics (e.g., task elapsed times). This chapter demonstrates
this problem by evaluating a storage subsystem modi�cation that improves overall system
performance while reducing performance as measured by subsystem metrics. The chapter
describes the sources of request criticality in the experimental system and shows measure-
ments of criticality mixtures in di�erent workloads. The system-level simulation model is
used to evaluate criticality-based disk scheduling, which gives preference to system needs
rather than mechanical positioning delays. The system-level model reports overall system
performance metrics as well as storage subsystem metrics. The system metrics show an
increase in performance while the storage subsystem metrics indicate a decrease in perfor-
mance.

7.1 Request Criticality

I/O requests can be partitioned into three request criticality classes based on how they
interact with executing processes. A request is time-critical if the process that generates
it, either explicitly or implicitly, must stop executing until the request is complete. Time-
limited requests are those that become time-critical if not completed within some amount of
time (called the time limit). Finally, time-noncritical denotes a request that no application
process waits for. It must be completed within some reasonable amount of time to maintain
the accuracy of the non-volatile storage, to free system resources (e.g., memory) held on
their behalf, and/or to allow background activity to progress.

The remainder of this section describes the sources of requests belonging to the three
classes in our experimental system and presents measurement data regarding the criticality
mixes present in di�erent workloads.

7.1.1 Sources of Request Criticality

In the experimental system, storage I/O requests can be generated directly by three sys-
tem software components: the �le system, the virtual memory management system and the

56

57

direct I/O system call interface. No requests were generated by the latter two components
in any of the workloads for which system-level traces were captured. That is, the �le sys-
tem was responsible for all requests in these workloads. As mentioned in section 5.3, the
experiments were run using the ufs �le system.

All read I/O requests generated by the ufs �le system can be characterized as either
demand fetches or prefetches. Demand fetches (i.e., �le block cache misses) are time-critical
and useful prefetches are time-limited. I/O requests that prefetch unnecessary data are com-
pletely useless and are therefore classi�ed as time-noncritical. The ufs �le system prefetches
�le blocks sequentially until non-sequential access is detected. Measurements of UNIX �le
systems indicate that most user-level �le reads are sequential [Ousterhout85, Baker91]. This
is true of the system-level workloads used in this dissertation.

The ufs �le system distinguishes between three types of �le block writes: synchronous,
asynchronous and delayed [Ritchie86]. A synchronous �le write immediately generates the
corresponding I/O request and causes the process to block and wait until the request com-
pletes. So, synchronous �le writes result in time-critical I/O requests. An asynchronous
�le write also immediately generates the corresponding write I/O request, but does not wait
for the request to complete. An I/O request generated by an asynchronous �le write is either
time-limited or time-noncritical, depending upon access locality and the locking policy. If a
source memory block is locked for the duration of an I/O request and a process (the origi-
nator or another process) subsequently attempts to access it, then the I/O request becomes
time-critical (meaning that it was time-limited). Otherwise, it is time-noncritical. A de-
layed �le write dirties one or more blocks in the �le block cache but does not immediately
generate a write I/O request. Write I/O requests for dirty cache blocks are generated in the
background by the �le system. The lock conict scenario described above can occur, but the
majority of these requests are time-noncritical.1

In the ufs �le system, delayed writes are used for updating all normal �le data unless
otherwise speci�ed by the user. During write I/O requests, dirty �le blocks from normal
�les are not locked. Synchronous and asynchronous writes are used for many �le system
metadata updates in order to enforce update sequencing constraints (to maintain �le system
integrity).2 In addition, metadata blocks are locked for the duration of the corresponding
write I/O requests. Because these metadata blocks exhibit high degrees of update locality
[Ganger94], most of the asynchronous metadata writes result in time-limited I/O requests.
The experimental system contains a reasonable quantity of physical main memory and there-
fore does not experience write-thrashing problems unless the workload consists of a very large
�le working set.

1If the �le block cache is too small to handle the working set of written �le data, then most write I/O
requests will become time-critical or time-limited because dirty blocks must be cleaned before they can
be re-used. Measurements of real systems suggest that this should be a rare occurrence [Ruemmler93a].
The exception would be when the main memory capacity is too small to maintain a balanced system (e.g.,
[Bennett94]).

2This use of synchronous and asynchronous writes for metadata update sequencing represents a signi�cant
�le system performance problem. Aggressive implementation techniques can eliminate them [Hagmann87,
Seltzer93, Ganger94].

58

HP-UX Read Requests Write Requests
Trace Critical Limited/Noncritical Critical Limited/Noncritical
cello 36.4 % 7.7 % 37.2 % 18.7 %
snake 37.9 % 5.9 % 13.6 % 42.6 %
hplajw 38.4 % 4.0 % 28.8 % 28.8 %

Table 7.1: Request Criticality Breakdown for HP-UX Traces. This data was taken from

[Ruemmler93]. The traces are described briey in section A.2.2.1 and thoroughly in [Ruemmler93].

Information distinguishing between time-limited and time-noncritical requests is not available in

the traces.

System-Level Read Requests Write Requests
Workload Critical Limited Noncritical Critical Limited Noncritical
compress 0.9 % 69.6 % { 0.3 % { 29.2 %
uncompress 1.1 % 24.9 % { 0.3 % { 73.7 %
copytree 7.8 % 36.1 % { 6.8 % 2.0 % 47.3 %
removetree 1.4 % 0.2 % { 93.4 % { 4.9 %
synrgen1 1.8 % 2.5 % { 25.8 % 2.1 % 67.8 %
synrgen2 2.8 % 3.1 % { 25.5 % 2.0 % 66.6 %
synrgen4 3.6 % 6.8 % { 23.0 % 1.9 % 64.7 %
synrgen8 4.6 % 10.5 % { 24.8 % 2.1 % 57.9 %
synrgen16 8.8 % 11.6 % { 25.7 % 2.8 % 51.0 %

Table 7.2: Request Criticality Breakdown for System-Level Traces. These data are from

system-level traces of the workloads described in section 5.2 executing on the experimental system.

7.1.2 Measurements of Request Criticality

Most real workloads contain requests from all three request criticality classes. Table
7.1 shows data regarding the criticality mixes observed during extensive measurements of
three di�erent HP-UX systems [Ruemmler93]. Table 7.2 shows more precise data extracted
from the system-level traces described in section 5.2. The data in these tables demonstrate
both that criticality mixes are common and that the exact mixture varies widely between
workloads.

An important aspect of how time-limited requests impact overall system performance
is the duration of the time limits. The time limit determines how long an I/O subsystem
can take to service a request without causing any process to block. Long time limits allow
an I/O subsystem signi�cant latitude in when and how to service requests. Figures 7.1{7.6
show time limit densities for the workloads described in section 5.2.

59

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

1000

2000

3000

4000

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.1: Time Limit Density for the compressWorkload. The average time limit is 25.8 ms,

and the maximum is 611 ms.

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

500

1000

1500

2000

2500

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.2: Time Limit Density for the uncompress Workload. The average time limit is

111 ms, and the maximum is 144 seconds.

60

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

500

1000

1500

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.3: Time Limit Density for the copytree Workload. The average time limit is 60.1 ms,

and the maximum is 155 seconds.

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

50

100

150

200

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.4: Time Limit Density for the synrgen16Workload. The average time limit is 51.7 ms,

and the maximum is 3.18 seconds.

61

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

50

100

150

200

250

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.5: Time Limit Density for the synrgen8 Workload. The average time limit is 24.8 ms,

and the maximum is 493 ms.

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Time Limit (ms)

0

50

100

150

200

N
um

be
r

of
 R

eq
ue

st
s

Figure 7.6: Time Limit Density for the synrgen4 Workload. The average time limit is 52.6 ms,

and the maximum is 5.96 seconds.

62

7.2 Disk Request Scheduling Algorithms

Many di�erent disk scheduling algorithms can be used to reduce mechanical positioning
delays. This chapter focuses on two of them. The First-Come-First-Served (FCFS)
algorithm services requests in arrival order. The C-LOOK algorithm always services the
closest request that is logically forward (i.e., has a higher starting block number) of the most
recently serviced request. If all pending requests are logically behind the last one, then the
request with the lowest starting block number is serviced. I use the former algorithm because
it performs no storage subsystem performance optimizations. The latter is used because it
has reasonable implementation costs, is used in many existing systems, and has been shown
to outperform other seek-reducing algorithms for many real workloads [Worthington94].

In addition to these conventional algorithms, this chapter examines disk scheduling al-
gorithms that prioritize requests based on request criticality. From a short-term viewpoint,
time-critical and time-limited are clearly more important to system performance than time-
noncritical requests. This chapter evaluates the performance impact of modifying each of
the base algorithms to maintain two distinct lists of pending requests and always servic-
ing requests from the higher-priority list �rst.3 Time-critical and time-limited requests are
placed in the high-priority list, and time-noncritical requests are placed in the low-priority
list. Time-limited requests are grouped with time-critical requests because the measurement
data above indicate that they often have very short time limits. The scheduling criteria used
for each list remain the same as with the base algorithm.

To implement this algorithm, the disk request scheduler must have per-request criticality
information. Fortunately, the �le system (as well as the other request generating compo-
nents) generally knows the criticality class to which a request belongs when it is generated.
Requests caused by demand fetches and synchronous metadata updates are time-critical.
Background writes of dirty �le blocks are time-noncritical. Requests resulting from prefetches
and asynchronous metadata updates are usually time-limited. In the implementation of this
algorithm, I assume that all such requests are time-limited. The �le system was modi�ed to
pass this information to the device driver with each request as part of the I/O control block.

More aggressive algorithms might utilize knowledge of time limit durations, since com-
pleting a request just before its time-limit expires is no worse than completing it in zero
time (from the associated process's point of view). Unfortunately, identifying time limits in
advance is nontrivial. For example, the time limit for a prefetch depends upon how much
computation the associated process can do before the data are required, as well as any inter-
rupt or context switching activity. Lock-related time limits are even more di�cult to predict
because the process that waits for the request is often not be the process that generated it.
Therefore, time limits can only be estimated in most systems. The estimates should be as
high as possible to allow latitude in scheduling decisions. At the same time, they should be
as low as necessary to avoid the penalties associated with failing to complete requests within
their actual time limits.

3Many variations and more aggressive algorithms can be devised, but, as stated earlier, my goal is not
to fully explore the design space of disk scheduling algorithms that use criticality information. Rather, my
intent is to demonstrate a problem with storage subsystem models, as well as indicate the potential of this
performance enhancement.

63

7.3 Performance Comparison

Figures 7.7{7.12 compare four disk scheduling algorithms in terms of both system per-
formance and storage subsystem performance. Each �gure contains four graphs labeled
(a){(d). Each graph contains four bars, representing conventional and criticality-based ver-
sions of C-LOOK and FCFS. In each �gure, graph (a) shows overall system performance
as measured by the elapsed time for a user task. The elapsed times are broken into four
regions, indicating the causes of di�erent portions of the elapsed time. The particular regions
shown vary among the workloads (see below). Graph (b) shows a subset of the same data,
highlighting the portions a�ected by storage subsystem performance by removing a region
of the elapsed time that is independent of subsystem performance (see below). Graphs (c)
and (d) show the average response time and average service time across all requests, respec-
tively. Tables 7.3{7.8 provide additional information to assist in understanding the data in
the �gures.

Graphs (a) and (c) provide commonly utilized performance metrics for the overall system
and the storage subsystem, respectively. For all of the workloads shown, overall system per-
formance increases when the disk scheduler uses request criticality information. At the same
time, storage subsystem performance decreases substantially (over 2 orders of magnitude
in some cases). Most of the overall system performance improvement comes from reduc-
ing false idle time by expediting the completion of requests that cause processes to block.
Storage subsystem performance decreases both because the scheduler focuses its e�orts on
system needs rather than mechanical delays and because processes progress more quickly
and therefore generate I/O requests more quickly.

It is interesting to note that, when enhanced with criticality information, FCFS and
C-LOOK result in roughly equivalent overall system performance for the workloads tested.
This di�ers from the behavior noted for the conventional algorithms, where C-LOOK pro-
vides improved system performance. This change in behavior is not overly surprising given
the nature of how the criticality-based enhancement operates and how di�erent requests af-
fect system performance. Pending time-critical and time-limited requests are kept in one list
and time-noncritical requests in another. The former list is almost always very short because
time-critical and time-limited requests tend to block processes, preventing them from gener-
ating additional requests. It is well-established that disk scheduling algorithms all perform
equally for consistently small lists of pending requests [Teorey72, Worthington94]. On the
other hand, the second list, which contains the time-noncritical requests, tends to grow large
and presents solid opportunities for improvement. Indeed, the results show that C-LOOK
results in lower average response times for these requests. However, unless the system be-
comes bottlenecked by the storage subsystem (which does not occur with these workloads),
the response times of time-noncritical requests are not important to overall system perfor-
mance. Of course, reducing time-noncritical request service times increases the ability of the
storage subsystem to avoid becoming a system performance bottleneck.

The remainder of this section explains these performance e�ects in more detail, focusing
�rst on the individual task workloads and then on the SynRGen workloads.

64

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

50

100

150

200

E
la

p
se

d
 T

im
e

 f
o

r
T

a
sk

 (
se

co
n

d
s)

False Idle Time
False Computation Time
Other CPU Time
Task CPU Time

C-LOOK FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

10

20

30

40

S
u

b
s
e

t
o

f
E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
Other CPU Time

C-LOOK

FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

500

1000

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK
FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK FCFS

(c) (d)

Figure 7.7: Criticality-Based Scheduling of the compress Workload.

65

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Elapsed Time for Task 194.3 sec 194.1 sec 199.7 sec 194.7 sec
Task Computation Time 160.6 sec 160.6 sec 160.6 sec 160.6 sec
Other CPU Time 12.9 sec 12.7 sec 13.2 sec 12.8 sec
False Computation Time 0.03 sec 0.1 sec 0.03 sec 0.1 sec
Task I/O Wait Time 23.8 sec 22.5 sec 29.3 sec 23.1 sec
False Idle Time 20.8 sec 20.7 sec 26.0 sec 21.3 sec
Time-Critical Requests 132 132 132 132
Avg. Response Time 25.3 ms 22.6 ms 27.5 ms 22.8 ms
Max. Response Time 343 ms 86.0 ms 551 ms 78.5 ms
Time-Limited Requests 7567 7567 7567 7567
Avg. Response Time 10.4 ms 15.3 ms 11.7 ms 15.4 ms
Max. Response Time 643 ms 92.5 ms 926 ms 80.5 ms
Avg. Time Limit 28.5 ms 22.2 ms 33.6 ms 22.3 ms
% Satis�ed in Time 96.0 % 76.4 % 97.4 % 76.1 %
Time-Noncritical Reqs. 3171 3171 3171 3171
Avg. Response Time 148 ms 3169 ms 173 ms 3353 ms
Max. Response Time 708 ms 27.5 sec 940 ms 16.3 sec
Avg. Service Time 6.5 ms 12.4 ms 6.7 ms 12.6 ms
% Disk Bu�er Hits 63.5 % 32.9 % 64.8 % 32.7 %
Avg. Seek Distance 124 cyls 558 cyls 126 cyls 562 cyls
Avg. Seek Time 3.5 ms 8.5 ms 4.5 ms 8.7 ms

Table 7.3: Criticality-Based Scheduling of the compress Workload.

66

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

50

100

150

200

E
la

p
se

d
 T

im
e

 f
o

r
T

a
sk

 (
se

co
n

d
s)

False Idle Time
False Computation Time
Other CPU Time
Task CPU Time

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

20

40

60

80

S
u

b
s
e

t
o

f
E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
Other CPU Time

C-LOOK

FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5000

10000

15000

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK

FCFS

(c) (d)

Figure 7.8: Criticality-Based Scheduling of the uncompress Workload.

67

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Elapsed Time for Task 147.5 sec 103.8 sec 171.1 sec 104.0 sec
Task Computation Time 90.3 sec 90.3 sec 90.3 sec 90.3 sec
Other CPU Time 17.6 sec 9.6 sec 18.8 sec 9.4 sec
False Computation Time 0.02 sec 0.03 sec 0.02 sec 0.03 sec
Task I/O Wait Time 51.0 sec 4.3 sec 75.9 sec 4.8 sec
False Idle Time 39.6 sec 3.9 sec 62.0 sec 4.3 sec
Time-Critical Requests 153 153 153 153
Avg. Response Time 62.7 ms 29.1 ms 190.6 ms 30.2 ms
Max. Response Time 6165 ms 95.1 ms 10.2 sec 98.0 ms
Time-Limited Requests 2693 2693 2693 2693
Avg. Response Time 42.5 ms 19.3 ms 59.0 ms 19.9 ms
Max. Response Time 11.0 sec 73.6 ms 10.2 sec 91.6 ms
Avg. Time Limit 31.0 ms 33.8 ms 33.6 ms 34.2 ms
% Satis�ed in Time 95.9 % 86.5 % 97.3 % 84.8 %
Time-Noncritical Reqs. 7989 7989 7989 7989
Avg. Response Time 1207 ms 15.3 sec 3258 ms 20.0 sec
Max. Response Time 10.5 sec 69.7 sec 12.1 sec 62.2 sec
Avg. Service Time 8.0 ms 12.1 ms 9.9 ms 13.6 ms
% Disk Bu�er Hits 22.4 % 8.2 % 22.5 % 8.0 %
Avg. Seek Distance 31 cyls 217 cyls 50 cyls 253 cyls
Avg. Seek Time 1.5 ms 4.2 ms 2.8 ms 5.6 ms

Table 7.4: Criticality-Based Scheduling of the uncompress Workload.

68

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

50

100

E
la

p
se

d
 T

im
e

 f
o

r
T

a
sk

 (
se

co
n

d
s)

False Idle Time
False Computation Time
Other CPU Time
Task CPU Time

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

20

40

60

80

100

S
u

b
s
e

t
o

f
E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
Other CPU Time

C-LOOK

FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

2000

4000

6000

8000

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK
FCFS

(c) (d)

Figure 7.9: Criticality-Based Scheduling of the copytree Workload.

69

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Elapsed Time for Task 92.7 sec 73.0 sec 107.7 sec 74.2 sec
Task Computation Time 17.2 sec 17.2 sec 17.2 sec 17.2 sec
Other CPU Time 11.9 sec 8.2 sec 13.0 sec 8.2 sec
False Computation Time 0.2 sec 0.2 sec 0.2 sec 0.2 sec
Task I/O Wait Time 72.1 sec 52.8 sec 87.4 sec 53.9 sec
False Idle Time 63.4 sec 47.5 sec 77.3 sec 48.6 sec
Time-Critical Requests 1502 1502 1502 1502
Avg. Response Time 43.8 ms 30.1 ms 46.9 ms 29.9 ms
Max. Response Time 2040 ms 126 ms 5039 ms 99.3 ms
Time-Limited Requests 3270 3270 3270 3270
Avg. Response Time 20.6 ms 15.2 ms 27.6 ms 15.6 ms
Max. Response Time 1629 ms 130 ms 5650 ms 93.7 ms
Avg. Time Limit 11.8 ms 10.2 ms 13.9 ms 10.3 ms
% Satis�ed in Time 2.6 % 2.6 % 2.6 % 2.4 %
Time-Noncritical Reqs. 4279 4279 4279 4279
Avg. Response Time 274.9 ms 11.9 sec 750.7 ms 14.4 sec
Max. Response Time 2321 ms 60.3 sec 6410 ms 33.2 sec
Avg. Service Time 10.9 ms 11.6 ms 12.1 ms 12.8 ms
% Disk Bu�er Hits 1.6 % 1.2 % 1.9 % 1.1 %
Avg. Seek Distance 104 cyls 124 cyls 142 cyls 173 cyls
Avg. Seek Time 2.9 ms 3.2 ms 4.0 ms 4.6 ms

Table 7.5: Criticality-Based Scheduling of the copytree Workload.

70

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

1

2

3

4

A
ve

ra
g

e
 E

la
p

se
d

 T
im

e
 p

e
r

T
a

sk
 (

se
co

n
d

s)

False Idle Time
False Computation Time
CPU Time
Task Sleep Time

C-LOOK FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

S
u

b
s
e

t
o

f
T

a
s
k
 E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
CPU Time

C-LOOK

FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

500

1000

1500

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK
FCFS

(c) (d)

Figure 7.10: Criticality-Based Scheduling of the synrgen16 Workload.

71

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Avg. Total Task Time 3.26 sec 3.12 sec 3.39 sec 3.12 sec
Avg. Task Sleep Time 2.60 sec 2.60 sec 2.60 sec 2.60 sec
Avg. Task False Comp. 0.01 sec 0.01 sec 0.01 sec 0.01 sec
Avg. Task I/O Wait 0.33 sec 0.19 sec 0.45 sec 0.19 sec
Avg. Task False Idle 0.22 sec 0.13 sec 0.32 sec 0.14 sec
Time-Critical Requests 1813 1813 1824 1813
Avg. Response Time 68.2 ms 26.9 ms 100.7 ms 27.0 ms
Max. Response Time 18.0 sec 335 ms 19.1 sec 172 ms
Time-Limited Requests 606 608 609 609
Avg. Response Time 43.5 ms 24.9 ms 83.4 ms 28.7 ms
Max. Response Time 9797 ms 269 ms 14.6 sec 169 ms
Avg. Time Limit 25.4 ms 11.2 ms 29.5 ms 11.6 ms
% Satis�ed in Time 28.5 % 26.6 % 28.5 % 26.1 %
Time-Noncritical Reqs. 3179 2826 3108 2805
Avg. Response Time 1149 ms 1581 ms 2070 ms 2657 ms
Max. Response Time 18.7 sec 31.4 sec 20.8 sec 28.0 sec
Avg. Service Time 13.8 ms 14.7 ms 15.1 ms 15.8 ms
% Disk Bu�er Hits 0.6 % 0.4 % 0.6 % 0.4 %
Avg. Seek Distance 122 cyls 191 cyls 204 cyls 251 cyls
Avg. Seek Time 4.5 ms 5.6 ms 6.0 ms 6.6 ms

Table 7.6: Criticality-Based Scheduling of the synrgen16 Workload.

72

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

1

2

3

A
ve

ra
g

e
 E

la
p

se
d

 T
im

e
 p

e
r

T
a

sk
 (

se
co

n
d

s)

False Idle Time
False Computation Time
CPU Time
Task Sleep Time

C-LOOK FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0.0

0.2

0.4

0.6

S
u

b
s
e

t
o

f
E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
CPU Time

C-LOOK

FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

100

200

300

400

500

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK
FCFS

(c) (d)

Figure 7.11: Criticality-Based Scheduling of the synrgen8 Workload.

73

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Avg. Total Task Time 3.25 sec 3.20 sec 3.32 sec 3.21 sec
Avg. Task Sleep Time 2.75 sec 2.75 sec 2.75 sec 2.75 sec
Avg. Task False Comp. 0.01 sec 0.01 sec 0.01 sec 0.01 sec
Avg. Task I/O Wait 0.20 sec 0.14 sec 0.26 sec 0.15 sec
Avg. Task False Idle 0.16 sec 0.12 sec 0.20 sec 0.12 sec
Time-Critical Requests 1619 1648 1618 1648
Avg. Response Time 35.1 ms 21.7 ms 44.5 ms 22.0 ms
Max. Response Time 7794 ms 267 ms 7617 ms 223 ms
Time-Limited Requests 581 588 578 588
Avg. Response Time 25.2 ms 20.6 ms 35.5 ms 22.4 ms
Max. Response Time 3001 ms 214 ms 4659 ms 122 ms
Avg. Time Limit 12.2 ms 9.9 ms 11.8 ms 11.8 ms
% Satis�ed in Time 32.3 % 29.2 % 32.0 % 28.6 %
Time-Noncritical Reqs. 3365 3353 3389 3366
Avg. Response Time 362 ms 501 ms 499 ms 761 ms
Max. Response Time 8045 ms 9338 ms 7649 ms 9513 ms
Avg. Service Time 14.3 ms 14.7 ms 15.6 ms 15.9 ms
% Disk Bu�er Hits 1.0 % 0.7 % 1.1 % 0.7 %
Avg. Seek Distance 148 cyls 175 cyls 226 cyls 248 cyls
Avg. Seek Time 5.2 ms 5.6 ms 6.5 ms 6.8 ms

Table 7.7: Criticality-Based Scheduling of the synrgen8 Workload.

74

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

1

2

3

A
ve

ra
g

e
 E

la
p

se
d

 T
im

e
 p

e
r

T
a

sk
 (

se
co

n
d

s)

False Idle Time
False Computation Time
CPU Time
Task Sleep Time

C-LOOK FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0.0

0.2

0.4

S
u

b
s
e

t
o

f
E

la
p

s
e

d
 T

im
e

 (
s
e

c
o

n
d

s
)

False Idle Time
False Computation Time
CPU Time

C-LOOK
FCFS

(a) (b)

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

100

200

300

400

A
ve

ra
g
e
 I
/O

 R
e
sp

o
n
se

 T
im

e
 (

m
s)

C-LOOK

FCFS

Conv. Crit. Conv. Crit.

Disk Scheduling Algorithm

0

5

10

15

A
ve

ra
g
e
 D

is
k

S
e
rv

ic
e
 T

im
e
 (

m
s)

C-LOOK
FCFS

(c) (d)

Figure 7.12: Criticality-Based Scheduling of the synrgen4 Workload.

75

Performance Metric C-LOOK FCFS
Conv. Criticality Conv. Criticality

Avg. Total Task Time 3.19 sec 3.17 sec 3.23 sec 3.17 sec
Avg. Task Sleep Time 2.76 sec 2.76 sec 2.76 sec 2.76 sec
Avg. Task False Comp. 0.01 sec 0.01 sec 0.01 sec 0.01 sec
Avg. Task I/O Wait 0.14 sec 0.11 sec 0.17 sec 0.11 sec
Avg. Task False Idle 0.12 sec 0.10 sec 0.15 sec 0.10 sec
Time-Critical Requests 1325 1330 1328 1330
Avg. Response Time 26.9 ms 19.2 ms 33.8 ms 19.2 ms
Max. Response Time 6114 ms 118 ms 6155 ms 163 ms
Time-Limited Requests 337 338 337 339
Avg. Response Time 18.9 ms 18.1 ms 21.6 ms 18.7 ms
Max. Response Time 636 ms 123 ms 4417 ms 80.0 ms
Avg. Time Limit 11.7 ms 10.5 ms 15.2 ms 11.6 ms
% Satis�ed in Time 29.6 % 28.7 % 29.7 % 28.3 %
Time-Noncritical Reqs. 3325 3310 3325 3310
Avg. Response Time 308 ms 332 ms 498 ms 553 ms
Max. Response Time 6477 ms 6664 ms 6145 ms 6621 ms
Avg. Service Time 14.3 ms 14.5 ms 15.9 ms 16.0 ms
% Disk Bu�er Hits 0.8 % 0.7 % 0.8 % 0.7 %
Avg. Seek Distance 128 cyls 144 cyls 172 cyls 184 cyls
Avg. Seek Time 4.9 ms 5.1 ms 5.8 ms 6.0 ms

Table 7.8: Criticality-Based Scheduling of the synrgen4 Workload.

76

7.3.1 Individual Task Workloads

As described in section 5.2, the individual task workloads (�gures 7.7{7.9 and
tables 7.3{7.5) consist mainly of a single user task. The elapsed times shown in graph
(a) of each �gure represent the time from when the process executing the task begins to
when it exits (i.e., completes).4 The elapsed time is broken into four regions: false idle
time, false computation time, CPU time used by the task-executing process, and other CPU
time5. Graph (b) in each �gure shows a subset of the elapsed time, excluding the CPU time
used by the task-executing process. This CPU time is independent of storage subsystem
performance and is not a�ected by changes to the disk request scheduler. The purpose of
graph (b) is therefore to highlight those portions of the elapsed time that are a�ected by
storage subsystem performance. In each �gure, graphs (c) and (d) show storage subsystem
performance across all I/O requests, including those initiated in the background after the
task-executing process completes.

compress

Figure 7.7 and table 7.3 compare the di�erent algorithms with the compress work-
load. The CPU time used by the task-executing process accounts for almost 83% of the
elapsed time, leaving little room for improvement. Using request criticality information with
C-LOOK scheduling shaves only 0.1% o� of the total elapsed time. The improvement comes
from a 0.5% reduction in false idle time and a 1.6% reduction in other CPU time. The
former, although disappointing in scope, is an expected e�ect of the algorithm change. The
latter is a secondary e�ect of the shorter elapsed time. Most of the other CPU time consists
of interrupt service routines and system daemon processes. Reducing the elapsed time for the
task in turn reduces the amount of background system processing during the task's lifetime.
As noted above, the criticality-based FCFS algorithm results in system performance that is
very close to that for the criticality-based C-LOOK. With the conventional algorithms, on
the other hand, FCFS results in a 2.8% longer elapsed time than C-LOOK.

Using criticality information in the disk scheduler improves performance by reducing
the amount of time that processes spend waiting for time-critical and time-limited I/O
requests. It is very interesting to note, therefore, that the average response time for time-
limited requests actually increases from 10.4 milliseconds to 15.3 milliseconds for C-LOOK.
As a result, the percentage of time limits that are satis�ed falls from 96.0% to 76.4%. The
response time densities for time-limited requests shown in Figure 7.13 help to explain this
phenomenon. There are two important di�erences between the densities:

4When the process exits, there are often dirty �le cache blocks that remain to be ushed. While certainly
important, the background write I/O requests for these dirty blocks are not part of the task completion time
observed by a user. They can, however, interfere with the �le and I/O activity of subsequent tasks if there is
insu�cient idle time between tasks. The last disk write completes at roughly the same time independent of
the scheduling algorithm, because of the periodic ush policy employed by the �le system's syncer daemon
(see section 5.3).

5The other CPU usage consists mainly of system software execution by interrupt handlers and system
daemons. Some of this activity competes with the task-executing process for CPU time and some of it occurs
while the process is blocked waiting for I/O, thereby reducing false idle time.

77

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Response Time (ms)

0

1000

2000

3000

N
um

be
r

of
 T

im
e-

Li
m

ite
d

R
eq

ue
st

s 6647

(a) Conventional C-LOOK Scheduling

<5 <10 <20 <30 <40 <60 <100 <150 <200 200+

Response Time (ms)

0

1000

2000

3000

N
um

be
r

of
 T

im
e-

Li
m

ite
d

R
eq

ue
st

s

(b) Criticality-Based C-LOOK Scheduling

Figure 7.13: Response Time Densities for Time-Limited Requests (compress).

78

� A signi�cant tail is evident in the response time density for the conventional C-LOOK
algorithm, culminating in a maximum response time of 643 ms. It is the requests with
very long response times that cause large periods of false idle time. On the other hand,
the criticality-based C-LOOK exhibits no tail and has a maximum response time of
93 ms.

� The conventional C-LOOK algorithm handles almost 88% of the time-limited requests
in less than 5 ms. These low response times result from hits in the disk's on-board
prefetching cache. The percentage of very low response times falls to 41% for criticality-
based C-LOOK. However, the nature of time-limited requests is such that servicing
them in zero time (or in less than 5 ms) is no better than completing them just before
their time limits expire. So, while the number of time limits missed does increase, they
are not missed by much, and this negative e�ect is not signi�cant enough to o�set the
bene�t of removing the very long response times.

The reduction in the number of on-board disk cache hits is a direct result of giving
priority to the more critical requests, which for this workload tend to be sequential reads.
The time-limited read I/O requests are generated at fairly regular intervals. The �le system
prefetches �le block N+1 when the process accesses block N. Therefore, the number of
pending time-limited requests ranges between 0 and 2. The time-noncritical requests in this
workload, mainly background ushes of dirty �le blocks, arrive in bursts when the syncer
daemon awakens. At some point after a burst arrives, there will be 0 pending read requests
and the disk scheduler (either variant) will initiate a time-noncritical write request.

At this point, the two algorithms part company. The conventional C-LOOK algorithm
continues to service the time-noncritical requests independent of time-limited read request
arrivals, because the time-noncritical requests generally exhibit spatial locality and will there-
fore incur smaller seek delays. So, the time-limited requests (and therefore the process) wait
for the entire group of writes to be serviced and are then serviced in sequence as they arrive.
On the other hand, criticality-based C-LOOK services new time-limited read requests be-
fore time-noncritical requests. Time-noncritical requests are only serviced when there are no
pending time-limited requests. As a result, the time-limited sequential reads are interleaved
with time-noncritical writes, reducing the e�ectiveness of the on-board disk cache and more
frequently moving the disk head between multiple regions of locality. This distinction in
behavior accounts for both di�erences in the response time densities.

Finally, as expected, giving preference to system needs rather than mechanical delay
reductions reduces storage subsystem performance signi�cantly. The average request ser-
vice time almost doubles, and the average response time increases by more than a factor
of 18. While the criticality-based FCFS algorithm provides roughly equivalent system per-
formance to the criticality-based C-LOOK, it does not match C-LOOK's storage subsystem
performance. With a heavy workload, FCFS scheduling will bottleneck performance before
C-LOOK does.

79

uncompress

Figure 7.8 and table 7.4 compare the di�erent algorithms with the uncompress workload.
Unlike the compress workload, the CPU time used by the task-executing process accounts
for only 61% of the elapsed time in uncompress. Using request criticality information with
C-LOOK scheduling reduces the elapsed time by 30%. Most of the improvement comes from
a 90% reduction in false idle time. The remainder comes from a 45% reduction in other CPU
usage. The criticality-based FCFS algorithm results in system performance that is very close
to that of criticality-based C-LOOK. With the conventional algorithms, on the other hand,
FCFS results in a 16% longer elapsed time than C-LOOK.

The behavior of the response time densities for time-limited requests is similar to that
described above for the compress workload. However, the increase in time-noncritical I/O
activity relative to time-limited activity extends the very long response times, causing the
high average value. Eliminating these long response times more than compensates for the
e�ect of increasing the service times, causing the reduction in average response time (from
42.5 ms to 19.3 ms).

While system performance increases, storage subsystem performance drops dramatically.
The average service time increases by 51% while the average response time increases by
more than an order of magnitude. Although the increased service times account for some of
the response time growth, the reduction in false idle time accounts for most of it. Because
the task-executing process spends less time waiting for I/O requests, it progresses more
quickly and therefore generates new I/O requests more quickly. The criticality-based FCFS
scheduler also su�ers a large drop in storage subsystem performance and will bottleneck
system performance more quickly than criticality-based C-LOOK.

copytree

Figure 7.9 and table 7.5 compare the di�erent algorithms with the copytree workload.
Unlike compress and uncompress, the CPU time used by the task-executing process accounts
for only 19% of the elapsed time in copytree. Over 68% consists of false idle time. Using
criticality information with C-LOOK scheduling reduces the elapsed time by 21%. Most of
the improvement comes from a 25% reduction in false idle time. The remainder comes from
a 31% reduction in other CPU time during the task's lifetime. The criticality-based FCFS
algorithm results in system performance very close to that for criticality-based C-LOOK.
With the conventional algorithms, on the other hand, FCFS results in a 14% longer elapsed
time.

The basic response time trends described earlier, both for time-limited requests and
across all requests, hold for this workload as well. The average service time increases by
only 6.4% when criticality information is utilized, but the reduced elapsed time increases the
average response time by a factor of 40 for C-LOOK scheduling. The criticality-based FCFS
scheduler also su�ers a large drop in storage subsystem performance and will bottleneck
system performance more quickly than criticality-based C-LOOK.

80

7.3.2 SynRGen Workloads

The SynRGen workloads consist of processes (one per simulated user) that execute tasks
interspersed with user think times to emulate the behavior of software developers. The
elapsed times shown in graph (a) of each �gure represent the average time from when one
of these tasks begins to when it completes, corresponding to the system response time for
a user command. The idle time between tasks is part of the workload, so the caveat of
the individual task workloads, relating to the need for idle time to ush dirty blocks, is
satis�ed. The elapsed time is broken into four regions: false idle time, false computation
time, CPU time (both for the particular task-executing process and otherwise) and task
sleep time. Graph (b) in each �gure shows a subset of the elapsed time, excluding the task
sleep time. The computation times that contribute to the task sleep time are con�gured
to match measurements from older machines (DEC DS-5000/200). As a result, the true
system performance improvement falls somewhere between the values indicated by graphs
(a) and (b). Finally, graphs (c) and (d) in each �gure show storage subsystem performance
across all I/O requests.

Figures 7.10{7.12 and tables 7.6{7.8 compare the scheduling algorithms using SynRGen
workloads with di�erent numbers of simulated users. The improvement to overall system
performance achieved with the use of criticality-based scheduling increases with the number
of users and comes entirely from reductions in false idle time. With 16 users, the reduction
in elapsed times is between 4% and 21%, depending on the true value of the task sleep time.
That is, the improvement shown in graph (a) is 4% and that shown in graph (b) is 21%. The
reduction is between 1.5% and 10% with 8 users and between 0.6% and 4.7% with 4 users. As
noted previously, the criticality-based FCFS algorithm results in system performance that
is very similar to that for the criticality-based C-LOOK.

One might expect that increasing the number of users would decrease the amount of
false idle time, rather than increase it (as observed), by allowing the additional processes
to utilize the CPU while one process is blocked waiting for I/O. However, the users spend
most of their time \thinking" and the CPU utilization is low, ranging from 7% with 4 users
to 35% with 16 users. The disk utilization is also low on the average, ranging 8% with
4 users to 40% with 16 users. However, the I/O requests are generated in a very bursty
manner, resulting in signi�cant queueing and therefore ample opportunity for disk request
scheduling. More importantly, the use of criticality information improves performance only
in those cases when both time-noncritical requests and more critical requests are waiting for
service concurrently. Increasing the number of users tends to increase the frequency with
which this occurs without enough of an increase in CPU work to compensate. With more
users and/or more realistic emulation of computation times (something other than sleep),
the opposite e�ect might be observed.

Finally, as expected, giving preference to system needs rather than mechanical delay
reductions reduces storage subsystem performance. Also, reducing false idle time allows
processes to progress more quickly, thereby generating I/O requests more quickly. The
subsystem performance drop tends to increase with the number of users, as did the system
performance improvement. With 16 users and C-LOOK scheduling, the average service
time increases by 6.5% and the average response time increases by 27%. The corresponding
increases are 2.8% and 33% with 8 users and 1.4% and 6.0% with 4 users. Although the

81

subsystem performance penalties for FCFS are smaller, the absolute values are still inferior
to those for C-LOOK.

7.4 Aging of Time-Noncritical Requests

Giving priority to time-critical and time-limited requests can lead to starvation of time-
noncritical requests. Such starvation can cause two signi�cant problems, relating to the
fact that most time-noncritical requests are background ushes of dirty �le cache blocks.
First, excessively long response times may violate system guarantees about data hardness
(i.e., when dirty data blocks are written stable storage). To support such guarantees, the
disk scheduler must prevent individual request response times from exceeding predetermined
limits. [Ganger93] evaluates a modi�cation to the algorithms described above, wherein
time-noncritical requests are moved into the high-priority queue after waiting for a certain
period of time (e.g., 15 seconds). This approach was found to e�ectively limit the maximum
response times. However, this approach also costs a considerable fraction (e.g., 30%) of
the performance improvement from using criticality information. Better approaches can be
devised.

A second potential problem occurs because ushed cache blocks cannot be re-used until
the write I/O requests complete. If the write working set exceeds the �le cache, then the
system will be limited by the throughput of the storage subsystem. In this case, scheduling
based on request criticality can be detrimental because it tends to reduce storage subsystem
performance. [Bennett94], a re-evaluation of the work in [Ganger93], found that criticality-
based disk scheduling consistently hurts performance on a memory-starved machine. More
balanced systems will su�er from this problem only when the short-term write working
set exceeds the �le cache capacity. Measurements of real systems indicate that this occurs
infrequently [Ruemmler93a]. Further, most modern operating systems integrate the �le block
cache with the virtual memory system [Gingell87, Moran87], allowing it to utilize much of
the available memory capacity in such situations.

7.5 Summary

This chapter demonstrates that storage subsystem performance metrics do not, in general,
correlate with overall system performance metrics. Criticality-based disk scheduling is shown
to improve overall system performance by up to 30% while reducing storage subsystem
performance dramatically (by more than 2 orders of magnitude in some cases). As a result,
evaluating criticality-based scheduling with subsystem metrics would lead one to dismiss it
as poor. In fact, a recent publication observed reductions in subsystem performance for
a similar algorithm (giving priority to reads over writes) and concluded that it is a bad
design point [Geist94]. One interesting e�ect of criticality-based scheduling algorithms is
that positioning-related scheduling decisions, which have long been viewed as critical to
performance, become much less important to overall system performance in sub-saturation
workloads.

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation demonstrates that the conventional design-stage I/O subsystem per-
formance evaluation methodology is too narrow in scope. Because standalone subsystem
models ignore di�erences in how individual request response times a�ect system behavior,
they can lead to erroneous conclusions. As a consequence, many previous results must be
viewed with skepticism until they are veri�ed either in real environments or with a more
appropriate methodology.

Conventional methodology fails to accurately model feedback e�ects between I/O sub-
system performance and the workload. Open subsystem models completely ignore feedback
e�ects. As a result, open subsystem models tend to over-estimate performance changes and
often allow unrealistic concurrency in the workload. When performance decreases, prediction
error grows rapidly as the lack of feedback quickly causes saturation. When I/O subsystem
performance increases, performance prediction errors of up to 30% are observed. The amount
of error for a given subsystem change depends upon request criticality, workload intensity
and the magnitude of the performance improvement. Closed subsystem models assume un-
quali�ed feedback, generating a new request to replace each completed request. As a result,
closed subsystem models tend to under-estimate performance changes and completely ignore
burstiness in request arrival patterns. Closed subsystem models rarely correlate with real
workloads, leading to performance prediction errors as large as an order of magnitude.

Conventional methodology also relies upon storage subsystem metrics, such as the mean
I/O request response time. These metrics do not always correlate well with overall system
performance metrics, such as the mean elapsed time for user tasks. For example, the use
of request criticality information by the disk scheduler is shown to reduce elapsed times for
user tasks by up to 30%, whereas the mean response time increases by as much as two orders
of magnitude.

A new methodology based on system-level models is proposed and shown to enable ac-
curate predictions of both subsystem and overall system performance. A simulation in-
frastructure that implements the proposed methodology is described and validated. The
system-level simulation model's performance predictions match measurements of a real sys-
tem very closely (within 5% in all comparisons).

82

83

8.2 Directions for Future Research

Given the problems associated with conventional methodology, the obvious next step is
to re-evaluate previous storage subsystem research using the methodology proposed in this
dissertation. Section 3.3.4 describes several research topics that have been explored using
the awed conventional methodology. A good system-oriented methodology may identify
erroneous conclusions in these studies.

The work described in this dissertation can be expanded in several directions:
Chapter 7 introduces criticality-based disk scheduling and evaluates some simple al-

gorithms. More sophisticated algorithms can be devised by considering several factors:1

(1) Scheduling requests based on both seek times and rotational latencies is generally superior
to scheduling based only on seek times [Seltzer90, Jacobson91]. (2) The algorithms explored
in this dissertation do not exploit the di�erence between time-critical and time-limited re-
quests. Proper exploitation of this di�erence will require accurate estimation of time limits.
(3) The scheduler should temper criticality-related goals with subsystem throughput goals
to avoid excessive starvation of time-noncritical requests and because request criticality is
an inherently short-sighted classi�cation. In the long run, it may be better to ignore request
criticality in some cases. (4) State-of-the-art disk drives are equipped with on-board request
queues, complicating the use of criticality information.

One important component of a good performance evaluation infrastructure is a large
and varied set of benchmark workloads. In the case of system-level simulation modeling,
this consists largely of system-level traces. Because of the popularity of the trace-driven
storage subsystem simulation, many companies include storage request trace acquisition
instrumentation in their operating system software [Rama92, Ruemmler93, Treiber94]. In-
strumentation for collecting system-level traces, as described in section A.2.2, should also be
included. With such instrumentation, large libraries of system-level traces can be collected
from real user environments.

The instrumentation described in section A.2.2 limits the length of system-level traces
to the capacity of the dedicated kernel memory bu�er. By partitioning the trace bu�er into
two or more sections and collecting trace data in one section as others are being copied to
disk, much longer traces can be collected. Because all system activity is traced, the activity
(CPU, memory and I/O) related to trace collection can be identi�ed and removed from the
trace. Trace-collection overhead would therefore impact the traced workload only if users
perceive the performance degradation and change their behavior. Sensitivity studies of the
validity of this approach would be needed, but it o�ers one method of acquiring very long
system-level traces.

Finally, I believe that computer system designers need to focus much more attention on
the I/O subsystem (storage, network and user interface). The common view holds that com-
puter systems consist of three main components: CPU, main memory and I/O. This is also
the commonly perceived order of importance. However, technology and application trends
are conspiring to dramatically increase the importance of I/O activity. In a growing number
of environments, computer system performance is determined largely by I/O performance.
This dictates a change in paradigm with a much greater focus on data movement.

1Some of these factors are explored in [Worthington95a].

APPENDICES

84

85

APPENDIX A

Detailed Description of the Simulation Infrastructure

This appendix describes the simulation infrastructure used for performance evaluation of
storage subsystem designs. The simulator itself is described, including the general simulation
environment, the storage subsystem components and the host system components. The
simulator can be con�gured to model a wide range of organizations at a variety of levels of
detail. As a result, many di�erent input workloads can be used to exercise it. The supported
input formats and the current library of traces are described.

A.1 The Simulator

A.1.1 Simulation Environment

The simulator is written in C and requires no special system software. General simulation
support (e.g., parameter checking and simulated time management) has been incorporated
both to simplify the implementation of component modules and to improve simulation ef-
�ciency. A complete simulation run consists of the six phases described below. General
simulation support related to each phase is also described.

Phase 1: Read and check parameters

A simulation begins by reading con�guration parameters and checking that the values
are acceptable. The simulation environment provides general functions for reading a param-
eter value and checking it against upper and lower bounds. More sophisticated parameter
checking is also performed when necessary. The simulator is very general, allowing the
con�guration �le a great deal of latitude in selecting and organizing components. Phase 1
proceeds as follows:

1. Read the main command line parameters: (1) the �le containing the con�guration pa-
rameters (all steps of phase 1, other than the �rst and the last, read information from
the con�guration �le), (2) the �le that should contain the output results of the simula-
tion run, (3) the format of the input trace (see section A.2), (4) the �le containing the
input trace, (5) the type of input workload (see section A.2), which directly determines
the type of simulation (standalone storage subsystem model or system-level model).

86

2. Read general simulation control parameters,1 including the endian-ness (big or little) of
the machine on which the simulation will run, seeds for the random number generator
(which is rarely utilized for anything other than initial state generation), the warm-up
period length, indications of which result statistics should be produced, time scaling
factors, and information to assist with the translation of input traces.

3. Read the parameters that de�ne the quantity and characteristics of the components
(described below) to be simulated in the particular run. Most of the associated simu-
lation structures are allocated at this point.

4. Read the parameters that de�ne the physical connections between the simulated de-
vices. For example, disk 1 connects to bus 1 and disk 2 connects to bus 2.

5. Read the parameters that de�ne any logical combinations of simulated devices. For
example, data are striped across disks 1, 2 and 3, which appear to the host as a single
logical device.

6. Read parameters de�ning the characteristics of the host system, if the simulation run
functions as a system-level model. As indicated earlier, a command line parameter
determines whether a given simulation run behaves as a storage subsystem model or a
system-level model.

7. Read parameter override information from the command line. Commonly modi�ed
parameters can be overridden from the command line, obviating the need to have
separate parameter �les for each distinct simulation run.

The separation of component de�nitions and their interconnections (both physical and
logical) is an important aspect of a large simulator [Satya86]. It greatly reduces the e�ort re-
quired to develop and integrate new components, as well as the e�ort required to understand
and modify the existing components.

Phase 2: Initialize simulation state

After all parameters have been read and checked, the internal state is prepared for the
ensuing simulation run. This includes initializing the component structures, establishing the
connections between components (and checking that the speci�ed connections result in a
legal setup) and initializing the various statistics.

Phase 3: Warm-up period

After initialization is complete, the simulation proper begins. The warm-up period pro-
ceeds in exactly the same manner as normal simulation execution (described below). When
the warm-up period ends, all statistics in the simulator are reset to their original values. The
rest of the simulation state remains unchanged by this action. The warm-up period can be
speci�ed in terms of simulation time or storage I/O request count.

1Each parameter is checked immediately after it is read (i.e., before moving to the next value).

87

Phase 4: Simulation proper

The simulator maintains an internal list of upcoming events, ordered by the simulated
time at which they are to occur. The simulated time models the wall clock in the sim-
ulator's world and is maintained as a monotonically increasing, double-precision (64-bit)
oating point number.2 The simulator proceeds by removing the �rst event in time order
from the internal event list and servicing it (i.e., handing it o� to the appropriate compo-
nent module for service). The simulated time is updated to reect the most recent event.
When servicing an event, a component module will often generate new events that are then
added to the internal list. The simulator continues until one of several stopping conditions
is reached. In most cases, the simulator is con�gured to stop when the last entry of a trace
�le is utilized. This avoids measuring the warm-down period during which the activity still
in the simulator is completed.

The simulator executes as one monolithic process with a single thread of control. This dif-
fers from simulation environments that consist of communicating threads of control
(e.g., [Ruemmler94]). When using a separate thread of control for each distinct sequence of
activity, one can rely on the stack to maintain context information while a thread waits for
simulation time to advance. With a single thread, context information must explicitly be kept
separate from the stack for each sequence of activity in each module. Generally speaking,
the single thread approach is more e�cient (e.g., less time spent switching between threads
for communication purposes) and more portable (e.g., no special multi-threading support
required). However, the thread software abstraction is convenient for module development.

After the �rst phase of simulation (parameter read-in), all memory allocation and de-
allocation is internally managed (except stack space, of course). The simulator has been
carefully designed to use a general 64-byte (16 32-bit integers) event structure for all dynamic
memory needs. The simulator maintains a list of free event structures. When one is needed,
it is taken from this list. If the list is empty, a page of memory is allocated and partitioned
into 64-byte structures that are placed in the free list. De-allocating a structure consists
of simply adding it to the free list. This approach has been very successful at reducing
both simulation times and memory utilization. The system support for dynamic memory
management in C (e.g., malloc and free) requires considerable CPU time and su�er from
fragmentation.

As it executes, the simulator performs a good deal of self-checking. That is, the various
modules are constantly verifying that their internal state remains consistent and that the
activities being performed are reasonable. This self-checking has helped to identify many
obscure bugs that might have otherwise gone unnoticed. When simulation e�ciency is
critical, many of these self-checks can be bypassed and/or excluded by the compiler.

2Maintaining the time in oating point can be dangerous in a simulation setting because the granularity
of each value decreases in resolution as time progresses. However, 64-bit oating point numbers provide
sub-nanosecond resolution over an 8-week period of time. This more than satis�es the requirements of this
simulator. A 64-bit integer would be preferable. However, the C compilers present on local systems do not
provide a 64-bit integer support. Constructing this data type and the corresponding operators would be an
unpleasant and, in this case, unnecessary task.

88

Phase 5: Clean-up statistics

After the simulation proper completes, the statistics are �nalized and set to a state that
is conducive to printing easily. For example, the amount of idle time is measured by keeping
track of when idle periods begin and end. The length of each idle period is added to a
running count. If the simulation ends in an idle period, the length of the �nal period will be
added to the running count in this phase.

Phase 6: Output results

The �nal phase of a simulation run writes the results to a �le (optionally stdout) in ASCII
format. A unique identi�er precedes each individual datum (a distribution is treated as one
datum) to ease the burden of external tools that extract particular values (e.g., for a user
or a graphing utility). The simulation environment provides a general statistics module,
providing the average, standard deviation, and density/distribution for a selected variable.
The granularity of the density function can be con�gured as desired. The module provides
print functions.

A.1.2 Storage Subsystem Components

The simulator contains modules for most secondary storage components of interest. Some
of the major functions (e.g., request queueing/scheduling and disk block caching) that can
be present in several di�erent components (e.g., operating system software, intermediate
controller, disk drive) have been implemented as separate modules that are linked into com-
ponents as desired. The supported physical interconnections and logical device combinations
are also described.

A.1.2.1 Component Modules

Device Driver

In the simulator, the device driver interfaces with the \rest of the system," which is either
the host system portion of the simulator or the workload generator (both are described
below). Storage I/O requests \arrive" via a single interface function and are placed in
the appropriate per-device queue. When appropriate, given the subsystem's state and the
particular con�guration being simulated, accesses are scheduled to the simulated storage
subsystem hardware components. The routines for handling interrupts generated by storage
subsystem components are also located in this module. The device driver module can be
con�gured to ignore the other storage subsystem components and model storage subsystem
behavior in a trivialized manner, such as using access (or response) times provided with each
request or a constant per-request access time. This functionality is useful for debugging host
system components and for quickly extracting statistical information about a trace.

The device driver module is con�gured by three sets of parameters:

1. a value that indicates what form (if any) of model simpli�cation should be performed,
together with the constant access time (if appropriate).

89

2. values that con�gure the disk request scheduler located in the device driver. This
includes the values described below for the general disk request scheduler and an indi-
cation of whether or not queues located in other storage subsystem components should
be used if they are present (i.e., whether the device driver will allow more than one
request per device to be outstanding at a time).

3. a scaling parameter that determines the CPU overheads for the various device driver
functions (e.g., interrupt handling routines, request scheduling and initiation, new
request arrival processing). The simulator currently uses internal constants for these
values, applying the single scaling parameter to all of the overheads. For example, a
scale factor of 1.0 uses the internal constants and a scale factor of 0.0 models zero-
latency CPU activity.

Controllers and Adapters

The controllers and adapters share a common module that represents all intermediate
entities between device drivers and storage devices (disk drives in most storage subsystems).
This module currently supports three types: (1) a bus adapter that simply passes all data
and control information directly to the next entity on the I/O path without processing it,
(2) a simple controller that deals with predetermined sequences of control signals but re-
quires considerable assistance (usually provided by the device driver) to manage its state.
This submodule roughly emulates the NCR 53C700-based controller used in the experimental
system described below, (3) an intelligent controller that optionally includes request queue-
ing/scheduling and/or disk block caching functions. An intelligent controller manages the
storage devices connected to it and presents an interface to the rest of the storage subsystem
that is very similar to the interface that the device driver presents to the rest of the system.

All instances of the controller module are con�gured with three important parameters:

1. the type of controller (one of the three described above).

2. a value that determines command processing overheads. The simple bus adapter uses
this value as a constant per-command CPU overhead. The other controller types use
this value as a scale factor applied to the hard-wired internal overheads. For example,
a scale factor of 1.0 uses the internal constants and a scale factor of 0.0 models zero-
latency CPU activity.

3. the time required to transfer a single 512-byte sector into or out of the controller/adap-
ter. The simulated transfer speed is the maximum of this value and the corresponding
values for the other components involved in the communication, including the bus(es).
The particular submodule implementation determines whether the controller acts as a
simple speed-matching bu�er for data transfers or as a store-and-forward bu�er.

For instances of the intelligent controller submodule, there are additional parameters,
falling into two sets:

1. values that con�gure the request queue/scheduler, including the values described below
for the generic disk request scheduler, the maximum number of requests that the

90

controller will schedule concurrently to each storage device (if the device supports
request queueing), and the maximum number of requests (total across all managed
storage devices) that can be outstanding to the controller at a time. During the
initialization phase, components above the controller (e.g., device drivers) \ask" for
the latter value and thereafter do not compromise it.

2. values that con�gure the disk block cache. These values are described below for the
generic disk block cache.

The simple bus adapter submodule is trivial, simply forwarding any control messages to
the next entity along the I/O path (toward the host or toward the storage devices, as appro-
priate). Data transfers also pass thru the bus adapter, which acts as a simple speed-matching
bu�er. The simple controller submodule, which emulates the behavior of a controller based
on the NCR 53C700 [NCR90], immediately forwards incoming storage I/O requests down
the I/O path. The controller can deal with simple sequences of control activity on its own
but requires assistance with major state changes, such as SCSI device disconnects and re-
connects [SCSI93]. It gets this assistance by sending an interrupt up the I/O path. An
intelligent entity (i.e., the device driver or an intelligent controller) manages the controller's
state change in the corresponding interrupt handling routine. Data transfers pass thru the
simple controller, as with the bus adapter.

The intelligent controller submodule, together with the storage devices that it manages,
behaves like a self-contained storage subsystem. Incoming storage I/O requests enter the
cache module. If no cache is being simulated, these requests pass immediately to the cor-
responding per-device request queue. Otherwise, space for the data associated with the
request is allocated and/or locked. For read hits, the data are immediately transferred from
the cache and completion is then reported (i.e., a completion interrupt is sent up the I/O
path). For writes, the data are immediately DMA'd from the source memory to the cache.
This submodule uses the cache as a store-and-forward bu�er. All data are staged through
the cache, transferring into and out of the controller in two distinct steps. Completion for
write requests may be reported at this point, depending on the simulated cache's con�gura-
tion. The cache module generates accesses for writes and read misses and places them in the
appropriate per-device queues. Accesses are scheduled from these queues to the correspond-
ing devices according to the simulated scheduler's con�guration. An intelligent controller
manages all interaction with the storage devices connected to it, interrupting entities above
it in the I/O path only to signal request completions.

Buses

All interconnections between storage subsystem entities (e.g., device drivers, controllers/
adapters and disk drives) share a common module. This module is architected so that
communicating entities need not know the characteristics of the entities they communicate
with or of the bus itself. The module supports two bus types: an ownership-based bus and an
interleaved-transfer bus. With the former, an entity arbitrates for bus ownership and keeps
it for as long as necessary to complete a communication sequence with another entity. An
example of this is a SCSI bus [SCSI93]. With the latter bus type, separate communication
sequences involving distinct entities are interleaved, such that each ongoing sequence receives

91

an equal fraction of the available bus bandwidth. Commonly, system backplanes function in
this way.

An instance of the bus module is con�gured with �ve parameters:

1. the bus type (one of the two described above).

2. the arbitration policy, which is used only for ownership-based buses. The module
currently supports First-Come-First-Served arbitration, Slot-Priority arbitration
(as used with SCSI buses), and a pseudo-Round-Robin arbitration policy.

3. the time required to perform arbitration.

4. the time required to transfer a single 512-byte sector from a bus controlling entity to
another entity on the bus. The simulated transfer delay is the maximum of this value
and the corresponding values for the other components involved in the communication,
including other bus(es).

5. the time required to transfer a single 512-byte sector to a bus controlling entity from
another entity on the bus.

While the speci�cs of inter-component communication are described below, the bus mod-
ule interacts with other storage subsystem components in four important ways: (1) A com-
ponent seeks bus ownership to communicate with another by calling into the bus module
and waiting (in simulated time) for it to respond positively. Interleaved-transfer buses, of
course, do so immediately after the arbitration delay and reduce the bandwidth concurrently
used by other communicating components. Ownership-based buses wait for the bus to be
free and then perform arbitration, responding positively to the winner after the arbitration
delay. Components call into the bus module when they �nish using the bus, freeing the
resource for others to use. (2) Transmission delays for control information and processing
delays that occur while the bus is held can be performed by calling into the bus module.
After the appropriate delay elapses in simulated time, the bus module will call back into
the appropriate component module. (3) Control information is passed from one entity to
another via the bus module. (4) The bus module contributes to determining the speed of
data transfers, although other components manage the transfer.

Disk Drives

Disk drives remain the de facto standard in secondary storage. These mechanical storage
devices have grown very complex over the years, both because of advances in mechanical
engineering and because of increased use of on-board logic. The latter has allowed disk
�rmware developers to employ various algorithms and policies to hide the speci�cs of media
access, to dynamically handle media corruption, to hide/reduce media access latencies and to
increase on-media storage densities. The disk drive module accurately models most aspects of
modern disk drives, including zoned recording, spare regions, defect slipping and reallocation,
disk bu�ers and caches, various prefetch algorithms, fast write, bus delays, and command
processing overheads. Con�guring an instance of the disk drive module requires over 100
di�erent parameters. Because of its complexity, a description of the disk drive module will
be deferred to appendix B.

92

Request Queues/Schedulers

Because request queues and the corresponding schedulers can be present in several dif-
ferent storage subsystem components (e.g., device drivers, intelligent controllers and disk
drives), request queue/scheduler functionality is implemented as a separate module that is
incorporated into various components as appropriate. New requests are referred to the queue
module by queue-containing components. When such a component is ready to initiate an
access, it calls the queue module, which selects (i.e., schedules) one of the pending accesses
according to the con�gured policies. When an access completes, the component informs
the queue module. In response, the queue module returns a list of requests that are now
complete. This list may contain multiple requests because some scheduling policies combine
sequential requests into a single larger storage access. The queue module collects a variety
of useful statistics (e.g., response times, service times, inter-arrival times, idle times, request
sizes and queue lengths), obviating the need to replicate such collection at each component.

An instance of the queue module is con�gured with a dozen parameters that fall into
seven groups:

1. the base scheduling algorithm. The simulator currently supports 18 di�erent disk
scheduling algorithms, includingFirst-Come-First-Served, LBN-based and cylinder-
based versions of common seek-reducing algorithms (LOOK, C-LOOK, Shortest-
Seek-Time-FirstandV-SCAN(R)), and a variety of Shortest-Positioning-Time-
First algorithms (combinations of cache-aware, aged, weighted and transfer-aware).
Most of the supported scheduling algorithms are described and evaluated in
[Worthington94].

2. the information used to translate logical block numbers (LBNs) to cylinder numbers.
This translation is used only for the cylinder-based seek-reducing algorithms. Several
options are supported, including a constant average number of sectors per cylinder, ac-
curate per-zone information (�rst cylinder of zone and number of sectors per cylinder),
accurate information regarding the �rst LBN of each cylinder, per-zone information
and format-time slipping but not defect remapping, and full mapping information (as
used by the disk itself).

3. read and write request initiation delays, for use in the Shortest-Positioning-Time-
First (SPTF) algorithms. These algorithms must estimate what the rotational o�set
of the read/write head will be when re-positioning begins. Together with the current
o�set and rotation speed, these values are used to calculate the required estimate.

4. the age factor for the aged and weighted versions of the SPTF algorithm. These
algorithms are described in [Seltzer90, Jacobson91, Worthington94].

5. values that con�gure algorithm enhancements for exploiting request sequentiality. The
enhancements fall into two categories, concatenation and sequencing, that can be ap-
plied selectively to reads and/or writes. A parameter value provides the four bits in this
cross-product. Request concatenation consists of combining sequential requests into a
single larger access. A second parameter speci�es the maximum allowed size of this
larger access. Request sequencing consists of scheduling pending sequential requests

93

in ascending order. A third parameter optionally allows some amount of \give" in the
de�nition of sequential. Two requests are treated as sequential if the second starts
within this number of sectors after the �rst. The one exception is write concatenation,
which can only be performed with truly sequential requests.

6. values for con�guring a separate timeout queue. Requests that wait in the queue
for longer than some pre-determined amount of time are placed in the second queue.
Requests are scheduled from the timeout queue before the base queue is examined.
A parameter value speci�es whether or not the timeout queue is utilized. Two other
parameters specify the timeout time and the scheduling algorithm used for the timeout
queue, which may di�er from that used with the base queue.

7. values for con�guring a separate priority queue. Time-critical and time-limited requests
can be given non-preemptive priority over time-noncritical requests by placing them
in a separate queue. Requests are scheduled from the priority queue before the base
queue is examined. A parameter value speci�es whether or not the priority queue is
utilized. A second parameter speci�es the scheduling algorithm used for the priority
queue, which may di�er from the base queue. Chapter 7 uses this functionality to
examine criticality-based disk scheduling.

Disk Block Caches

Because disk block caches can be present in multiple components (e.g., host main memory
and intelligent storage controllers), implemented disk cache functionality is implemented as a
separate module that is incorporated into various components as appropriate.3 Requests are
referred to the cache module when a cache-containing component chooses to begin servicing
them. The cache module deals with servicing the request and informs the component when
completion can be reported. Cache containing component modules must provide several call-
back functions for the cache module, including those for issuing transfer requests to move data
into and out of the cache, those for telling the component to continue a previously blocked
cache-accessing process (this is particularly important for the host memory cache) and those
for indicating request completion. As appropriate, the cache deals with the decoupling of
requests from above and the ush/�ll requests that access backing store devices.

An instance of the disk cache module is con�gured with many parameters, falling into
11 groups:

1. the cache size (in 512-byte sectors).

2. the cache line size (in 512-byte sectors).

3. the valid and dirty bit granularities (in 512-byte sectors). This parameter determines
the number of sectors covered by a single valid (dirty) bit. The sectors covered by a
single bit must either all be valid or not valid (dirty or not dirty) in the cache at any
point in time. As a result, the valid (dirty) bit granularity a�ects the ush/�ll requests
issued to the backing store. This parameter must evenly divide the cache line size.

3The disk drive module includes a separate cache/bu�er submodule because of the specialized nature of
common on-board disk cache management policies.

94

4. values de�ning the cache data locking strategy. Appropriate locks must be held in order
to access cache contents. One parameter speci�es the lock granularity (in 512-byte
sectors), indicating the number of sectors covered by a single lock. The lock granularity
must evenly divide the cache line size. A second parameter indicates whether read locks
are shared or held exclusively.

5. the maximum size (in 512-byte sectors) of a request from above. During the initial-
ization phase, the device driver requests this value. During the simulation proper, the
device driver breaks excessively large requests into multiple smaller requests.

6. the replacement policy for cache lines. Several policies are currently supported, in-
cluding First-In-First-Out, Last-In-First-Out, pseudo-random, Least-Recently-
Used (LRU), and Segmented-LRU [Karedla94]. A second parameter speci�es the
number of segments for the Segmented-LRU policy.

7. a ag specifying whether a space-allocating process waits for a reclaim-time dirty line
ush (i.e., when the line to be replaced is dirty) or attempts to �nd a clean line to
reclaim.

8. the write scheme. Three options are currently supported: (1) synchronous write-thru,
wherein newly written data are copied to the backing store before request completion
is reported, (2) asynchronous write-thru, wherein a ush access for newly written data
is generated, but not waited for, before completion is reported, (3) write-back, wherein
completion is reported for write requests as soon as the new data have been moved into
the cache. Individual requests can also selectively enforce the synchronous write-thru
scheme, as required.

9. values de�ning the ushing strategy for write-back caches. One parameter de�nes the
main approach, which must be one of two currently supported options: (1) demand-
only, wherein dirty data are written to the backing store only when the space needs to
be reclaimed, (2) periodic, wherein a background \process" periodically ushes some
or all of the dirty cache data. The latter option is further con�gured by two parameters
that specify the period and the number of times during the period the process awakens.
The latter value also de�nes the fraction of the cache contents examined for dirty lines
to be ushed each time the process awakens. Optionally, dirty cache data can also be
ushed during idle time. A parameter speci�es whether or not this is done and how
long a backing store device must be idle before such ushing begins. An additional
parameter determines the maximum amount of clustering (i.e., combining multiple
contiguous dirty lines into a single ush request) performed.

10. values that specify the type of data prefetching. Currently, the cache module only
prefetches data when it is also performing a demand fetch. Also, the prefetching does
not cross cache line boundaries. So, a single parameter speci�es how much of the
line, other than the required portion, is fetched. One bit speci�es the beginning of
the line and another the rest of the line. One such parameter covers demand fetches
for servicing read requests. A second such parameter covers demand fetches for write

95

requests that modify only a fraction of the space covered by a single valid bit (the
cache module currently assumes a write allocate policy).

11. a value that speci�es whether requests are serviced with separate per-line �ll or ush
requests. The more e�cient alternative is to allocate the full set of necessary lines and
issue a single multi-line backing store access.

12. a value indicating how many non-contiguous cache memory lines that contain con-
tiguous backing store data can be combined. Such combining requires gather/scatter
hardware support, which is not always available. That is, outgoing data must be gath-
ered from non-contiguous cache locations and incoming data must be scattered among
them.

Disk Array Data Organizations

Because disk array data organizations [Chen93b, Ganger94a] can be utilized in multiple
components (e.g., device drivers and intelligent storage controllers), logical address mapping
is implemented as a separate module (the logorg module) that is incorporated into various
components as appropriate.4 The logorg module supports most logical data organizations,
which are made up of a data distribution scheme and a redundancy mechanism [Ganger94a].
Requests are referred to the logorg module when they arrive at a logorg-containing compo-
nent. The logorg module translates a newly arrived logical request into the appropriate set
of physical accesses (from the components point of view) and returns a subset of these. A
logical request will be translated into multiple physical accesses for many logical data organi-
zations, such as those that employ disk striping and/or replication-based redundancy. Some
of these physical accesses may have to wait for others to complete, as with the write request
of a read-modify-write parity update operation for parity-based redundancy [Patterson88].
When a physical access completes, a logorg-containing component calls into the logorg mod-
ule, which returns a list of requests that are now complete and a list of additional physical
accesses to be performed.

An instance of the logorg module is con�gured with many parameters, which can be
described in 6 groups:

1. the set of physical disks involved. The current implementation does not allow logical
organizations to use fractions of disk drives. One parameter speci�es the number of
disks involved and two others specify the range. Each disk is referred to by a number
in the con�guration �le.

2. the logical addressing scheme for the logorg. The logical organization can either be
addressed by a single logical device number or by addressing the individual physical
devices. In either case, the addresses will be modi�ed, as appropriate, by the logorg
module. One parameter indicates which of the addressing options should be utilized.
A second parameter speci�es the single logical device number.

3. the data distribution scheme. The logorg module currently supports four options:
(1) as is, wherein the logical address within the logical organization's capacity remains

4Currently, only the device driver uses this module.

96

unchanged, corresponding to the conventional, independent-disk storage subsystem,
(2) striped, wherein logical addresses are spread among the physical storage devices
by a hashing mechanism, (3) random, wherein the logorg module randomly selects
a physical device for each new request, (4) ideal, wherein the logorg module selects
physical devices for new requests in a round-robin fashion. The latter two options are
not realistic data distribution schemes. They are used only for comparison purposes
(as in [Ganger93a]). One parameter speci�es the data distribution scheme (one of the
four supported options) and a second parameter speci�es the stripe unit size.

4. the redundancy mechanism. The logorg module currently supports �ve options:
(1) no redundancy, (2) replication, wherein a copy of each disk's contents are main-
tained on one or more other disks, (3) parity disk, wherein one of the physical disks
contains parity information computed from the other disks' contents, rather than data,
(4) rotated parity, wherein one disk's worth of capacity is used for parity information
that is interleaved among the physical disks, (5) table-based parity, wherein a complex
parity-based organization, such as parity declustering [Holland92] is utilized.

5. values that con�gure replication-based redundancy mechanisms. One parameter spec-
i�es how many copies of each disk are maintained. This value must divide evenly into
the number of physical disks. A second parameter speci�es how the logorg module
decides which copy is accessed for each read request. Since each copy contains the
same data, a read request can be serviced by any of them. Supported options include:
(1) primary copy only, (2) random, (3) round-robin, (4) shortest expected seek dis-
tance, and (5) shortest queue length.

6. values that con�gure parity-based redundancy mechanisms. One parameter speci�es
the reconstruct-write fraction. That is, the fraction of disks in a parity stripe that
must be written for reconstruct-write to be used instead of read-modify-write (see
[Chen93b, Ganger94a]). Another parameter speci�es the parity stripe unit size, which
may di�er from the data stripe unit size (although one must be an even multiple of the
other). A parameter speci�es the parity rotation type for the rotated parity redundancy
mechanism (see [Lee91]). A parameter speci�es the �le that contains the block layout
table for table-based parity. A �nal parameter speci�es whether the distinct writes for
read-modify-write parity updates can be issued as each read completes or must wait
until all of the reads complete. In the latter case, a set of spindle synchronized disks
will write the data at approximately the same time.

A.1.2.2 Physical Component Interconnections

This subsection describes the supported physical component interconnections. The al-
lowed interconnections are roughly independent of the components themselves except that
a device driver must be at the \top" of a subsystem and storage devices (e.g., disk drives)
must be at the \bottom." Most of the restrictions on how components can be connected are
imposed by the speci�c routing mechanism employed by the storage subsystem simulator,
which is described below. Also described below are the message types and protocols for
communication among storage subsystem components.

97

0 2 -1 -1

0 2 4 5 -1 -1-1 -1

8 bits

4 4

Device Driver

Controller X

Disk

Bus #0

Bus #2

0
2

4
5

Bus numbers (Route-defining integer #1)

Slot numbers (Route-defining integer #2)

Y

Figure A.1: Internal Storage Subsystem Message Routing. The �gure shows the route-de�ning
integer values for transferring messages to/from the device driver from/to disk Y, or any inter-

mediate steps in said path. Note that the particular communicating components (device driver,

controller X, and disk Y) are not reected in the routing integers.

Message Routing

For each storage device (e.g., disk drive), two 32-bit integers describe the static route from
the device driver to the device (see �gure A.1). The �rst lists the buses that are traversed,
using one byte to provide each bus number. Each byte in the second integer lists the two
slot numbers for the communicating devices on the bus listed in the corresponding byte of
the �rst integer, using four bits for each slot number. The upper four bits correspond to the
component that is closer to the host system in the path. Each component instance knows its
depth (which must be constant across all paths that contain the component) in these routing
integers. The depth indicates which bytes correspond to each component in the path. So,
to route a message down (up) the path, a component sends the message to the bus module
with the bus number and the lower (upper) slot number taken from the byte at the next
lower (higher) depth. The bus module knows which components are connected to each slot
of each bus instance and can therefore route the message to the correct component module.

The con�guration �le speci�es which components are connected to each bus, and the
order of these connections de�nes the slot numbers associated with each. The con�guration
�le also speci�es which buses are connected to each \host-side" component. The supported
hierarchy scheme currently limits the number of \host-side" components on each bus to
one. These two sets of con�guration �le input fully de�nes the physical interconnection
hierarchy. During the initialization phase, the storage subsystem components \feel around"
to determine the per-device routes.5 The device driver collects the per-device routes. As

5Currently, static per-device routes are determined at initialization time and used throughout the simula-
tion. The component modules could be modi�ed to deal with dynamically selecting among multiple routes,
emulating dynamic path reconnection and related optimizations.

98

each request arrives during the simulation proper, the device driver adds the appropriate
route to the internal storage I/O request structure.

The routing mechanism used in the storage subsystem simulator imposes several con-
straints on component connectivity:

� no more than 63 buses. The binary value `11111111' is used to represent an unused
entry in the �rst route-de�ning integer.

� no more than 15 components connected to a bus. The value `1111' is used to represent
an unused value in the second route-de�ning integer.

� no more than 1 host-side component connected to each bus.

� no more than 4 buses traversed on the route from the device driver to a storage device.

The simulator currently imposes two additional constraints:

� no more than 1 host-side bus connected to each component.

� no more than 4 device-side buses connected to each component.

Message Types and Protocols

Five types of messages are passed among storage components using the bus module.
An I/O Access message is passed down the I/O path (i.e., towards the appropriate storage
device) to initiate a storage access. An Interrupt Arrive message is passed up the I/O
path (i.e., towards the device driver) when the disk drive attempts to initiate bus activity.
The �ve interrupt types are (1) completion, (2) disconnect, (3) reconnect, (4) save pointers,
(5) ready to transfer. The middle three interrupt types correspond to SCSI device actions
[SCSI93]. The \ready to transfer" interrupt is used only when a component transfers data
for a new I/O Access before disconnecting from the bus. An Interrupt Completion message
is passed down the I/O path in response to an Interrupt Arrive message. A Data Transfer
message is passed up the I/O path to initiate data movement. The transfer is managed by
an intermediate controller, either the intelligent controller nearest the component that sends
the message or the simple controller nearest the host system. A Data Transfer Complete
message is passed down the I/O path when requested data movement completes.

Figure A.2 shows the messages that can arrive from \above" (i.e., closer to the device
driver) and from \below." The expected responses to the di�erent messages are also shown.
A speci�c component may respond to messages (e.g., disk drives, intelligent controllers and
device drivers) or may simply pass them further along the I/O path (e.g., simple adapters).
Most of the messages are reactionary in nature. Only the I/O Access message and the
\reconnect" form of the Interrupt Arrive message initiate new sequences of message passing.
The \completion" and \disconnect" forms of the Interrupt Completionmessage end sequences
of message passing.

99

I/O
Access

Intr. Comp.
Reconnect

Intr. Comp.

Intr. Comp.

Intr. Comp.

Disconnect

Save Pointers

Completion

Data
Transfer
Complete

Data
Transfer

Intr. Arrive

Intr. Arrive

Intr. Arrive

Intr. Arrive

Intr. Arrive

Reconnect

Disconnect

Save Pointers

Completion

Data Ready

Initiate

Comm.

Initiate

Comm.

Sent Down I/O Path Sent Up I/O Path

Figure A.2: Message Sequences as Exchanged by Storage Components. This represents com-

munication activity as observed by the bus module. Each sequence is initiated either by an I/O

Access message or by a Reconnect Interrupt Arrive message. Disconnect Interrupt Complete and

Completion Interrupt Complete messages end sequences. The dashed and dotted lines represent

the response options for messages received from below and above, respectively. Note that there is

only one acceptable response to each message from below. The selected response to a message from

above depends upon the initial con�guration and current state of the responding component.

100

A.1.2.3 Logical Data Organizations

Logical data organizations, which combine the capacity of multiple storage devices
(e.g., disk drives), consist of one or more instances of the disk array data organization
module described above. Currently, logical device numbering is not used in message routing
and all components know the routes for each physical device. This could be changed to
better match the behavior of real disk arrays. All other important aspects of logical data
organizations in the simulator are described above for the component module.

A.1.3 Host System Components

The simulator contains the host system component modules necessary to function as a
system-level model at a level of detail appropriate for evaluating storage subsystem designs.
The modules and their interactions are described.

CPUs

In the simulator, the CPUs \execute" processes and interrupt service routines, which
are modeled as sequences of events separated by computation times, by decrementing each
computation time (as simulated time progresses) in turn until it reaches zero, at which time
the event \occurs." Each CPU structure contains pointers to the current process, the stack of
current interrupts and the one event whose computation time is currently being decremented.
If an interrupt arrives before the computation time reaches zero, then the computation time
is updated, the new interrupt is added to the (possibly empty) stack and the �rst event of
the handling routine becomes the CPU's current event. Interrupt completion events remove
interrupts from the stack and context switch events replace the current process.

The CPU module is con�gured with two parameters:

1. the number of CPUs.

2. a scale factor for computation times. With this scale factor, the e�ective CPU speed
can be increased or decreased.

Main Memory

Main memory is not currently simulated as a distinct entity. Process-induced data move-
ment is included in the computation times. I/O-induced DMA activity is modeled by the
storage subsystem components. The emulation of memory management software, particu-
larly disk cache behavior, is described below.

Interrupt Controller

The simulated interrupt controller is extremely simple and no con�guration parameters
are needed. The interrupt controller simply bundles interrupt messages in a convenient
internal format and sends them to CPU #0. This module could be changed to better
emulate interrupt controllers that hold low-priority interrupts until higher-priority interrupts
have been handled and/or route such interrupts to other CPUs.

101

Operating System Software

The events that comprise processes and interrupt handlers represent important system
software actions. Therefore, operating system functionality is simulated by updating the
host system model's state as each of these events \occurs." In some cases, additional events
will be inserted into the event sequence representing the process or interrupt handler. The
system software events used in the simulator can be separated into 5 groups, each relating
to one of: (1) process control, (2) system clock, (3) storage subsystem interface, (4) external
interrupts, and (5) main memory management. Each of these groupings is described below.
The system software aspects of the simulator are modeled after the behavior of AT&T/GIS's
UNIX SVR4 MP operating system, important aspects of which are described below.

Process Control

The main policy code for the process scheduler has been extracted from the AT&T/GIS's
UNIX SVR4 MP operating system and inserted directly into the simulator. Eleven events
are used to emulate the process control performed in this operating system:

1. fork: This event causes a new child process to come into existence. The trace event
includes the new process's identi�cation number (PID). The trace event stream corre-
sponding to the new PID is used for the new process.

2. exec: Many instances of the fork event use a variant of the UNIX fork command that
requires the parent process to wait until the new child process either performs an exec
command or an exit command. No other simulator state is modi�ed by this event.

3. exit: This event ends execution for a process. All resources should have previously
been freed/deallocated. This event should be the last in a particular process's event
stream.

4. sleep: This event causes the process to stop execution temporarily. A parameter sup-
plies a wakeup value for the process, which waits until one of two things happens:
(1) another process or an interrupt handler performs a wakeup event with the value,
or (2) another process or interrupt handler performs a signal event for the process.

5. wakeup: This event causes sleeping processes to resume execution. One parameter
provides the wakeup key (mentioned above for the sleep event). A second parameter
indicates whether all processes waiting for the key should be awakened, or only one of
them.

6. signal: This event causes action on a speci�c process. Frequently, this action consists
of waking the process and optionally causing it to immediately execute an exit event.

7. system call: The UNIX operating system being emulated does not switch out a process
while it is actively executing system code. Therefore, it is necessary to know when a
process is executing inside the kernel. A system call represents a kernel entry point.
No other simulator state is modi�ed.

102

8. system call complete: The kernel exit point corresponding to a previous system call
event.

9. trap: As with system call, traps represent kernel entry points.

10. trap complete: The kernel exit point corresponding to a previous trap event.

11. context switch: This event causes a CPUs current process to be replaced by the process
speci�ed as a parameter.

Most of the process control events are part of the per-process trace event streams pro-
vided as simulator input. sleep and wakeup events are added when processes must wait for
time-limited I/O requests, and removed when modi�ed I/O subsystem performance obviates
traced I/O waits. Also, all context switch events are generated internally. The process con-
trol activity is currently con�gured with only two parameter. The �rst speci�es whether the
system executes the idle loop in a separate idle process or within the context of the most
recently executing process. The second parameter speci�es whether or not processes waiting
for I/O requests should preempt other executing processes when their requests complete.

System Clock

The system software receives a clock interrupt every 10 milliseconds and maintains an
internal \clock" of this granularity. In the clock interrupt handler, the system increments
its internal clock and updates the quanta and sleep times in the process scheduler, possibly
inducing a further process control activity (e.g., context switches for processes whose quanta
expire). The system performs several additional tasks on every 100th clock interrupt. For
example, the process scheduler examines the run queues more thoroughly. Also, background
system daemons are awakened to initiate ush requests for dirty �le blocks.

The simulator generally uses the traced clock interrupt activity, including the arrival times
and handler event streams. The simulator can also be con�gured to internally generate and
handle clock interrupts appropriately. This functionality is used for the synthetic storage I/O
workload generator (described in section A.2.3) and for the more complete model of memory
management activity described below. In any case, interrupt handlers use one special event
that processes do not use, the interrupt complete event.

Storage Subsystem Interface

The storage subsystem interface remains simple (as described in section 3.3). I/O re-
quest events issue I/O requests to the device driver. The device driver module uses several
internal events, which execute in processes and interrupt handlers as described above, and
to complete its work. These events are added process event streams when necessary. The
device driver also dynamically constructs the storage I/O interrupt handler event streams,
using its internal events as needed. The internal device driver events are:

� Schedule Access: This event issues a I/O access to the storage subsystem hardware.

103

� Respond to Device: This event causes the device driver to clear the interrupt for the
device that initiated it. As described above with the storage subsystem components,
this consists of passing an Interrupt Complete message down the I/O path.

� Request Complete: This event causes the device driver to inform the system that an
I/O request has completed.

The device driver also uses wakeup events in request completion interrupt handlers for time-
critical I/O requests.

Currently, the simulator uses the I/O requests as present in the per-process traced event
streams. The memory management software component described below will skip the traced
requests and generate I/O requests internally based on the modeled e�ects of the traced �le
cache accesses.

External Interrupts

One of the input �les for a system-level simulation run is a �le containing the traced
arrival times and handler event streams for external interrupts, which are the interrupts
generated by network and user interface I/O activity. These interrupts are fed into the
simulator at the measured arrival times with no feedback, modeling an the input mechanism
of an open system. All of the system-level traces described below and used in this dissertation
were taken with the network disconnected and no interactive users. As a result, there are
no external interrupts in these workloads.

Main Memory Management

A new host system module (still under development and yet to be validated) will emulate
memory management software. In particular, those aspects that relate to the use of main
memory to cache disk blocks in the form of �le blocks and virtual memory pages. This
will be an important module, as it will allow user's to examine interactions between host
system caching and storage subsystem design. The cache access events are already part of
the traced process event streams. The simulator currently ignores them and uses the events
that are direct e�ects, such as I/O Request events for cache �lls/ushes and sleep events
for time-critical requests. When this new module is activated, this will be reversed. The
simulator will use the cache events and ignore the events that are direct e�ects. The new
module will generate the appropriate replacements for these latter events.

A.2 Input Workloads

The simulator can take three forms of input: storage I/O request traces, system-level
traces and synthetic I/O workload descriptions. As indicated above, the form of input
determines the type of simulation used. Storage I/O request traces drive storage subsystem
simulations. System-level traces drive system-level simulations. Synthetic I/O workload
descriptions utilize components of the system-level to drive storage subsystem simulations.
Each of these forms of input workload are described below.

104

A.2.1 Storage I/O Request Traces

The simulator accepts storage I/O request traces in several formats, allowing use of
the variety of traces currently available to our research group. The trace input module
organization simpli�es the addition of new formats. The currently supported formats include:

� The format of the disk request traces captured by the UNIX SVR4 MP device driver
instrumentation described below.

� The format of the extensive disk request traces from HP-UX systems described in
[Ruemmler93].

� The format of the I/O traces from commercial VMS systems described in [Rama92].

� A simple ASCII format, used mainly for debug purposes.

Internal Storage I/O Request Format

During execution, the simulator reads request information from the trace �le and trans-
lates it to the internal request format. The simulator handles di�erences between the endian-
ness of the machine on which the raw traces were produced and that of the machine being
used for the simulation run (as indicated by a parameter �le value).

The �elds of the internal request format are:

� Arrival Time: the request's arrival time relative to the trace start time.

� Device Number: the internal logical device number to be accessed, before any logical-
to-physical device remappings. Parameter �le values indicate the mappings from trace
�le device numbers to internal device numbers.

� Starting Block Number: the internal logical starting address, in 512-byte blocks,
to be accessed. Parameter �le mapping values can also a�ect the value of this �eld.

� Size: the number of 512-byte blocks to be accessed.

� Flags: internal control bits that de�ne the type of access requested. The storage
subsystem currently uses only three of the bits, although others are used by system-
level model. One bit indicates whether the request is a read (i.e., from the storage
subsystem to host memory) or a write. Two other bits indicate whether the request
is time-critical, time-limited or time-noncritical. This information can be used by the
storage subsystem to improve overall system performance (see chapter 7).

� Main Memory Page Descriptor Address: the address of the descriptor for the
source/destination main memory page(s). The storage subsystem simulator does not
currently use this information, but the system-level model uses it in a manner similar
to most UNIX systems. Roughly speaking, this descriptor keeps track of what the page
contains, who (processes and/or I/O requests) is currently using it and how it is being
used.

105

� Access Time: the measured access time for the request. As described above, the
simulator can be con�gured to use measured access times rather than simulating the
storage subsystem activity.

� Queue Time: the measured queue time for the request. The simulator can also be
con�gured to use the measured response time (i.e., queue time plus access time) for
each request rather than simulating the storage subsystem activity.

Trace-Driven Storage Subsystem Simulation

As described in section 3.3.3, a simulation driven by a storage I/O request trace usually
emulates an open subsystem model. To accomplish this, the simulator assumes that the trace
records are stored in ascending arrival time order. The simulator reads the �rst request from
the trace during the initialization phase and adds it to the internal event queue. Handling
the request arrival consists of two tasks: (1) issue the request into the storage subsystem by
calling the appropriate device driver function, and (2) read the next request from the trace
and add it to the internal event queue. The simulator can also be con�gured to use trace
information to emulate a zero-think-time closed subsystem model. In this con�guration, the
simulator ignores arrival time information. During the initialization phase, the simulator
reads N requests (where N represents the constant request population) from the trace �le
and adds them to the internal event queue with an arrival time of zero. The second arrival-
induced task described above disappears, but request completions require additional work.
After normal completion processing, the simulator reads the next request from the trace and
adds it to the internal event queue with the current simulated time as its arrival time.

Storage I/O Trace Acquisition

To collect storage I/O request traces, I instrumented the device driver module of the
UNIX SVR4 MP operating system that executes on the experimental system described in
the next section. The instrumentation collects trace data in a dedicated kernel memory
bu�er and alters performance by less than 0.01%, assuming that the trace bu�er is not oth-
erwise available for system use. When trace collection is complete, user-level tools are used
to copy the data to a �le. The trace record for each request contains the device number, the
starting block number, the size, the ags and three high-resolution timestamps. The times-
tamping mechanism (described in appendix C) combines a high-resolution (approximately
840 nanoseconds) diagnostic counter and the low-resolution (approximately 10 milliseconds)
operating system \clock." The three timestamps provide the time that the request arrived
at the device driver, the time that the corresponding access was scheduled to the storage
subsystem hardware and the time that request completion was signaled. The di�erence be-
tween the �rst two timestamps is the queue time. The di�erence between the second and
third timestamps is the access time. By assuming that the �rst request in the trace arrives at
time zero, the simulator's arrival time �eld (see above) for a request is the di�erence between
the �rst timestamp of that request and the �rst timestamp of the �rst request in the trace.

106

Trace Length # of # of Average Percent Percent
Name (hours) Disks Requests Size Reads Seq. Reads
Cello 168 8 3,262,824 6.3 KB 46.0% 2.5%
Snake 168 3 1,133,663 6.7 KB 52.4% 18.6%
Hplajw 168 2 44,519 5.9 KB 29.3% 0.2%
Air-Rsv 9 16 2,106,704 5.1 KB 79.3% 7.8%
Sci-TS 19.6 43 5,187,693 2.4 KB 81.5% 13.8%
Order 12 22 12,236,433 3.1 KB 86.2% 7.5%
Report 8 22 8,679,057 3.9 KB 88.6% 3.8%
TPCB1 0.1 9 32,768 2.3 KB 62.7% 0.005%

MultiWisc1 0.8 17 1,048,576 4.2 KB 95.8% 7.6%

Table A.1: Basic Characteristics of the Storage I/O Request Traces.

A.2.1.1 Current Library of Storage I/O Traces

Our research group has acquired a variety of storage I/O request traces for use in trace-
driven storage subsystem simulation. Some of these traces have been generously shared
with us by industry research partners; I gratefully acknowledge Hewlett-Packard Com-
pany and Digital Equipment Corporation. Others were collected from NCR systems, us-
ing the instrumentation described above. This would not have been possible without the
support of NCR Corporation (now AT&T/GIS). While these traces are not used for the
experiments reported in this dissertation, they are a crucial component of this simulation
infrastructure and have been central to some of our previous storage subsystem research
[Ganger93a, Worthington94]. Table A.1 lists basic statistics for these traces.

Three of the traces come from Hewlett-Packard systems running HP-UX, a version of the
UNIX operating system. [Ruemmler93] describes these traces in detail. Cello comes from
a server at HP Labs used primarily for program development, simulation, mail and news.
Snake is from a �le server used primarily for compilation and editing at the University of
California, Berkeley. Hplajw comes from a personal workstation used mainly for electronic
mail and editing papers. While each of these traces is actually two months in length, a
single, week-long snapshot (5/30/92 to 6/6/92) is frequently used.

Four of the traces come from commercial VAXTM systems running the VMSTM operating
system. [Rama92] describes these traces in detail. Air-Rsv is from a transaction processing
environment in which approximately 500 travel agents made airline and hotel reservations.
Sci-TS is from a scienti�c time-sharing environment in which analytic modeling software and
graphical and statistical packages were used. Order and Report are from a machine parts
distribution company. Order was collected during daytime hours, representing an order entry
and processing workload. Report was collected at night, capturing a batch environment in
which reports of the day's activities were generated.

Two sets of traces come fromNCR systems executing database benchmarks with OracleTM

database software. These traces were captured using the instrumentation described above
and are described more thoroughly in [Ganger93a]. Several traces, named TPCB#, were cap-

107

tured on a workstation executing the TPC-B benchmark [TPCB90]. Other traces, named
MultiWisc#, were captured on an 8-processor database server executing a multiuser database
benchmark based on the Wisconsin benchmark [Gray91]. Several traces from each work-
load/con�guration are kept because each trace is very short (6-50 minutes).

A.2.2 System-Level Traces

A system-level trace, as fed into the simulator, consists of three �les:

1. <tracename>.proc: This �le contains the process event sequences for all processes
that were active at any point during the trace. Each event consists of a computation
time, an event type and (optionally) additional event-speci�c �elds.

2. <tracename>.int: This �le contains the external interrupts, including the handler
event sequences, in ascending arrival time order. Currently this �le also contains the
traced clock interrupts. Each entry contains the interrupt arrival time, the interrupt
vector and the number of events in the interrupt handler. Interrupt handler events use
the same format as process events.

3. <tracename>.init: This �le contains two lists that are used to initialize simula-
tor state. The �rst list identi�es and de�nes all processes that were active during
the trace. Each entry consists of the process ID number (PID), the index into the
<tracename>.proc �le and the number of events in the process's event sequence. The
second list de�nes the initial state of all processes present in the system when the
trace began (whether active or sleeping). Processes created during trace capture are
not present in the second list. Each entry contains the PID, the parent process's
PID and information related to process control, including the process's initial state
(i.e., sleeping, running or waiting for the CPU).

Trace-Driven System-Level Simulation

As indicated above, the simulator emulates a system-level model when driven by system-
level traces. During the initialization phase, the <tracename>.init �le is used to establish
the initial state of the process control module and the CPU module. The �rst event of each
process that starts out executing on a CPU is read from the appropriate location in the
<tracename>.proc �le. CPUs that do not start out with an executing process begin in the
idle loop. CPUs can not start out executing an interrupt handler. When a process event
computation time reaches zero, the event \occurs" and the simulator performs two tasks:
(1) updates the simulator state appropriately, and (2) reads the next event from the process
trace �le, unless the �rst step added new events to the process's event stream. When a
context switch event \occurs," a new process \executes" on the CPU, reading events from
the process trace �le as needed. Also during the initialization phase, the �rst interrupt entry
is read from the <tracename>.int �le and added to the internal event queue. When an
interrupt arrives, it takes over the CPU and \executes" its handler event sequence. At the
same time, the next interrupt entry is read and added to the internal event queue.

108

System-Level Trace Acquisition

To collect traces of system activity, I instrumented the UNIX SVR4 MP operating system
that executes on the experimental system described in the next section. The instrumentation
collects trace data in a dedicated kernel memory bu�er and alters performance by less than
0.1%, assuming that the trace bu�er is not otherwise available for system use. When trace
collection is complete, user-level tools are used to copy the data to a �le. The trace record
for each event contains the event type, the CPU number, a high-resolution timestamp and
optional event-speci�c information. The timestampingmechanism (described in appendix C)
combines a high-resolution (approximately 840 nanoseconds) diagnostic counter and the low-
resolution (approximately 10 milliseconds) operating system \clock."6

A post-processing tool translates the traces of system activity into system-level traces that
can be used with the simulator. To enable this, and also to provide con�guration information,
the traces capture several auxiliary system events (e.g., context switches and storage I/O
interrupts). Also, when tracing begins, the initial process control state is copied into the trace
bu�er. The process or interrupt handler to which each traced event belongs can be computed
from this initial state and the traced context switches, interrupt arrivals/completions and
CPU numbers. The post-processing tool passes once through the trace and produces seven
�les:

1. <tracename>.proc: as described above.

2. <tracename>.int: as described above.

3. <tracename>.init: as described above.

4. <tracename>.stats: system usage/responsiveness statistics.

5. <tracename>.valid: ASCII version of traced system event sequence.

6. <tracename>.ascii: storage I/O request trace in the ASCII input format supported
by the simulator.

7. <tracename>.io: trace of I/O initiations and interrupts, which is used for validation
purposes only.

6The per-event timestamp information consists only of the diagnostic counter value. The �rst traced
clock interrupt event captures the value of the operating system clock, which is incremented once for each
clock interrupt. Since every clock interrupt is captured in the trace, the operating system clock value for
any traced event can be computed. This approach increases the trace information that can be captured in
a given quantity of bu�er space.

109

A.2.2.1 Current Library of System-Level Traces

This information can be found in section 5.2.

A.2.3 Synthetic I/O Workload Descriptions

The simulator provides simple synthetic I/O request generators that can be used to drive
storage subsystem simulations. The parameter �le speci�es the number of generators and the
characteristics of each. The synthetic generators use the system-level model. Each generator
is a process that executes within the system-level model, issuing storage I/O requests and,
when appropriate, waiting for them to complete. The simulator's synthetic generators are
currently con�gured with the following information:

� The number and e�ective capacity of the storage devices that can be accessed.

� The blocking factor | all request starting addresses and sizes must be a multiple of
the blocking factor.

� Probabilities that a request is sequential or \local" to the last one issued by the gener-
ator process and a random variable de�nition7 for the distance of a local request from
the last starting address. The sum of the two probabilities must be less than or equal
to one. Generating a starting address begins with determining whether it should be
sequential, local or unrelated to the previous request. A sequential request starts at the
address immediately following the last block previously accessed. A local request starts
some distance, taken from the random variable de�nition mentioned above, from the
previous starting address. An unrelated request randomly selects a device and starting
address from the available storage space.

� A random variable de�nition for request sizes. For local and unrelated requests, the
size is taken from this random variable de�nition. For sequential requests, the size is
the same as the previous request.

� The probability that a request is a read (otherwise, it is a write).

� Random variable de�nitions for inter-request computation times. There are separate
such de�nitions for sequential, local and unrelated requests.

� Probabilities that a request is time-critical or time-limited and a random variable
de�nition for time limits. The sum of these probabilities must be less than or equal
to one. Each request is time-critical, time-limited or time-noncritical (if neither of the
others). The generated time limit represents the computation time before the generator
process waits for the request to complete, which may di�er from the resulting time limit
due to CPU contention.

7In the simulator, a random variable de�nition consists of a distribution function (the type plus con-
�guration values). The synthetic generator module currently supports �ve distribution functions: uniform,
normal, exponential, poisson and two-step. The con�guration values required depend upon the distribution
function (e.g., the endpoints of a uniform distribution or the mean of an exponential distribution).

110

These generators can be con�gured to emulate the workload generators used in open and
closed subsystemmodels, as well as a wide range of other options. An open subsystem model
is achieved by setting the probabilities of time-critical and time-limited requests both to zero
and con�guring the system-level model to have the same number of processors as there are
generators. The inter-request computation times will be thus be the inter-arrival times (per
generator). A closed subsystem model is achieved by setting to one the probability that a
request is time-critical. Setting the inter-request computation times to zero eliminates think
times.

111

APPENDIX B

Disk Drive Module Implementation Details

Secondary storage performance is often dominated by disk drive behavior. This appendix
describes the simulator's disk drive module, which accurately models mechanical positioning
latencies, zoned recording, spare regions, defect slipping and reallocation, on-board bu�ers
and caches, prefetch, fast write, bus delays, command queueing and request processing over-
heads. The �rst section of this appendix describes modern disk drives, providing both a
short tutorial on the subject and insights into how the various components of a disk can
be modeled. The second section describes the organization and operation of the disk drive
module.

B.1 Modern Disk Drives

This section describes the main performance characteristics of modern disk drives. In
many cases, approaches to modeling speci�c disk attributes are also discussed. The de-
scription focuses on common characteristics of disk drives conforming to the popular SCSI
bus protocol [SCSI93]. Much of the discussion also applies to drives using other peripheral
interfaces.

A disk drive can be viewed as two distinct parts, one physical and one logical. The
physical part consists of the media recording and accessing components. The logical part
consists of the on-board control logic that interprets requests, manages internal resources
and improves the e�ciency of media access.

B.1.1 Media Recording and Accessing

Mechanical Components

A disk drive (see �gure B.1) consists of a set of platters rotating on a common axis. Both
surfaces of each platter are coated with magnetic media. Each surface has an associated
read/write head. In most drives, only one read/write head is active at any given time.
The heads are mounted on disk arms that are ganged together on a common actuator.

112

Upper Surface
Platter

Lower Surface

Read/Write Head

Cylinder

Track

Sector

Arm

Actuator

Figure B.1: Disk Drive Internals.

Data Layout

The minimum unit of data storage is a sector, which typically holds 512 bytes of data.
Sectors are arranged in concentric circles, called tracks, on each surface.1 A cylinder is a
set of tracks (one from each surface) equidistant2 from the center of the disk.

To exploit the larger circumference of outer tracks, a modern disk usually partitions its
set of cylinders into multiple zones, or bands. The number of sectors per track increases
with the radius of the tracks in the zone (see �gure B.2). This increases both the capacity per
unit volume and the mean and peak media transfer rates. However, it requires more powerful
electronics to manage the varied recording/accessing activity. Also, additional on-board logic
resources are needed to handle the more complex data layout.

Read/Write Head Positioning

Mechanical positioning delays often dominate disk request service times. To access a
speci�c media location, a disk actuator must �rst seek to the target cylinder and activate
the appropriate read/write head, possibly requiring a head switch. The read/write head
then waits for the target sectors to rotate into position. After this rotational latency, the
media transfer occurs as the target sectors rotate under the read/write head. Additional
mechanical delays (e.g., head switches and/or seeks) result when multiple tracks or cylinders
must be accessed.

1This data layout di�ers from the spiral layout used with compact disks and vinyl records.
2\Equidistant," in this case, refers to the per-surface track numbering. Thermal variations and other

physical phenomenon may cause the Nth track on two surfaces to not be exactly the same distance from the
center.

113

Figure B.2: Top View of a Disk Surface with 3 Zones. The innermost and outermost zone each

contain 2 cylinders. The middle zone contains three.

A seek is comprised of four phases: (1) acceleration, (2) coast, (3) deceleration, and
(4) settle. The disk arm accelerates until either the maximum velocity is reached or half of
the seek distance has been traversed. If necessary, the disk arm coasts for some distance at
its maximum velocity. The disk arm then decelerates, coming to rest near the destination
track. Finally, the actuator electronics make �ne adjustments to the disk arm position to
settle precisely onto the track.3 Very short seeks may be handled entirely by the settling
electronics, without utilizing the full power of the actuator motor. Before writing data to
the media, the electronics will often take additional write settle time to more accurately
position to the center of the track. Data can be read with the read/write head slightly
misaligned but writing data o�-center invites cross-talk between tracks, complicating or
even preventing later access.

A seek curve maps seek distances to actuator positioning times. In reality, the seek
time between two tracks is a complex function of many variables, including the positions
of the cylinders (i.e., their distances from the spindle), the direction of the seek (inward
or outward), various environmental factors (e.g., vibration and thermal variation), the type
of servo information (e.g., dedicated, embedded or hybrid), the mass and exibility of the
head/arm assembly and the current available to the actuator. However, a single curve can
e�ectively reect mean values for seek times. Typical seek curves (e.g., see �gure B.3) consist
of an irregular initial region (caused by variations in how the actuator electronics optimize
speci�c seek distances), a middle region approximated by a square root function (caused by
the acceleration/deceleration phases), and a large linear region for long seeks. A simulator
can use a seek curve directly or in the form of some �tted function. The additional write
settle time is added when appropriate.

A head switch consists of electronically disabling the input/output signals of the active
read/write head, enabling those of another and settling onto the new track. The settling is
required because the radii of the two corresponding tracks may not match exactly (e.g., due

3As the platters rotate, the same track-following electronics are used to constantly �ne-tune the read/write
head position.

114

|
0

|
250

|
500

|
750

|
1000

|
1250

|
1500

|
1750

|
2000

|0.0

|5.0

|10.0

|15.0

|20.0

 Seek Distance (cylinders)

 S
ee

k
T

im
e

(m
s)

(a) Full seek curve

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

 Seek Distance (cylinders)

 S
ee

k
T

im
e

(m
s)

(b) Expanded view of short seeks

Figure B.3: Measured seek curve for a Seagate ST41601N disk drive.

115

CPU RAM
Mechanism

Control
ASIC(s)

Bus
Interface
ASIC(s)

Peripheral

Bus

Mechanism

Electronics

Figure B.4: On-Board Disk Drive Logic.

to thermal variation). The head switch time depends largely on the type of servo information
utilized by the drive. Also, write settle time is required before writing data. When both
a seek and a head switch are necessary, they usually occur concurrently. So, the combined
delay is the maximum of the two.

The rotation speed, usually measured in rotations per minute (RPM), directly a�ects both
the rotational latency and the media transfer rate. Generally, disk speci�cations indicate
that the rotation speed varies slightly (e.g., �0.5%) both among disks in a line of drives and
over time for a given disk. Both forms of variation are generally small enough that they
can be safely ignored in a disk model. However, the initial rotational o�set of each drive in
a simulation should be determined separately (e.g., by a uniform distribution), unless the
the drives are intended to be rotationally synchronized (e.g., synchronous disk interleaving
[Kim86]).

B.1.2 On-Board Control Logic

Figure B.4 shows the main on-board logic components used in modern disk drives. The
CPU, which is often an embedded version of a previous generation commoditymicroprocessor
(e.g., Intel 80386 or Motorola 68030), executes �rmware to manage the disk's resources and
handle requests. The �rmware is often a simple operating system that provides process
structures, interrupt service routines and simple memory and lock management. Like main
memory in a computer system, the on-board memory is logically (and sometimes physically)
partitioned into working space for the �rmware and a staging area for the disk blocks moving
to/from the media. Mechanism control ASIC(s) interact directly with the mechanical and
magnetic disk components discussed above. Bus interface ASIC(s) interact directly with
the peripheral bus, handling the details of arbitration, signal generation and interpretation,
parity generation/checking, and so forth. The on-board logic components communicate via
some interconnection, which is not necessarily a common bus.

The �rmware executing on the CPU manages the other components. The various policies
and functions of the �rmware are discussed below.

116

External Interface Management

Most modern disk drives conform to a standardized, high-level peripheral bus4 protocol
(e.g., SCSI or IPI). A host or intermediate controller issues a request to a disk drive in terms
of a starting logical block number (LBN) and a total request size. The details of the
subsequent media access are hidden from the host or controller, o�oading the management
overhead associated with actual data storage.

The bus transfer rate and bus control delays are functions of the disk drive, the inter-
connect and the other participant in the communication (e.g., intermediate controller). A
detailed disk performance model should account for the timings of control message exchange
and data transfers to/from external components. This requires that the interconnect and
other subsystem components be modeled appropriately.

From a performance standpoint, the four main bus interactions are request arrival, request
completion, data transfer, and disconnect/reconnect. To issue a request to a disk drive, the
controller establishes a connection to the disk and sends the appropriate message. When a
request has been serviced, the disk establishes a connection and informs the controller. When
the disk is ready, it initiates the data transfer to/from the controller.5 Disconnect/reconnect
actions can dramatically improve the e�ective utilization of a shared interconnect. With
the SCSI protocol, components arbitrate for bus ownership and must explicitly give it up.
Without disconnect/reconnect, the bus would be held for the duration of each request's
service, preventing concurrent activity by other disks on the same bus. When a disk does not
need the bus (e.g., during mechanical positioning) it can disconnect from the bus, allowing
other components to use it. The disk later reconnects (i.e., re-arbitrates for bus ownership
and re-establishes communication) when it needs to communicate with the controller.

In normal circumstances, a disk that has disconnected will reconnect for three reasons:
(1) An outstanding write request has been serviced and the disk needs to report completion.
(2) The disk is ready to transfer read request data to the controller. (3) The disk is ready
to receive write request data from the controller. For SCSI disk drives, the decision as to
when a disk is \ready" for bus data transfers (the latter two reasons above) is governed
by two watermark values. The Bu�er Full Ratio determines how much bu�ered (cached)
read data should be available before reconnecting. The Bu�er Empty Ratio determines how
much dirty write data should remain before reconnecting (if additional write data need to
be transferred). These ratios are usually speci�ed as fractions of either the cache segment
size (see below) or the request size. Poor settings can hurt performance by causing too many
disconnect/reconnect cycles (there is overhead involved with each) or reducing the overlap
between bus and media transfers. Some disks dynamically adjust the bu�er full and empty
ratios based on observed media and bus rates to avoid these problems.

4The peripheral interconnect may not necessarily be a shared bus. For example, some computer systems
employ point-to-point serial connections. The physical aspects of the interconnect are not particularly
important to performance modeling of disk drives, so long as the various delays and transfer rates are
properly emulated by the bus module. The topology of the interconnect is an important but external issue
(from the disk drive's point of view).

5Usually, the data are transferred in logically ascending order. However, some protocols allow blocks of
data to be transferred in non-ascending order when it is more convenient for the disk.

117

Request Processing

The request processing �rmware for a modern disk drive is large and complex. From
a performance modeling standpoint, however, the two main aspects of this �rmware are
the policies and the processing times. The various policies are described under the other
headings in this subsection. The request processing times can be an important part of the
service time, even though they are generally dominated by mechanical positioning delays.

Initial request processing overheads (i.e., when the request arrives at the disk) can depend
on several factors, including the request type (e.g., read or write), the request size, the state of
the on-board cache (e.g., hit or miss) and the immediately previous request's characteristics6.
Much of this initial overhead is visible externally because the controller passes bus ownership
(implicitly) to the disk and the disk does not respond (e.g., by disconnecting or transferring
data) until after some initial request processing. If the request is a read hit or a write, the data
will usually be transferred to/from the controller immediately (i.e., without disconnecting).
There are also externally visible processing delays associated with disconnect, reconnect
and completion actions. Externally visible delays are particularly important when the bus is
shared by more than one disk, since bus contention may occur. Request processing overheads
that are not externally visible are also important, but can often be grouped with other service
time components, such as seek times.

Logical-to-Physical Data Mappings

The traditional mapping of logical block numbers to physical media locations (i.e., cylin-
der, surface and sector) starts with logical block zero on the outermost (or innermost) cylin-
der. Logical block numbers are assigned around each track of the cylinder before moving
to the next adjoining cylinder. This process repeats until the entire disk's capacity has
been mapped. Several policies used in modern disk drive �rmware disrupt the LBN-to-
PBN mapping by withholding parts of the physical media for other purposes or shifting the
mapping for performance purposes.

Many disk drives reserve a small fraction of the storage capacity for private use by the
�rmware. Generally, this reserved space is located at the beginning or end of a zone.

Because switching between surfaces and seeking between adjacent cylinders requires non-
zero time, the �rst logical block of each track or cylinder is o�set from the �rst logical block
of the previous track or cylinder. This prevents a request that crosses a track or cylinder
boundary from \just missing" the next logical block and waiting almost a full rotation for
it to come around again. The track skew is the o�set used when moving to the next track
within a cylinder. The cylinder skew is the o�set used when moving from the last track of
one cylinder to the �rst track of the next. These values are speci�ed as an integral number
of sectors and therefore di�er from zone to zone.

Disk drives can survive the loss of hundred of sectors or tracks to media corruption.
In fact, a new drive usually contains a list of defects identi�ed at the factory. Defects
grown during a disk's lifetime are added to this list and removed from the LBN-to-PBN
mapping. The �rmware reserves spare regions at the end of certain tracks, cylinders or

6From empirical observation, it appears that disk drive �rmware will sometimes \prime" itself to reduce
command processing delays for common sequences of request types (e.g., sequential reads).

118

zones to replace defective media locations. The defect management �rmware compensates for
corrupt media location in one of two ways, slipping or relocation. Sector or track slipping
occurs only during disk format. In the case of sector slipping, the format process skips each
defective sector and adjusts the LBN-to-PBN mapping so that the sectors on either side are
logically sequential. Track slipping follows the same routine, except that an entire track is
skipped if it contains any defective media. With sector or track slipping, each defect changes
the mapping of all subsequent logical blocks up to the next spare region. Sector or track
reallocation occurs when a disk discovers defective media during normal use. The defect
management �rmware immediately remaps the corresponding LBN(s) to a spare region and
directs subsequent accesses to the new location(s).

Because several layout and mapping characteristics vary from zone to zone, it is useful
to partition the LBN-to-PBN mapping process into two parts. First, the correct zone is
identi�ed. Then, the physical location within the zone is identi�ed. The �rst step can be
realized with knowledge of the �rst logical block number of each zone. The second requires
several zone-speci�c values, including the �rst cylinder number, the number of sectors per
track, the track and cylinder skews, the amount and location of the reserved space and
the physical sector that is assigned the �rst logical block number7. Given these values and
information about spare regions and defect management, the mapping follows the traditional
approach.

On-Board Cache

As mentioned above, part of the on-board memory serves as a staging area for disk blocks.
In modern disk drives, this staging area acts both as a speed-matching bu�er (between the
bus and the media) and as a disk block cache. As a speed-matching bu�er, the memory
allows the �rmware to overlap the transfers over the bus and to or from the media. As a
disk block cache, the memory can improve e�ective disk service times. A request that can
be satis�ed by the cache avoids lengthy mechanical positioning delays. The service time
for such a request can be more than an order of magnitude less than if media access were
required. Modern disk drives use a wide variety of cache management policies, many of
which are described below. Although the policies used by a given disk are rarely outlined
in publically available speci�cations, there are approaches to identifying them empirically
[Worthington95].

Most disks partition the available memory into multiple cache lines, referred to as seg-
ments, to better service multiple streams of sequential requests. Commonly, each segment
is the same size. In some disks, this size matches the number of sectors per track. In most
disks, however, there is no such relationship. The most aggressive implementations analyze
request patterns and dynamically modify the number of cache segments (and thereby the
segment size) to improve hit rates.

During service, each request is attached to a cache segment. When a new request arrives,
the cache is scanned for any overlap. For read requests, an overlap indicates a partial or full

7In some disk drives, the physical sector that is assigned the �rst logical block varies from zone to zone
in non-intuitive ways. Certainly, a zone skew would be useful for requests that cross zone boundaries,
particularly when there is reserved space at the beginning or end of adjacent zones. Empirically, however,
these values do not always correlate with the inter-zone seek times.

119

hit. For a full read hit, the data blocks are simply transferred from the cache to the controller.
For a partial read hit, the �rmware may utilize the data sectors or ignore them. For write
requests, overlapping data blocks (possibly only the overlaps, possibly entire segments) are
invalidated in the cache. The exception to this occurs with write-back caches (see below). For
a cache miss, the �rmware selects one of the segments, invalidate its contents and attaches
it to the request. The segment replacement policy is often Least-Recently-Used. Some disks
only allow write requests to use a subset of the segments and may prevent read requests
from using that subset.

To improve the cache hit rate for sequential access patterns, most modern disk drives
prefetch data after read requests. Speci�cally, the �rmware continues reading sequentially
numbered media blocks beyond the end of a read request. There are several possible stop
conditions. Most disks discontinue prefetch to service a new request arrival or another
pending request (for command queued disks; see below). Although the prefetch may be
stopped when it reaches the end of a track or cylinder, most disks aggressively prefetch
beyond these boundaries even though a new request might have to wait for the head switch
or seek to complete. Some disks are con�gured with a maximum prefetch size. Finally,
prefetch stops when the cache segment is full.

Disks with read-on-arrival and/or write-on-arrival capability can begin transferring
data from or to the media as soon as any seek or head switch activity completes. That is,
media sectors are transferred from or to the media in the order that the read/write head
encounters them rather than in strictly ascending LBN order. This essentially eliminates
rotational latency for full track requests,8 but is less e�ective for smaller or larger requests.
Read-on-arrival can also increase the e�ectiveness of prefetch for heavy workloads. Most
modern disk drives do not currently support these options.

Some disks support the ability to signal write request completion as soon as all data blocks
reach the on-board cache. The �rmware moves the data from the cache to the media at some
later point. Because the on-board memory of most disk drives is volatile (i.e., the contents
are lost whenever power fails), such fast writes reduce the reliability of disk drive storage.9.
Modern disks can employ three options to reduce the probability of data corruption due to
improper update ordering.10 One option is to disable fast write entirely. A second option,
used in HP-UX [Ruemmler93], is to selectively disable fast write for each request that may
require ordering with respect to a later request. This requires that the software executing
on host systems recognizes that a disk uses fast write and tags each request appropriately.
A third option is to always perform fast writes in arrival order. Many disks do not use fast
write for a second consecutive write request until the �rst's data have been written to the
disk, unless the new request is immediately sequential. If it is sequential, then it is combined
with the previous request and reported as complete.

8For this reason, read-on-arrival and write-on-arrival are sometimes referred to as zero-latency read and
write.

9In the near future, disk drives are likely to be equipped with non-volatile cache memory to eliminate
this problem.

10Some applications and system software components rely on careful ordering of permanent storage updates
to protect the data integrity. For example, databases add entries to a write-ahead log to achieve an atomic
update to multiple records. Also, many �le systems require ordered updates to maintain metadata integrity
[Ganger94].

120

Request
Processing
and Control

Data
Cache/Buffer

Mechanical
Positioning
and Media
Transfer

Data Layout
and

LBN-to-PBN
Mapping

Bus
Interface

Disk Drive Module

Bus Module

General Queue/Scheduler Module

Figure B.5: Disk Drive Module.

Command Queueing

Most modern disk drives support command queueing, whereby some number
(e.g., 2-64) of requests can be outstanding at a time. Command queueing has several ben-
e�ts. First, an on-board scheduler can have an advantage over external schedulers because
it generally has more accurate information about the current read/write head position and
various positioning delays. The SCSI protocol provides for optional ordering restrictions,
such as Head-Of-Queue and Ordered requests [SCSI93]. Second, the �rmware can exploit
inter-request concurrency by decoupling the command processing, bus transfer, and me-
dia access components of request service. Of course, there are dependencies between these
components (e.g., write data cannot be transferred to the media before it is received from
the host or controller), but the disk can still exploit concurrency between separate requests
[Worthington95a].

B.2 Disk Drive Module

The disk drive module models all of the aspects of modern disk drives described in sec-
tion B.1. It is organized as �ve submodules (see �gure B.5) and uses instances of the general
queue/scheduler module (see section A.1.2). This section describes the �ve submodules and
their interactions.

121

Request Processing and Control

This submodule controls the ow of work in the disk module. It uses the other four
submodules to accomplish this task. All of the disk service time components are decided
here and performed using the general infrastructure described in section A.1.1. Any request
concurrency (e.g., overlapping bus and media transfers) is also determined and handled by
this submodule. Instances of the general queue/scheduler module are used to maintain the
list of outstanding requests and make scheduling decisions. Most of the policies, for both
this submodule and the instances of the queue/scheduler module, are con�gured by input
parameters.

Data Cache/Bu�er

This submodule maintains the state of the on-board cache segment(s). The control
submodule uses it to determine whether requests hit (partially or entirely) or miss in the
cache and to select a segment for staging a request's data. The control submodule makes all
decisions regarding how to deal with cache hits and transfers into and out of a segment, simply
informing the cache/bu�er submodule when the contents change. The segment selection and
replacement policies are con�gured by initialization parameters.

Mechanical Positioning and Media Transfer

This submodule maintains state regarding the position of the active read/write head.
Also, the control submodule uses this submodule to determine how long any given mechanical
positioning delay or media transfer will take. When appropriate, the control submodule
informs this submodule that the current position should be updated. The current position
state consists of the current cylinder, the current surface, the last known rotational o�set and
the time at which the o�set held. This state is su�cient to determine the exact read/write
head position at any point in simulated time (assuming that the rotation speed is constant).
The rotation speed and various mechanical delay components are all input parameters.

Data Layout and LBN-to-PBN Mapping

This submodule simply translates logical block numbers to physical media locations (or
the reverse). All of the various data layout and mapping characteristics are input parameters.

Bus Interface

This submodule interacts with the bus module. The control submodule uses this sub-
module to communicate with external components. The control submodule determines when
ownership should be established/relinquished and when/which messages and data should be
transferred.

122

APPENDIX C

A High-Resolution Timestamp Mechanism

E�ective measurement of computer system activity, such as tracing disk requests and/or
other system software events, requires long-duration, high-resolution timestamps. Duration
refers to the maximum di�erence between two timestamps that can be e�ectively measured
without external assistance. Resolution refers to the smallest granularity di�erence between
any two timestamps. This appendix describes a mechanism for constructing sub-microsecond
resolution timestamps on NCR System 3000 Level 3, 4 and 5 machines. This timestamp-
ing mechanism is an integral component of the system instrumentation described in sec-
tions A.2.1 and A.2.2. It has been implemented and tested on both a desktop NCR 3433
workstation and an 8-processor NCR 3550 system.

Each timestamp consists of two values, which are sampled copies of the internal sys-
tem software clock and a small diagnostic counter. The former provides long-duration (over
a year) time measurements at a granularity of approximately 10 milliseconds. The latter
provides short-duration (about 55 milliseconds) time measurements at a granularity of ap-
proximately 850 nanoseconds. The two values are combined to achieve both long-duration
and high-resolution.

This appendix is organized as follows. The next section describes the two timestamp
components in more detail, including how they are initialized and updated. Section C.2
describes how the two timestamp components are combined to determine the relative time
between any pair of timestamps.

C.1 Timestamp Components

C.1.1 System Software Clock

The system software maintains a rough view of time, relative to system initialization,
via a single 32-bit unsigned integer referred to as the system software clock. This integer
is set to zero during system initialization and is incremented once for each clock interrupt
(i.e., during the clock interrupt service routine). Clock interrupts are generated by logic
attached to the local peripheral bus (LPB) [NCR91]. The relevant logic contains two 16-bit
counters (a working counter and a restart value), a high-frequency (1.1925 MHz) oscillating
clock and some control bits. The control bits are set so that the working counter decrements
once per clock cycle. When the working counter's value reaches zero, a clock interrupt is

123

generated, the working counter is reset to the restart value and the process repeats. The
default restart value for these NCR systems is 11932. With this value, a clock interrupt is
generated approximately once every 10 ms. So, the system software clock's duration exceeds
a year with a resolution of 10 ms.

While it would be convenient to realize timestamps by coupling the system software
clock and the counter that generates the clock interrupts, it is not feasible in these systems.
Accurate timestamps would require that resetting the counter and incrementing the system
software clock be an e�ectively atomic action. That is, the two must occur atomically or
the system software must know (when the timestamp is taken) whether or not the latter
has occurred for the most recent instance of the former. The asynchronous operation of the
counter makes this di�cult. The architectures of the systems in question make it impossible.
It is not possible to determine, from within the system software, whether or not a clock
interrupt is pending. Further, in the multi-processor systems, it is not possible to determine
whether or not an executing clock interrupt service routine has incremented the system
software clock yet. These two factors would open the door for large (10 millisecond) timing
errors.

C.1.2 Diagnostic Counter

The LPB logic discussed above includes three counters in addition to the one that gener-
ates clock interrupts. Three of the counters are clocked by the same high-frequency oscillator.
The fourth, called the watchdog timer, uses the previously described counter's output as a
clock signal that is gated by the clock interrupt pending bit. So, this counter is decremented
only when a second clock interrupt is generated before the previous one has been serviced.
When the working value reaches zero, a non-maskable interrupt is generated, forcing the
system software to recognize that interrupts have been masked for too long. One of the
additional counters controls the speaker tone generator. The other is used by the system
diagnostic routines, but is not otherwise utilized during normal system operation.

This diagnostic counter can be safely used without interfering with system functions.
Its behavior and construction are similar to those described above for the clock interrupt
generator. The relevant logic contains a 16-bit working counter, a restart value and control
bits. For timing purposes, we modi�ed the system software to initialize the control bits and
the restart value. Thereafter, the working counter repeatedly cycles through its full range,
from 65535 to 0, without generating any interrupts. When the value reaches zero, the restart
value (65535) is immediately reloaded. The duration of the counter is therefore 65535 cycles
of the clock, or approximately 55 milliseconds, and the resolution is the inverse of the clock
frequency (i.e., 838.574 nanoseconds).

C.2 Timestamp Conversion

A single timestamp consists of sampled values of the system software clock and the
diagnostic counter. Both of these system components are independent of wall-clock time in
that they are reset to static values during system initialization. Therefore, a single timestamp
provides no useful information. However, the elapsed time between any two timestamps can

124

be determined by manipulating the corresponding values, combining the best quality of each
component (i.e., duration and resolution). In particular, the diagnostic counter values are
used to identify the �ne-grain di�erence between the timestamps. The system software clock
values are used to determine how many times the diagnostic counter wrapped between the
two timestamps. The following pseudo-code demonstrates the process:

int �nedi� = timestamp1.hires � timestamp2.hires
int loresdi� = timestamp2.lores � timestamp1.lores
int turnovers = round(((loresdi� � 11932) � �nedi�) � 65535)
int hiresticks = �nedi� + (turnovers � 65535)
oat millisecs = hiresticks � 0.838574

This combination of a long-duration, low-resolution values and short-duration, high-
resolution values succeeds without error so long as the duration of the latter more than
doubles the maximum error in the former. The resolution of the system software clock
places a lower bound on the corresponding error (i.e., �10 milliseconds). In addition, a clock
interrupt can wait for service after it is generated. This occurs when the system software
masks interrupts while executing critical sections of code. However, such critical sections
are kept small to prevent excessive delays in handling interrupts. Also, the watchdog timer
described above prevents lengthy delays in handling clock interrupts. Theoretically, a clock
interrupt could be pending until the generation of the next. In practice, they are serviced
soon after generation. However, the theoretical maximumdelay means that di�erences in the
system software clock could underpredict elapsed times by slightly more than 20 milliseconds.
The diagnostic counter's duration of 55 millisecondsmore than doubles this maximumerror.1

1The timestamping mechanism requires that every clock interrupt be serviced by the system software.
That is, no clock interrupts may be dropped. The small size of critical sections and the watchdog timer
guarantee this condition.

BIBLIOGRAPHY

[Abbott90] R. Abbott, H. Garcia-Molina, \Scheduling I/O Request with Deadlines: a Per-
formance Evaluation", IEEE Real-Time Systems Symposium, 1990, pp. 113{124.

[Amdahl67] G. Amdahl, \Validity of the single processor approach to achieving large scale
computing capabilities", AFIPS Spring Joint Computing Conference, Vol. 30, April
1967, pp. 483{485.

[Baker91] M. Baker, J. Hartman, M. Kupfer, K. Shirri�, J. Ousterhout, \Measurements of
a Distributed File System", ACM Symposium on Operating Systems Principles, 1991,
pp. 198{212.

[Bennett94] S. Bennett, D. Melski, \A Class-Based Disk Scheduling Algorithms: Implemen-
tation and Performance Study", Unpublished Report, University of Wisconsin, Madison,
1994.

[Biswas93] P. Biswas, K.K. Ramakrishnan, D. Towsley, \Trace Driven Analysis of Write
Caching Policies for Disks", ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, May 1993, pp. 13{23.

[Bitton88] D. Bitton, J. Gray, \Disk Shadowing", International Conference on Very Large
Data Bases, September 1988, pp. 331{338.

[Bitton89] D. Bitton, \Arm Scheduling in Shadowed Disks", IEEE COMPCON, Spring 1989,
pp. 132{136.

[Brandwajn94] A. Brandwajn, D. Levy, \A Study of Cached RAID-5 I/O", Computer Mea-
surement Group (CMG) Conference, 1994, pp. 393{403.

[Busch85] J. Busch, A. Kondo�, \Disc Caching in the System Processing Units of the HP
3000 Family of Computers", HP Journal, Vol. 36, No. 2, February 1985, pp. 21{39.

[Cao93] P. Cao, S. Lim, S. Venkataraman, J. Wilkes, \The TickerTAIP Parallel RAID
Architecture", IEEE International Symposium on Computer Architecture, May 1993,
pp. 52{63.

[Cao95] P. Cao, E. Felton, A. Karlin, K. Li, \A Study of Integrated Prefetching and Caching
Strategies", ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, May 1995, pp. 188-197.

125

126

[Carey89] M. Carey, R. Jauhari, M. Livny, \Priority in DBMS Resource Scheduling", Inter-
national Conference on Very Large Data Bases, 1989, pp. 397{410.

[Carson92] S. Carson, S. Setia, \Analysis of the Periodic Update Write Policy for Disk
Cache", IEEE Transactions on Software Engineering, Vol. 18, No. 1, January 1992,
pp. 44{54.

[Chen90] P. Chen, D. Patterson, \Maximizing throughput in a striped disk array", IEEE
International Symposium on Computer Architecture, 1990, pp. 322{331.

[Chen90a] P. Chen, G. Gibson, R. Katz, D. Patterson, \An Evaluation of Redundant Arrays
of Disks using an Amdahl 5890", ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, May 1990, pp. 74{85.

[Chen91] S. Chen, D. Towsley, \A Queueing Analysis of RAID Architectures", University
of Massachusetts, Amherst, COINS Technical Report 91{71, September 1991.

[Chen91a] S. Chen, J. Kurose, J. Stankovic, D. Towsley, \Performance Evaluation of Two
New Disk Request Scheduling Algorithms for Real-Time Systems", Journal of Real-
Time Systems, Vol. 3, 1991, pp. 307{336.

[Chen93a] P. Chen, E. Lee, A. Drapeau, K. Lutz, E. Miller, S. Seshan, K. Sherri�, D. Pat-
terson, R. Katz, \Performance and Design Evaluation of the RAID-II Storage Server",
International Parallel Processing Symposium, Workshop on I/O, 1993.

[Chen93b] P. Chen, E. Lee, G. Gibson, R. Katz, D. Patterson, \RAID: High-Performance,
Reliable Secondary Storage", ACM Computing Surveys, Vol. 26, No. 2, June 1994,
pp. 145{188.

[Chen95] P. Chen, E. Lee, \Striping in a RAID Level 5 Disk Array", ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, May
1995, pp. 136{145.

[Chervenak91] A.L. Chervenak, R. Katz, \Performance of a RAID Prototype", ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer Sys-
tems, May 1991, pp. 188{197.

[Chiu78] W. Chiu, W. Chow, \A PerformanceModel of MVS", IBM System Journal, Vol. 17,
No. 4, 1978, pp. 444{463.

[Co�72] E. G. Co�man, L. A. Klimko, B. Ryan, \Analysis of Scanning Policies for Reduc-
ing Disk Seek Times", SIAM Journal of Computing, Vol. 1, No. 3, September 1972,
pp. 269{279.

[Co�man82] E. Co�man, M. Hofri, \On the Expected Performance of Scanning Disks",
SIAM Journal of Computing, Vol. 11, No. 1, February 1982, pp. 60{70.

[Copeland89] G. Copeland, T. Keller, \A Comparison of High-Availability Media Recovery
Techniques", ACM SIGMOD International Conference on Management of Data, 1989,
pp. 98{109.

127

[Dan94] A. Dan, D. Dias, P. Yu, \Bu�er Analysis for a Data Sharing Environment with
Skewed Data Access", IEEE Transactions on Knowledge and Data Engineering, Vol. 6,
No. 2, April 1994, pp. 331{337.

[Daniel83] S. Daniel, R. Geist, \V-SCAN: An adaptive disk scheduling algorithm", IEEE
International Workshop on Computer Systems Organization, March 1983, pp. 96{103.

[Denning67] P. J. Denning, \E�ects of scheduling on �le memory operations", AFIPS Spring
Joint Computer Conference, April 1967, pp. 9{21.

[Ebling94] M. Ebling, M. Satyanarayanan, \SynRGen: An Extensible File Reference Gen-
erator", ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, May 1994, pp. 108{117.

[English91] R. English, A. Stepanov, \Loge: A Self-Organizing Disk Controller", Hewlett-
Packard Laboratories Report, HPL-91-179, December 1991.

[Ferr84] D. Ferrari, \On the Foundation of Arti�cialWorkload Design", ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, May
1984, pp. 8-14.

[Ganger93] G. Ganger, Y. Patt, \The Process-Flow Model: Examining I/O Performance
from the System's Point of View", ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, May 1993, pp. 86{97.

[Ganger93a] G. Ganger, B.Worthington, R. Hou, Y. Patt, \Disk Subsystem Load Balancing:
Disk Striping vs. Conventional Data Placement", Hawaii International Conference on
System Sciences, January 1993, pp. 40{49.

[Ganger94] G. Ganger, Y. Patt, \Metadata Update Performance in File Systems", USENIX
Symposium on Operating Systems Design and Implementation (OSDI), November 1994,
pp. 49{60.

[Ganger94a] G. Ganger, B. Worthington, R. Hou, Y. Patt, \Disk Arrays: High Performance,
High Reliability Storage Subsystems", IEEE Computer, Vol. 27, No. 3, March 1994,
pp. 30{36.

[Geist87] R. Geist, S. Daniel, \A Continuum of Disk Scheduling Algorithms", ACM Trans-
actions on Computer Systems, Vol. 5, No. 1, February 1987, pp. 77{92.

[Geist87a] R. Geist, R. Reynolds, E. Pittard, \Disk Scheduling in System V", ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer Sys-
tems, May 1987, pp. 59{68.

[Geist94] R. Geist, J. Westall, \Disk Scheduling in Linux", Computer Measurement Group
(CMG) Conference, December 1994, pp. 739{746.

[Gingell87] R. Gingell, J. Moran, W. Shannon, \Virtual Memory Architecture in SunOS",
Summer USENIX Conference, June 1987, pp. 81{94.

128

[Golding95] R. Golding, P. Bosch, C. Staelin, T. Sullivan, J. Wilkes, \Idleness is not sloth",
Winter USENIX Conference, January 1995, pp. 201{22.

[Gotl73] C. C. Gotlieb, G. H. MacEwen, \Performance of Movable-Head Disk Storage De-
vices", Journal of the Association for Computing Machinery, Vol. 20, No. 4, October
1973, pp. 604{623.

[Gray91] ed. J. Gray, The Benchmark Handbook for Database and Transaction Processing
Systems, Morgan Kaufman Publishers, San Mateo, CA, 1991.

[Gri�oen94] J. Gri�oen, R. Appleton, \Reducing File System Latency using a Predictive
Approach", Summer USENIX Conference, June 1994, pp. 197-207.

[Hagmann87] R. Hagmann, \Reimplementing the Cedar File System Using Logging and
Group Commit", ACM Symposium on Operating Systems Principles, November 1987,
pp. 155{162.

[Haigh90] P. Haigh, \An Event Tracing Method for UNIXPerformanceMeasurement",Com-
puter Measurement Group (CMG) Conference, 1990, pp. 603{609.

[Holland92] M. Holland, G. Gibson, \Parity Declustering for Continuous Operation in Re-
dundant Disk Arrays", ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1992, pp. 23{35.

[Hofri80] M. Hofri, \Disk Scheduling: FCFS vs. SSTF Revisited", Communications of the
ACM, Vol. 23, No. 11, November 1980, pp. 645{653.

[Hospodor94] A. Hospodor, \The E�ect of Prefetch in Caching Disk Bu�ers", Ph.D. Disser-
tation, Santa Clara University, 1994.

[Hou93] R. Hou, Y. Patt, \Comparing Rebuild Algorithms for Mirrored and RAID5 Disk
Arrays", ACM SIGMOD International Conference on Management of Data, May 1993,
pp. 317{326.

[Hou93a] R. Hou, J. Menon, Y. Patt, \Balancing I/O Response Time and Disk Rebuild
Time in a RAID5 Disk Array", Hawaii International Conference on System Sciences,
January 1993, pp. 70{79.

[Hou93b] R. Hou, Y. Patt, \Trading Disk Capacity for Performance", International Sympo-
sium on High-Performance Distributed Computing, July 1993, pp. 263{270.

[Houtekamer85] G. Houtekamer, \The Local Disk Controller", ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems, May 1985,
pp. 173{182.

[HP92] Hewlett-Packard Company, \HP C2244/45/46/47 3.5-inch SCSI-2 Disk Drive Tech-
nical Reference Manual", Part Number 5960-8346, Edition 3, September 1992.

[HP93] Hewlett-Packard Company, \HP C2490A 3.5-inch SCSI-2 Disk Drives, Technical
Reference Manual", Part Number 5961-4359, Edition 3, September 1993.

129

[HP94] Hewlett-Packard Company, \HP C3323A 3.5-inch SCSI-2 Disk Drives, Technical
Reference Manual", Part Number 5962-6452, Edition 2, April 1994.

[Hsiao90] H. Hsiao, D. DeWitt, \Chained Declustering: A New Availability Strategy for
Multiprocessor Database Machines", IEEE International Conference on Data Engineer-
ing, 1990, pp. 456{465.

[Jacobson91] D. Jacobson, J. Wilkes, \Disk Scheduling Algorithms Based on Rotational
Position", Hewlett-Packard Technical Report, HPL-CSP-91-7, February 26, 1991.

[Karedla94] R. Karedla, J. S. Love, B. Wherry, \Caching Strategies to Improve Disk System
Performance", IEEE Computer, Vol. 27, No. 3, March 1994, pp. 38{46.

[Kim86] M. Kim, \Synchronized Disk Interleaving", IEEE Transactions on Computers,
Vol. C-35, No. 11, November 1986, pp. 978{988.

[Kim91] M. Kim, \Asynchronous Disk Interleaving: Approximating Access Delays", IEEE
Transactions on Computers, Vol. 40, No. 7, July 1991, pp. 801{810.

[Kotz94] D. Kotz, S. Toh, S. Radhakrishnan, \A Detailed Simulation Model of the HP 97560
Disk Drive", Report No. PCS-TR94-220, Dartmouth College, July 18, 1994.

[Lary93] R. Lary, Storage Architect, Digital Equipment Corporation, Personal Communica-
tion, February 1993.

[Lee91] E. Lee, R. Katz, \Peformance Consequences of Parity Placement in Disk Arrays",
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, 1991, pp. 190{199.

[Lee93] E. Lee, \Performance Modeling and Analysis of Disk Arrays", Ph.D. Dissertation,
University of California, Berkeley, 1993.

[Livny87] M. Livny, S. Khosha�an, H. Boral, \Multi-Disk Management Algorithms", ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, May 1987, pp. 69{77.

[McKusick84] M. McKusick, W. Joy, S. Le�er, R. Fabry, \A Fast File System for UNIX",
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 181{197.

[McVoy91] L. McVoy, S. Kleiman, \Extent-like Performance from a UNIX File System",
Winter USENIX Conference, January 1991, pp. 1{11.

[Menon91] J. Menon, D. Mattson, \Performance of Disk Arrays in Transaction Processing
Environments", IBM Research Report RJ 8230, July 15, 1991.

[Menon92] J. Menon, J. Kasson, \Methods for Improved Update Performance of Disk Ar-
rays", Hawaii International Conference on System Sciences, January 1992, pp. 74{83.

130

[Menon93] J. Menon, J. Cortney, \The Architecture of a Fault-Tolerant Cached RAID
Controller", IEEE International Symposium on Computer Architecture, May 1993,
pp. 76{86.

[Miller91] E. Miller, R. Katz, \Input/Output Behavior of Supercomputing Applications",
Supercomputing, 1991, pp. 567{576.

[Mitsuishi85] A. Mitsuishi, T. Mizoguchi, T. Miyachi, \Performance Evaluation for Bu�er-
Contained Disk Units", Systems and Computers in Japan, Vol. 16, No. 5, 1985,
pp. 32{40.

[Miyachi86] T. Miyachi, A. Mitsuishi, T. Mizoguchi, \Performance Evaluation for Memory
Subsystem of Hierarchical Disk-Cache", Systems and Computers in Japan, Vol. 17,
No. 7, 1986, pp. 86{94.

[Mogul94] J. Mogul, \A Better Update Policy", Summer USENIX Conference, 1994,
pp. 99{111.

[Moran87] J. Moran, \SunOS Virtual Memory Implementation", EUUG Conference, Spring
1988, pp. 285{300.

[Mourad93] A. Mourad, W.K. Fuchs, D. Saab, \Performance of Redundant Disk Array Or-
ganizations in Transaction Processing Environments", International Conference on Par-
allel Processing, Vol. I, 1993, pp. 138{145.

[Muchmore89] S. Muchmore, \A comparison of the EISA and MCA architectures", Elec-
tronic Engineering, March 1989, pp. 91{97.

[Mummert95] L. Mummert, M. Ebling, M. Satyanarayanan, \Exploiting Weak Connectivity
for Mobile File Access", Unpublished Report, Carnegie Mellon University, March 1995.

[Muntz90] R. Muntz, J. Lui, \Performance Analysis of Disk Arrays Under Failure", Inter-
national Conference on Very Large Data Bases, 1990, pp. 162{173.

[Myers86] G. Myers, A. Yu, D. House, \Microprocessor Technology Trends", Proceedings of
the IEEE, Vol. 74, December 1986, pp. 1605{1622.

[NCR90] NCR Corporation, \Using the 53C700 SCSI I/O Processor", SCSI Engineering
Notes, No. 822, Rev. 2.5, Part No. 609-3400634, February 1990.

[NCR91] NCR Corporation, \Class 3433 and 3434 Technical Reference", Document No.
D2-0344-A, May 1991.

[Ng88] S. Ng, D. Lang, R. Selinger, \Trade-o�s Between Devices and Paths In Achieving
Disk Interleaving", IEEE International Symposium on Computer Architecture, 1988,
pp. 196{201.

[Ng92] S. Ng, R. Mattson, \Maintaining Good Performance in Disk Arrays During Fail-
ure Via Uniform Parity Group Distribution", International Symposium on High-
Performance Distributed Computing, September 1992, pp. 260{269.

131

[Ng92a] S. Ng, \Prefetch Policies For Striped Disk Arrays", IBM Research Report RJ 9055,
October 23, 1992.

[Oney75] W. Oney, \Queueing Analysis of the Scan Policy for Moving-Head Disks", Journal
of the ACM, Vol. 22, No. 3, July 1975, pp. 397{412.

[Orji93] C. Orji, J. Solworth, \Doubly Distorted Mirrors", ACM SIGMOD International
Conference on Management of Data, May 1993, pp. 307{316.

[Ouchi78] N. Ouchi, \System for Recovering Data Stored in Failed Memory Unit",
U.S. Patent #4,092,732, May 30, 1978.

[Ousterhout85] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, J. Thomp-
son, \A Trace-Driven Analysis of the UNIX 4.2 BSD File System", ACM Symposium
on Operating System Principles, 1985, pp. 15{24.

[Ousterhout90] J. Ousterhout, \Why Aren't Operating Systems Getting Faster As Fast as
Hardware?", Summer USENIX Conference, June 1990, pp. 247{256.

[Patterson88] D. Patterson, G. Gibson, R. Katz, \A Case for Redundant Arrays of Inexpen-
sive Disks (RAID)", ACM SIGMOD International Conference on Management of Data,
May 1988, pp. 109{116.

[Patterson93] R.H. Patterson, G. Gibson, M. Satyanarayanan, \A Status Report on Research
in Transparent Informed Prefetching", ACM Operating Systems Review, Vol. 27, No. 2,
April 1993, pp. 21{34.

[Rama92] K. Ramakrishnan, P. Biswas, R. Karelda, \Analysis of File I/O Traces in Com-
mercial Computing Environments", ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 1992, pp. 78{90.

[Reddy89] A.L.N. Reddy, P. Banerjee, \An Evaluation of Multiple-Disk I/O Systems", IEEE
Transactions on Computers, Vol. 38, No. 12, December 1989, pp. 1680{1690.

[Reddy92] A.L.N. Reddy, \A Study of I/O SystemOrganizations", IEEE International Sym-
posium on Computer Architecture, May 1992, pp. 308{317.

[Richardson92] K. Richardson, M. Flynn, \TIME: Tools for Input/Output and Memory
Evaluation", Hawaii International Conference on Systems Sciences, January 1992,
pp. 58{66.

[Ritchie86] D. Ritchie, \The UNIX I/O System", UNIX User's Supplementory Document,
University of California, Berkeley, April 1986.

[Ruemmler91] C. Ruemmler, J. Wilkes, \Disk Shu�ing", Technical Report HPL-CSP-91-30,
Hewlett-Packard Laboratories, October 3, 1991.

[Ruemmler93] C. Ruemmler, J. Wilkes, \UNIX Disk Access Patterns", Winter USENIX
Conference, January 1993, pp. 405{420.

132

[Ruemmler93a] C. Ruemmler, J. Wilkes, \A Trace-Driven Analysis of Disk Working Set
Sizes", Technical Report HPL-OSR-93-23, Hewlett-Packard Laboratories, April 1993.

[Ruemmler94] C. Ruemmler, J. Wilkes, \An Introduction to Disk Drive Modeling", IEEE
Computer, Vol. 27, No. 3, March 1994, pp. 17{28.

[Salem86] K. Salem, G. Garcia-Molina, \Disk Striping", IEEE International Conference on
Data Engineering, 1986, pp. 336{342.

[Sandberg85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, \Design and Imple-
mentation of the Sun Network Filesystem", Summer USENIX Conference, June 1985,
pp. 119{130.

[Satya86] M. Satyanarayanan, Modeling Storage Systems, UMI Research Press, Ann Arbor,
MI, 1986.

[SCSI93] \Small Computer System Interface-2", ANSI X3T9.2, Draft Revision 10k,
March 17, 1993.

[Seagate92] Seagate Technology, Inc., \SCSI Interface Speci�cation, Small Computer System
Interface (SCSI), Elite Product Family", Document Number 64721702, Revision D,
March 1992.

[Seagate92a] Seagate Technology, Inc., \Seagate Product Speci�cation, ST41600N and
ST41601N Elite Disc Drive, SCSI Interface", Document Number 64403103, Revision
G, October 1992.

[Seaman66] P. H. Seaman, R. A. Lind, T. L. Wilson \An analysis of auxiliary-storage activ-
ity", IBM System Journal, Vol. 5, No. 3, 1966, pp. 158{170.

[Seaman69] P. Seaman, R. Soucy, \Simulating Operating Systems", IBM System Journal,
Vol. 8, No. 4, 1969, pp. 264{279.

[Seltzer90] M. Seltzer, P. Chen, J. Ousterhout, \Disk Scheduling Revisited", Winter
USENIX Conference, 1990, pp. 313{324.

[Seltzer93] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, \An Implementation of a
Log-Structured File System for UNIX", Winter USENIX Conference, January 1993,
pp. 201{220.

[Smith85] A. Smith, \Disk Cache { Miss Ratio Analysis and Design Considerations", ACM
Transactions on Computer Systems, Vol. 3, No. 3, August 1985, pp. 161{203.

[Solworth90] J. Solworth, C. Orji, \Write-Only Disk Caches", ACM SIGMOD International
Conference on Management of Data, May 1992, pp. 123{132.

[Solworth91] J. Solworth, C. Orji, \Distorted mirrors", International Conference on Parallel
and Distributed Information Systems, December 1991, pp. 10{17.

133

[Stodolsky93] D. Stodolsky, G. Gibson, M. Holland, \Parity Logging Overcoming the Small
Write Problem in Redundant Disk Arrays", IEEE International Symposium on Com-
puter Architecture, May 1993, pp. 64{75.

[Teorey72] T. Teorey, T. Pinkerton, \A Comparative Analysis of Disk Scheduling Policies",
Communications of the ACM, Vol. 15, No. 3, March 1972, pp. 177{184.

[Thekkath94] C. Thekkath, J. Wilkes, E. Lazowska, \Techniques for File System Simula-
tion", Software { Practice and Experience, Vol. 24, No. 11, November 1994, pp. 981{999.

[TPCB90] Transaction Processing Performance Council, \TPC Benchmark B, Standard
Speci�cation", Draft 4.1, August 23, 1990.

[Treiber94] K. Treiber, J. Menon, \Simulation Study of Cached RAID 5 Designs",
IBM Research Report RJ 9823, May 23, 1994.

[Vongsathorn90] P. Vongsathorn, S. Carson, \A System for Adaptive Disk Rearrangement",
Software { Practice and Experience, Vol. 20, No. 3, March 1990, pp. 225{242.

[Wilhelm76] N. Wilhelm, \An Anomoly in Disk Scheduling: A Comparison of FCFS and
SSTF Seek Scheduling Using an Empirical Model for Disk Accesses", Communications
of the ACM, Vol. 19, No. 1, January 1976, pp. 13{17.

[Wolf89] J. Wolf, \The Placement Optimization Program: A Practical Solution to the Disk
File Assignment Problem", ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, May 1989, pp. 1{10.

[Worthington94] B. Worthington, G. Ganger, Y. Patt, \Scheduling Algorithms for Mod-
ern Disk Drives", ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, May 1994, pp. 241{251.

[Worthington94a] B. Worthington, G. Ganger, Y. Patt, \Scheduling for Modern Disk Drives
and Non-Random Workloads", Report CSE-TR-194-94, University of Michigan, Ann
Arbor, March 1994.

[Worthington95] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, \On-Line Extraction of
SCSI Disk Drive Parameters", ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, May 1995, pp. 146{156.

[Worthington95a] B. Worthington, \Aggressive Centralized and Distributed Scheduling of
Disk Requests", Ph.D. Dissertation, University of Michigan, Ann Arbor, 1995.

