
15/18-746, Storage Systems 

1 Garth Gibson © 

Project 2 

Hybrid Cloud Storage System 
 

Project due on May 1st (11.59 EST) 
• Start early J: We have three graded milestones 

– Milestone 1: demo part 1 by March 29th  
– Milestone 2: demo part 2 by April 12th 

– Milestone 3: demo part 3 by April 26th  
– Final Report Due: May 1st 

 
•  “Oh well, I will write the report on May1st”  

– Bad idea J 
– 25% of the project grade is associated with the final report 
– Project report consists of a design overview and performance 

analysis of your results on all three parts. 
– Project report must answer questions on page 15 of handout. 
 

 



15/18-746, Storage Systems 

2 Garth Gibson © 

Summary of the project 
• Write a user-level file system called CloudFS that 

manages hybrid storage devices (SSD and cloud storage) 
– File system in user-space (FUSE) toolkit 
– Code to be written in C/C++ 

• Testing and evaluation setup 
– All development and testing done in Linux using the VirtualBox 

virtual machine setup 
– Your code must compile in the Linux images on the virtual machine 

Part 0: Primer on the FUSE toolkit 
•  Interposition layer to 
redirect VFS calls to 
your user-level code 

• FUSE client code is 
programmable 
– Talk to remote nodes 
– Interact with local FSs 

• FUSE clients need to 
implement a minimal 
set of protocols 
 

 

Application 

VFS layer 

FUSE  
module 

user-level code 
(FUSE client) 

Linux 
ext3 



15/18-746, Storage Systems 

3 Garth Gibson © 

FUSE API 

• Supports most VFS calls 
• This API is the “high-

level” interface using path 
names 

• You don’t need to 
implement all the calls 
• Simple systems, such as 

CloudFS, can get way with 
basic calls 

 

 

Part 1: Hybrid Flash-Cloud Systems 
• Hybrid storage systems: Best of both worlds 

– Unlimited capacity (in cloud storage) 
– Fast random access speed (in local flash) 

• CloudFS is a layered file system 
– Higher-level file system (CloudFS) splits data between SSD and 

cloud storage. 
– SSD is running its own local file system (Ext2) which you will not 

modify 
– Cloud storage is running as a separate object store which you will 

access through Amazon S3-like interface without modification 

• Key idea 
– All small objects in flash, all large objects in cloud storage 
– All small IO (metadata) accesses should be satisfied in flash 



15/18-746, Storage Systems 

4 Garth Gibson © 

Amazon S3 storage model 
• Object storage in flat namespace 

– Structure: S3://BucketName/ObjectName 
–  (Bucket is like a non-hierarchical directory, object could be a file) 
– List operations: look up the buckets or look up objects in a bucket 
– Put: write an entire object into S3 
– Get: read an entire object from S3 

• Pricing （scale up to fit our tests): 
– Capacity pricing: $0.095 per MB (max capacity during one test) 
– Request pricing: $0.01 per request 
– Data Transfer Pricing: $0.120 per MB (out of S3 only; that is, reads) 
– Note: cost will probably NOT be dominated by capacity 

System Overview 
• SSD manages metadata information: 

– File location: in SSD or Cloud? 
– Namespace and inode attributes 

• Cloud extends the capacity of local SSD 
– SSD is not a strictly a cache, because some data never goes to cloud 

Your FUSE file system 

SSD (ext2) 

Amazon S3-like 
Service 

File Location, 
Inode Attributes, 

….. Local 
Storage 

Extension 
space for HDD 



15/18-746, Storage Systems 

5 Garth Gibson © 

Size-based data-placement 
1)  App does create(“f1.txt”) 
2)  CloudFS creates “f1.txt” in SSD 
3)  Ext3 on SSD returns a handle for 

“f1.txt” to FUSE 
4)  FUSE “translates” that handle into 

another handle which is returned to 
the app 

5)  App uses the returned handle to tell 
you to write to “f1.txt” on the SSD 

6)  When “f1.txt” closes and is big, 
CloudFS moves it to cloud storage 
and “f1.txt” on the SSD becomes a 
proxy file that contains mapping to 
the object on cloud storage 
 For design simplicity, this migration 
to cloud storage is done only when 
the file is closed. 

Your FUSE file system 

SSD (ext3) 
Cloud storage 
(object store) 

Application 

1 

2 

3 

4 

5 6 

<F1> 
… 

Skeleton Code for CloudFS is 
provided to you in the distribution 

Cloud storage SSD File system 

Keep mapping and attributes in SSD 
•  After migration from SDD to cloud 

storage 
•  Keep mapping between a proxy file in 

SSD and an object in cloud storage  
•  Keep attributes of the file in SSD to 

avoid accessing (or even storing) in 
cloud storage 

•  Mapping information is stored in data 
block of proxy file or customized list 
inside a file in SSD (your design) 

•  Inode attributes are stored as (you 
choose): (1) extended attributes,  
 or (2) customized list inside a file in 
SSD (again your design) 

Object id 
Attributes 
 st_size: 20923 
 st_mod: 077 
 st_uid: 3 
…. 

Object id of  
“bigfoo” 

Data of 
“bigfoo” 

/dir/bigfoo 
A proxy file in 

SSD 



15/18-746, Storage Systems 

6 Garth Gibson © 

Logical and Physical View of CloudFS 

/	



dirc	



tiny	



dira	

 dirb	



Hybrid	
  file	
  system	
  

1B	
  file	
  

directories	
  

big	

 1GB	
  file	
  

/	



dirc	



tiny	



dira	

 dirb	



Flash	
  file	
  system	
  

1B	
  file	
  

directories	
  

big	


Proxy	
  pointer	
  to	
  “xxx”	
  

Cloudfs_bucket	



“xxx”	



Cloud	
  storage	
  

Bucket	
  

1GB	
  object	
  (in	
  part	
  1)	
  

+ 

Testing and Evaluation 
• Test scripts (test_part1.sh) that perform three steps 

– Extract an .tar.gz file in the CloudFS mount point 
– Compute checksum on all the files and compare  
– Perform a directory scan of all files (“ls –alR”) 

• Script allows you to test with different dataset sizes 
• To facilitate measurements, each test … 

– … will empty caches before runs by remounting CloudFS 
– … will measure number of block I/O to SSD and cloud storage 

using vmstat and cloud stat info 
–  (virtualized setup makes time-based measurement hard) 

• More details in the README file in the “src/scripts/” 



15/18-746, Storage Systems 

7 Garth Gibson © 

Expected output for correctness 
• Test scripts returns the number of blocks read/written during 

each of the step (by parsing “vmstat –d”, cloud log) 

 

• Another useful tool is btrace/blktrace  

Testing step Expected Correct Output 

Extracting TAR file in CloudFS 

Big files (>threshold) should go to cloud 
storage. 
Small files (<threshold) should be in the 
SSD. 

Performing a checksum on the 
all the files 

MD5 of files in CloudFS should match 
with MD5 of original files.  

Scanning whole directory of the 
TAR file using “ls –laR” 

Only the SSD should have block reads 
(Cloud storage should see no object 
GETs) 

Part 2: Deduplication 
• Deduplicate: store only unique content in the cloud 

•  divide content into segments using Rabin Fingerprinting 
•  compute a content hash of each segment 
•  lookup each segment’s hash in a catalog  
•  store segments with new/unique hashes as objects in the cloud 
•  add new hashes to the catalog 
•  keep track of segment metadata (hashes, object key) on SSD 
 

• Goal: Reduce cloud costs 
•  Max capacity consumed should be reduced 
•  Data transfer costs should be reduced 
•  Number of operations (PUTs) will be increased 
 
 



15/18-746, Storage Systems 

8 Garth Gibson © 

System overview 

Your FUSE file system(/mnt/fuse) 

File Location, 
File Attributes, 

Segment Mapping, 
Persistent metadata 

Amazon S3-
like Service 

SSD (ext2 mounted on /mnt/ssd) 

•  Segments defined by Rabin Segmentation API 
•  All segments stored in Cloud 
•  File attributes (size, permissions etc) stored on SSD 
•  File-to-Segment mapping on SSD 
•  Persistent Hash lookup table on SSD 

Segments 
(variable 
lengths) 

Identifying Segment Boundary 

•  Define segments by data contents, not external alignment 
•  “Rolling” hash computed for each byte across last 'window size' bytes 
•  Declare a new segment boundary if we find a specific hash value 

•  E.G. if last b bits of  hash value hn are 0  
•  With “good” hash function, the average segment size will be 2^b 
•  Details: identical windows leads to tiny segments: set a min size 

•  All of this is implemented in Rabin Segmentation provided 
•  Use the code structure in src/cloudfs/rabin-example.c 

Window size  
(in bytes) 

Data stream  

Segment 
Boundary 
detected 

Segment 
Boundary 
detected 

Segment (~ avg seg size in KBs) 

hn : where hn & (2^b -1) == 0   
h1 h0 



15/18-746, Storage Systems 

9 Garth Gibson © 

Identify duplicated segment 
• Decide on a naming scheme for the segments 

•  E.g. counter of segments created 
•  E.g. Md5sum of content 
 

•  Identifying duplicate segment – lookup 
•  Maybe a hash table of segments in the cloud 
•  Maybe a database, maybe even just a bloom filter 
•  But make it fast, persistent, small and above all simple 
•  Can recreate hash data structure on startup using LIST, if you 

choose to 
 

Mapping files to segment 
• Need to reconstruct the whole file in SSD on file open() 
• So need to maintain file-segments mapping 

•  Can store in same file that was used to store file attributes in part1 
(if you used one) 

•  Can design a segment store that keeps key->values mapping for all 
files in the cloud 

•  Think about the naming scheme for segments, some are better 
than others 

•  Again, make it fast and simple 

• Update the mapping only on on file close() 
•  read() and write() operate on the local SSD copy of the file 

(giant simplification!) 



15/18-746, Storage Systems 

10 Garth Gibson © 

Cleaning up on file deletion 
• Recovering space of unneeded segments in cloud 

•  Probably best to do on some delete() operations  
• Come up with a reference counting scheme for segments 

•  Can store it as part of hash table 
•  Can manage it separately, but this information has to be persistent 

across remounts of file system so segments don’t get removed too 
early 

Testing and Evaluation 
• Part2 test scripts will test : 

•  Correctness 
•  Copy the same file multiple times, read back each copy and compare 
•  Prepend, append some data and read back 

•  Performance: cloud usage charges 
•  For all tests compare the cloud usage with and without dedup (–no-

dedup) 
•  Cost reduction/increase – be wary of paying more for dedup’d cloud! 



15/18-746, Storage Systems 

11 Garth Gibson © 

Part 3: Caching 
•  Could storage charge for operations 

 
•  Goal: reduce cloud cost by file level caching (and make laptop faster) 
•  You are going to define a file replacement policy and explore tradeoffs 

in the project report 

 
  Designs (hints) 

• A simple example of caching 
– LRU: Recently written files should remain in local file system.  

When local file system is nearly full, least recently opened files are 
moved to cloud 

– Write-through: synchronize file and cloud when file is closed 
– Write-back: delay, possibly never, write to cloud 
We expect better file replacement policy than LRU that considers 

price model of cloud storage. 

• Persistency of cache  
•  “Warm start” is better than “cold start” 
•  For warm start, need a way of identifying files in cache on mount  
•  Full scanning of cache region on mount time or a persistent data 

structure could be one design option 



15/18-746, Storage Systems 

12 Garth Gibson © 

Testing and Evaluation 
• Part3 test script performs two subtests  

– Stress test will generate random sized files and check correctness  
– Cache test will run a set of workloads and measure performance 

metrics.  

•  In part 3, cost savings is the most important evaluation 
criteria 

• Your implementation has to pass stress test as well to 
show correctness   

Summary:	
  data	
  structures	
  for	
  CloudFS	
  
• A list of  data structures to maintain: 

– File Locations: URL identifies the location of a file 
– Namespace (directory entries) 
–  Inode attributes (timestamp, access mode …) 
– LRU list: a list of objects in local storage sorted by last closed time 
– Hash value of file segments for de-duplication 
– Reference count for each object 

• DO’s and DON’T’s: 
- No in-memory only solutions 
- Out-of-core structures should use space on SSDs 



15/18-746, Storage Systems 

13 Garth Gibson © 

Assumptions for simplification 
• No file is larger than SSD cache capacity 
•  Infinite space on SSD for open files (and only open files) 
• No need to store all file metadata in Cloud (e.g. attributes) 
• All metadata fit into SSD (i.e. SSD is big enough) 
• Single threaded FUSE only 
• No sharing in the cloud – cloud is dedicated to one SSD in 

one client 

Testing and Evaluation 
• Correctness: 
- Basic functionality:  
- Read/Write files from cloud storage 

- Persistency: No data loss after normal umount/remount 
- Cache policy: LRU or any other advanced policy you invent 
- De-duplication: remove redundant contents 

• Performance 
- Cloud storage usage costs 
- Local ssd I/O traffics 
- CPU and memory usage 



15/18-746, Storage Systems 

14 Garth Gibson © 

How to write the report? 

• Key design ideas and data-structures 
– Pictures are useful; but good one need thought and time 

(start early J) 
• Reason about the performance 

– Don’t just copy-paste the output in the report 
– Show us that you know why it is happening 

• Answer the three questions in the handout 
 

 
workload SSD Blk IO Operations on cloud storage cloud cost 

w1 # of Blk R/W Amount of data transfer 
# of ops Cost to complete a workload 

w2 # of Blk R/W          Amount of data transfer  
# of ops Cost to complete a workload 

Tools provided 
• Amazon S3 client library: 
- Libs3: A C Library API for Amazon S3, a complete support of 

Amazon S3 based on HTTP protocols 
- Provide a wrapper of libs3 in CloudFS skeleton code, simplified 

synchronous call 

• Amazon S3 server simulation: 
- A Python simulation run in VirtualBox 
-  Implement simple APIs: list, put, get, delete 
- Store data in default local file system inside virtual box 
- Provide simple statistics about usage cost 



15/18-746, Storage Systems 

15 Garth Gibson © 

How to submit? 
• Use Autolab for submission 
- Test compilation and correctness for milestones 
- Performance tests for grading are manually run with virtual box 

outside Autolab 

• Deliverables: 
- Source code: 
- Good documentation in codes 
- Correct format for Makefile and input parameters 
- Follow instructions in handout to organize the code 

- Project reports 
- Key design ideas, data structures and reasons 
- Evaluation: local SSD I/Os, cloud storage costs, etc. 
- No more than 5 pages, single column with 10 pts. 

Once again – start early J 
• Project due on May 1st 2013 

– Milestone 1: demo part 1 by March 29th  
– Milestone 2: demo part 2 by April 12th 

– Milestone 3: demo part 3 by April 26th  
– Final Report Due: May 1st 



15/18-746, Storage Systems 

16 Garth Gibson © 

Test Case 
• Functionality tests: 

– copy, untar, delete, calculate md5sum 
– Build simple projects 

•  Large file tests: 
• Cache policy tests: 

– LRU and Write-Back Cache Policy 
– Generate LRU friendly access pattern 

• De-duplication tests: 
– Generate several large files with the same contents 

• Persistency tests: 
– umount / mount 
– Repeat the above tests to test performance difference 

Monitoring 
• End-to-end running time 
• SSD and HDD traffic: 

– Total number of read/write requests 
– Total number of read/write sectors  

• Cloud storage: 
– Capacity usage 
– Total number of requests 
– Total bandwidth consumption 

• CPU and memory usage 


