

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

1 of 19

Advanced Storage Systems 15/18-746: Lab #2

CloudFS: Hybrid SSD/Cloud Storage System

Due on 11:59 pm EST, May, 1, 2013

1. Project Environment and Tools
Part 1 : Hybrid file system spanning SSD and cloud storage

Design Specifications
Size-based data placement
Saving the attributes of migrated files
Mapping files to objects in the cloud

Test and Evaluation
Part 2 : Block-level Deduplication

Granularity of deduplication
Searching for duplicated segments
Design specification

Identifying the segment boundaries
Identifying the duplicated segments
Mapping files to segments

Test and Evaluation
Part 3 : File-level Caching on SSD

Design specification
Cache replacement policy
Persistency of cache contents

Evaluation and Testing
Project Logistics

Resources
Deliverables
Useful Pointers

Appendix
Amazon S3 API Specifications
File Segmentation API Specifications

Overview

In this project, you will build a file system, called CloudFS, to integrate solid-state devices (SSDs) and
cloud storage systems (AmazonS3, etc.). To ease development, this file system will be built using the “file
system in user-space” (FUSE). CloudFS includes three dimensions: a core file system that leverages the
properties of SSDs and cloud storage for making data placement decision, a second dimension that takes
advantage of redundancy in datasets to reduce storage capacity and a third dimension that uses local
caching to improve performance and reduce (cloud) costs.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

2 of 19

The deadline to submit your CloudFS source and project report is 11:59pm EST on May 1, 2013. To help
you make steady progress, we have imposed three **graded** intermediate milestones:

Part1: Hybrid Fuse filesystem 11:59pm EST on Friday March 29, 2013

Part2: Deduplication 11:59pm EST on Friday April 12, 2013

Part3: Caching 11:59pm EST on Friday April 26, 2013

Project Report 11:59pm EST on Wednesday May 1, 2013

Note that there are a few days between final code handin (Part 3) and the final project report handin. This
will leave you a few days to think through and carefully write your project description and performance
evaluation report. You must submit your code to Autolab for each milestone; some automated testing will
be available through Autolab, but all sections will be evaluated by more than the automated tests.

The rest of this document describes the specification of CloudFS in detail: Section 1 gives you tips about
FUSE and VirtualBox setup; Section 2, 3 and 4 present the specification for CloudFS on an SSD/cloud
hybrid storage device and service, fine grain data deduplication and cache management, respectively.
Section 5 provides logistics for the code and report handins for this project. Finally, details for the Amazon
S3-like cloud service API and Rabin Segmenting APIs are presented in the Appendix.

1. Project Environment and Tools
CloudFS will be developed using the file system in user-space (FUSE) toolkit. FUSE provides a
framework for implementing a file system at user level. FUSE comes with most recent implementations of
Linux and is available in other operating systems as well. FUSE has a small kernel module (FUSE in
Figure 1) which plugs into the VFS layer in the kernel as a file system and then communicates with a
user-level process that does all the work, using the FUSE library (libfuse in Figure 1) to communicate with
the kernel module. IO requests from an application are redirected by the FUSE kernel module to this user
level process for execution and the results are returned back to the requesting application. You will
implement CloudFS as user-level code that uses libfuse to communicate with test applications (found in
the project distribution we provide, or new tests that you write yourself), and uses regular file system calls
(through the appropriate mount point) to access the SSD.

By default, FUSE is multi-threaded, so multiple system calls from user applications can be running at the
same time in the user-level process, allowing higher parallelism and (probably) faster performance. This
requires careful synchronization, however, and it is **not** required to accomplish this project. We
recommend that you use the FUSE option “-s” which limits the number of threads (concurrent operations
from the application through the VFS) to one, to make your debugging simpler.

To enable CloudFS development on your own machine (without a dedicated SSD or external cloud
service), you will use a virtual machine environment (for more information, see the appendix). You will
use VirtualBox, a free product from Oracle and supported on Windows, Linux and Macintosh machines
(project development testing was done with version 4.2.8).

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

3 of 19

Figure 1. FUSE based filesystem (from http://en.wikipedia.org/wiki/Filesystem_in_Userspace)

Inside the virtual machine, you will run a Linux OS with two virtual disks: one for the Linux OS (Ubuntu
10.10) and one for your CloudFS SSD. Both virtual disk images (.vdi) will be available on the project
website. It is inside this virtual machine that you will run your CloudFS user-level hybrid file system that
will make file system calls on the SSD virtual disk (not the OS virtual disk) and a local Cloud storage
service.

Note that virtual machine images are 5-10 GB in size, and you will need at least this much free space on
the machine you use to run Virtual Box. We have given you two compressed disk images in the project
distribution (along with the README with instructions). Please make sure you can run Virtual Box with
the root OS partition as soon as possible. If you have problems with this early, we may be able to help. If
you have problems with this at the end of the semester, you may be in big trouble.

We will be giving you a few test scripts that you run at user level in the virtual machine with a pathname
that resolves in the FUSE filesystem. These scripts will typically extract a TAR file containing sample files
and directories into CloudFS, and then do something with the resulting file system. They will detect the
effect of CloudFS on storage components using the command vmstat and cloud storage service’’s
statistics report. These statistics are useful for seeing the effect of splitting the CloudFS file system
between the two components, of deduplication, and of caching. We will also give you a script to
summarize the SSD and cloud storage statistics output. We will also provide a object storage server
binary which implements the Amazon S3 interface. You will run this in your virtual machine, so http
accesss to this web server use the loopback network stack connecting back into the same machine. The
disk storage for the cloud will actually be in the Linux OS virtual disk, although it could in principle be in
the cloud.

Few thoughts about the design of your project:
• We suggest an approach to the design of CloudFS that simplifies the overall system design. Think of
the various parts (fuse-ssd, deduplication, cache management) as layers of function stacked on top of the
cloud storage. Designing clear and pre-documented interfaces between layers should simplify the design
and save you lots of wasted development effort.

• DO NOT rely ONLY on in-memory data-structures; this would be an unrealistic design for most real-
world file systems because you lose the contents of memory on crash-n-reboot and because you may not
have enough memory to hold all of the file system metadata. Although the test cases for this project are

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

4 of 19

not too big for an in-memory structure of all metadata, we will not accept in-memory only as a correct
solution and you will get a poor grade for using such an approach.

• You should design out-of-core data structures that are persistent through crash-n-reboot. Your CloudFS
can use storage space on the SSD to store any state associated with your approach (including special
files that are known only to CloudFS), but certainly not the data of all large files.

Part 1 : Hybrid file system spanning SSD and cloud storage
The first part of this project is to implement a hybrid file system with two different storage components: a
SSD and a cloud storage service such as Amazon S3 (or Windows Azure). Cloud storage services
provide a large storage capacity with “pay as you go” costs, dynamic scalability and high availability, as
long as you are connected to the network.

In this part of the project, you extend your limited personal storage (the SSD) with cloud storage.
Compared to cloud storage, SSDs, particularly NAND flash devices, are (1) very much faster, (2) wear out
if written too often, (3) have limited capacity and (4) induce no operation charge (billing) for actions or
data transfer. Users want the best of both worlds: the extensibility of cloud storage, the small random
access speed of SSDs, no per-operation cost of SSDs and storage that does not wear out, all at a
minimal cost. In this project, we assume that the SSD storage controller (and its flash translation layer)
completely handles wear-leveling to improve the lifespan of SSDs (so you don’t need to worry about wear
out).

The goal of the first part of this project is to build a basic hybrid file system, called CloudFS, that realizes
the properties described above for a system that uses both an SSD and cloud storage for storage. The
basic idea is to put all the small objects on the SSD and all the big data objects on the cloud storage. A
real implementation strategy would be to modify the local Linux Ext (2, 3 or 4) file system to be mounted
on a device driver that offers an SSD. This modified Ext file system would manage lists of free blocks on
SSD, allocating an object on the appropriate storage component, and have pointers pointing between the
two as appropriate. Since building an in-kernel file system is complex and beyond the scope of a course
project, you should use the more layered approach we recommend.

In our project, the SSD device will have a dedicated local file system (e.g. ext2) mounted on it (and you
will not modify the code for this local file system). Cloud storage can be accessed via the Amazon S3
object store interface. You will write the higher level interposition layer, using the FUSE API, that plugs in
as a file system, but rather than use a raw device for its storage, it uses the one local file system for SSD
storage and the Amazon S3 interface for cloud storage.

The cloud storage has a different interface from the traditional file system API. To understand a cloud
storage service, let’s take Amazon S3 as an example. Amazon S3 provides a simple web interface that
can be used to store and retrieve arbitrary objects (files). Objects are organized into buckets as a flat
namespace. Each bucket is essentially a directory that stores a number of objects, which are identified
within each bucket by a unique, user-assigned key. Buckets names and keys are to be chosen so that
objects are addressable via an HTTP URL in the form: http://s3_sever_hostname/bucket/key. The
namespace is not hierarchical, and only has one level of directory. Amazon S3 uses a simple APIs such
as LIST, PUT, GET and DELETE to access objects. The LIST operation retrieves all the bucket names in
a S3 server, or the names (key) and attributes of all objects in a bucket. The PUT operation puts an entire
object into the S3 server. The GET operation reads the whole object. The DELETE operation can delete
an object or a bucket.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

5 of 19

Unlike SSD, cloud storage costs money each month. Cloud storage services have different pricing
models. For instance, Amazon S3 charges for the capacity of disk space you consume, the amount of
data transferred, and each retrieval/command you submit. Dropbox has a different model. Dropbox
charges only for the capacity of disk space. For this project, we choose an Amazon style cost model, as
shown in Table 1. One of your design goals is to minimize the cost incurred for as wide a range of
workloads as possible, especially the ones in our tests.

Type Price used in our tests Real price of Amazon S3

Capacity $ 0.095 per MB (max usage during one
test)

$ 0.095 per GB per month
for the first 1 TB

Operation pricing $ 0.01 per request PUT, COPY, POST, LIST:
$ 0.01 per 1,000 requests.
GET: $ 0.01 per 10,000
requests.

Data transfer pricing $ 0.12 per MB (out from S3 only) $ 0.12 per GB per month
for up to 10 TB (out from
S3 only).

Table 1 : Cost model for Cloud Storage API
 (For more real price information: refer to “http://aws.amazon.com/s3/”)

Design Specifications
Your CloudFS that will provide two primary features: i) size-based placement to leverage the high IO per
second (IOPS) provided by SSDs and ii) attribute replication to avoid performing small IOs on Cloud
storage.

Size-based data placement

CloudFS data placement - small objects on a SSD and large objects on a cloud storage - is implemented
through redirection when a file is created and is written to. In CloudFS, the file system namespace is
created on the SSD, small files are written to the SSD and big files (files that grow larger than a threshold)
are moved to the cloud storage. This migration replaces a small file, which was previously stored on the
SSD, with a user defined link pointing to the location of the big file in the cloud storage. When opening
such file, CloudFS parses the path through the user-defined link, creates a temporary file (on SSD) and
copies an entire cloud object into the temporary file on SSD. Finally CloudFS returns the file descriptor of
this temporary file as the return value of open system call. When a big file is closed, you shall flush the
temporary file into cloud storage if the file is dirty (changed), or delete it if the big file is clean (unchanged).
For design simplicity, you can assume that the SSD always has enough space for keeping copies of all
currently open files.

Because CloudFS is a FUSE-based file system, most of the code will be implementations of functions
called through the VFS interface. In fact, for this project, you don’t need to support all the VFS functions;
you can build a working prototype using a subset of VFS calls including getattr, getxattr, setxattr, mkdir,
mknod, open, read, write, release, opendir, readdir, init, destroy, access, utimens, chmod, unlink, rmdir.
Your implementation of CloudFS will have to make various design decisions including deciding whether

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

6 of 19

and when a file is placed on the SSD or the cloud storage, detecting when a file gets big, copying it to the
cloud storage and updating the file system namespace on the SSD using a user-defined link. Your
CloudFS file system should run from the command line as follow:

./CloudFS --hostname Hostname --threshold MigrateThreshold -ssd-path SSDMount --fuse-path
FUSEMount –ssd-size SSD_size [--more_args]

where MigrateThreshold is the maximum size of a file that should be stored (permanently) in the SSD
(specified in KB, defaulting to 64 KB), SSDMount is the mount point for the SSD device in the virtual
machine (defaulting to /mnt/ssd) and FUSEMount is the mount point for CloudFS (defaulting to /mnt/fuse).
Hostname is hostname of the web server that runs the Amazon S2 simulation (it should probably always
be set to localhost:8888). SSD_size specifies the capacity of SSD (specified in KB, not counting open
temporary files). You can assume that there is no capacity limit on the cloud storage.

A key goal is to migrate a file from the SSD to the cloud storage based on its size. While it is possible to
implement the correct behavior of a single operation in a FUSE file system by opening the path, seeking,
performing the operation, and closing the file on every operation, it is very inefficient. A better way is to
open the path on the FUSE open() call, save the file descriptor, and re-use that file descriptor on
subsequent read() or write() operations. FUSE provides a mechanism to make this easier: the open() call
receives a struct fuse_file_info pointer as an argument. CloudFS may set a value in the fh field of struct
fuse_file_info during open() and that value will be available from all future read()/write() calls on the open
file. On close(), you make the decision to migrate the file to cloud depending on the file size. If the file
does need to be stored in the Cloud, then it has to be done in a manner transparent to users of the
filesystem. This means you have to store all the attributes of the file as well as the mapping to an object
name in the cloud somewhere on the SSD.

Saving the attributes of migrated files
Based on the CloudFS description so far, the attributes (such as size, timestamps and permissions) of a
big file need to be stored with a stub or proxy for the file on the SSD. You don’t need to store attributes of
big files in the cloud as well. CloudFS needs to work hard to make sure these small accesses go to the
SSD, not to the cloud. In particular, ls -lR reports attributes of all files, a small amount of information per
file, and it does not read the data of any file, so we would like it to not to incur the cost and latency of
cloud storage access.

The metadata about files that have been migrated to the cloud can be managed on SSD in a couple of
ways. One of them is to have a proxy file on the SSD to represent the file in cloud. Reporting the
attributes of this proxy file is **not** the correct information. So if a user makes a stat() call to get the
attributes of a file in the cloud, CloudFS should look into the proxy file, somehow, and fetch the cloud file’s
information from the proxy file’s user defined meta structure. There are many other ways that you could
store the attributes of the big files in the SSD --- in a stand-alone database, as a special directory
representation with extended attributes, or as data in an hidden file (such as resource forks in OS X).
Whichever technique you use, it is important to tolerate machine failures and CloudFS process crashes,
so that the file system is in a consistent state after rebooting and restarting. If you decide to keep meta
information in extended attributes of a proxy file, you could invent user-defined attribute names, beginning
with the string “user”, for example, one for every attribute of the migrated file and then make sure they are
updated on non-volatile storage in the future as well.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

7 of 19

Mapping files to objects in the cloud
The cloud storage is a specific key-value store. So in order to put a file in the cloud, you have to first
come up with a key (a name in the cloud) for the file you want to upload. You also need to be able to
regenerate or remember the key in order to read the file back from the cloud into SSD. One way to do this
is to use the original path name of the file as a name in the cloud storage so that you can infer location of
the file in the cloud storage from the original path name correctly. This might be desirable because it does
not incur extra storage space for a mapping table and you don’t need to take special care of consistency.
You might need to replace “/” in the original path name with other characters eligible for Amazon S3
naming rule such as “+”. Another way is to use an unique value, such as a creation sequence number or
creation timestamp as the object name. Other approach is to use the MD5 hash value of the data
contents. You may need to revisit this decision in part 2 though. Refer to the appendix for more
information on the usage of the cloud API.

Test and Evaluation
To get you started with FUSE, the project distribution includes skeleton code for CloudFS. These source
files compile without errors and include comments with a few pointers about how to use the FUSE library
to build a file system. You are expected to build your code using this skeleton code and include a
Makefile to compile it. Source code documentation will be a part of the grading; please write useful and
readable documentation (without generating an excess amount of it).

The project distribution also includes scripts to facilitate code testing. Note that these scripts will help you
with correctness and performance checks, but you may have to dig deeper to debug performance issues
(e.g. you should develop your own tests). And your projects will be graded using a different set of scripts
and data-sets.

The initial test script for Part 1 is called test_part1.sh. This script performs three operations: 1) extract a
TAR file into the CloudFS mount point, 2) read all the files in the directory to compute md5sum for each
file and 3) read attributes of all objects in the system using ls−laR. We also provide three TAR files of
different sizes to help you test your CloudFS. Each of these three operations is wrapped around two
measurement related actions.

The script will unmount and then re-mount the CloudFS filesystem to eliminate the benefits of the OS
buffer cache from the performance numbers. Second, each operation will generate statistics of block IO
and cloud storage access that happened during each operation. We use ‘vmstat -d’ for the SSD and
cloud S3 stats (number of operations, bytes transferred, maximum capacity usage) before and after each
of the three operations and then parse the output using a helper program. Read the man page for vmstat
to understand its output format. The README file in the scripts directory has details about using this
script.

In addition to performance, there are three correctness requirements for Part 1: 1) The files in CloudFS
should be identical to the files in the tarball, 2) no closed file larger than the threshold is stored in SSD
and 3) reading metadata only (e.g. ls -laR) should not cause any cloud storage access. These
correctness requirements lead to a large portion of the grade in Part 1. Extra score will be given
according to how efficiently you keep the meta data in SSD.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

8 of 19

Part 2 : Block-level Deduplication
In Part 1, you were able to transparently increase the size of the file system by backing it up with infinite
storage provided by the cloud. Every file that was stored in the cloud increased the cost of storage. If you
have a lot of files that have the same or nearly the same content, you pay the price of storing the
duplicate content again and again. Can we devise a way to reduce these duplicate storage costs? Yes --
we “deduplicate” the data in the cloud.

Deduplication is a term used when a storage system tries to discover duplication among unrelated files
and store identical content only once.

The simplest way to think about deduplication is to compute a checksum or hash of the entire file, or
perhaps each file block, storing the file’s or block’s hash in a large lookup table. When a new file (or
block) is “written” to the storage system, compute its hash and look up this hash in the lookup table. If the
lookup table does not contain the hash, then this data is new, because identical content ensures identical
hashes, so store the new data, insert the new hash and the location of the new data into the lookup table
and set the file (or block) metadata to point to the newly stored data. If the lookup table does contain the
hash, then the data **might** already be stored in the storage system. Some deduplication systems do a
bit by bit comparison of the new data and the stored data with the same hash, but others select hashes
with a lot of bits and strong randomness properties (MD5 for example) so that they can assert that the
chance of an accidental collision of two different data objects with the same hash is much much lower
than the chance of the data being returned by storage devices incorrectly (1 mis-read bit in 10^21 bits
read on many hard disks, for example) -- these systems do not verify a hash collision, but instead assume
identical hashes mean identical data without checking.

If the hashes and data match, the lookup table also provides the location of the stored copy of the data,
so you can drop the new copy and use the stored copy’s location in the file (or block) metadata. Storage
used in the cloud will now be less than if we had not computed and checked hashes.

The “unit” or granulatity of deduplication
Using MD5 it is pretty easy to notice identical files. For example:

$	
 ls	
 -­‐l	
 bigfile
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
 1	
 palampal	
 palampal	
 20480	
 Mar	
 	
 6	
 05:03	
 bigfile

$cp	
 bigfile	
 copy-­‐of-­‐bigfile

$md5sum	
 bigfile	
 copy-­‐of-­‐bigfile	

7fbc9616d4d275d05629e5cf9415495e	
 	
 bigfile
7fbc9616d4d275d05629e5cf9415495e	
 	
 copy-­‐of-­‐bigfile

You could build a deduplicating cloud storage system based on this style (whole file) of defining the
“object” to be deduplicated. It is the easiest to implement, but if the file is an email message with an
embedded 10 MB powerpoint presentation, and the 10 MB powerpoint presentation is already in a file in
the cloud, then the mail message including the incoming 10 MB powerpoint presentation is not identical to
the 10 MB powerpoint file in the cloud, and we end up with 20 MB in the cloud. And if the presentation
was broadcast to everyone in the department, 1 GB of the same 10 MB powerpoint presentation is not
unlikely.

But whole file deduplication works only for identical files that are bitwise equivalent. Consider the
following not unusual file editing scenarios. Often we create files by gradually appending data to the file
over time. We also make copies of files and edit them. A single bit change (bit flip / addition / deletion) in

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

9 of 19

the file will cause the MD5 hash values to differ, thereby forcing us to store two copies of nearly identical
content.

$	
 ls	
 -­‐l	
 smallfile
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
 1	
 palampal	
 palampal	
 	
 	
 	
 	
 1	
 Mar	
 	
 6	
 05:06	
 smallfile

$cat	
 ./bigfile	
 ./smallfile	
 >	
 ./bigfile-­‐smallfile

$md5sum	
 ./bigfile	
 ./bigfile-­‐smallfile
7fbc9616d4d275d05629e5cf9415495e	
 	
 bigfile
3367778e0f263a7879daf956439439d8	
 	
 bigfile-­‐smallfile

One solution to the above problem is to split the file into smaller blocks of fixed size and compute the
hash for every block. Now the granularity of detecting duplicated content comes down to the block-size,
typically something like 4KB. Note that most of the content in the two files above are identical, except for
the last byte that was appended. We can apply the same dedup (deduplication is often nicknamed dedup)
technique as before, but at the block level.

In the below example, we split the files into chunks of 4KB each. The first five chunks from each file will
be the same and have the same MD5 hash. So we need to only store the sixth chunk of the second file.
All other chunks can be deduped, thus saving us the cost of storage.

$	
 split	
 -­‐b	
 4096	
 -­‐d	
 ./bigfile	
 bigfile

$	
 md5sum	
 ./bigfile0*
463829a1a37bb5fbd36197d1b4b459bc	
 	
 bigfile00
98e8b11cc2c8702066d2323d0ad5c3fa	
 	
 bigfile01
ccaad733a231d62c5fdd777d808f15b2	
 	
 bigfile02
130702081e45ffd7facaab4a52da91f2	
 	
 bigfile03
e13dd6730e63115d52afe056939c5573	
 	
 bigfile04

$	
 cat	
 ./bigfile	
 ./smallfile	
 >	
 ./bigfile-­‐smallfile

$	
 split	
 -­‐b	
 4096	
 -­‐d	
 ./bigfile-­‐smallfile	
 	
 bigfile-­‐smallfile	

$	
 md5sum	
 bigfile-­‐smallfile0*
463829a1a37bb5fbd36197d1b4b459bc	
 	
 bigfile-­‐smallfile00
98e8b11cc2c8702066d2323d0ad5c3fa	
 	
 bigfile-­‐smallfile01
ccaad733a231d62c5fdd777d808f15b2	
 	
 bigfile-­‐smallfile02
130702081e45ffd7facaab4a52da91f2	
 	
 bigfile-­‐smallfile03
e13dd6730e63115d52afe056939c5573	
 	
 bigfile-­‐smallfile04
9fe0f7244a7da1d3f5b3d21f9b1e1ea8	
 	
 bigfile-­‐smallfile05

Block level deduplication has solved our problem in the above case, but this (naive) style of block level
deduplication (i.e dividing the file into fixed size 4KB blocks) does not work as well if content is duplicated
but misaligned.

Lets revisit the above bigfile example. Instead of appending data to the end of bigfile, we will prepend (i.e.
add at the beginning) a little data to bigfile and see how the fixed block size solution works.

$	
 cat	
 ./smallfile	
 ./bigfile	
 	
 >	
 ./smallfile-­‐bigfile

$	
 split	
 -­‐b	
 4096	
 -­‐d	
 ./smallfile-­‐bigfile	
 	
 smallfile-­‐bigfile	

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

10 of 19

$	
 md5sum	
 ./bigfile0*
463829a1a37bb5fbd36197d1b4b459bc	
 	
 bigfile00
98e8b11cc2c8702066d2323d0ad5c3fa	
 	
 bigfile01
ccaad733a231d62c5fdd777d808f15b2	
 	
 bigfile02
130702081e45ffd7facaab4a52da91f2	
 	
 bigfile03
e13dd6730e63115d52afe056939c5573	
 	
 bigfile04

$	
 md5sum	
 smallfile-­‐bigfile0*
f7290d75e8f81c8acd21ee350f759bfe	
 	
 smallfile-­‐bigfile00
353d2c12147583f287de0576768f957f	
 	
 smallfile-­‐bigfile01
0c8d327ab961c780d74b2bbd9d880b07	
 	
 smallfile-­‐bigfile02
fc69cbbec0683ed5250cfe59091a0d5e	
 	
 smallfile-­‐bigfile03
dbd09bbbbf0fa8657fcb3c01f7203ed6	
 	
 smallfile-­‐bigfile04
15f41a2e96bae341dde485bb0e78f485	
 	
 smallfile-­‐bigfile05

You can clearly see in the above output that all the MD5 hashes are now different, even though we
prepended just one byte of data to the beginning of the bigfile.

The problem is that arbitrarily splitting a file into fixed size chunks is very easily misaligned. What we
need is an algorithm that divides up data sequences into subsequences based on the content itself, so
that files with subsequences that are the same are likely to be split so the parts that are the same
becomes separate identical chunks.

We are NOT asking you to invent such a content specific splitting algorithm. That invention, Rabin
Fingerprinting, was a big deal. The key idea is that a specific pattern/value of a short hash of a rolling
window on the file can be declared to be the start of a content subsequence, called a segment, so any
content that is identical through at least two of these “start subsequence” hash values will decompose into
segments where at least the “middle” segments are the same and not misaligned.

In this project we will not require you to understand Rabin Fingerprinting at a deep level. We will provide
you with a library for that. However, for more historical and advanced reading, please see the following
papers:
Udi Manber, “Finding Similar Files in a Large File System”, USENIX Winter 1994 Technical
Conference Proceedings, Jan. 17-21, 1994, San Francisco, CA.

Benjamin Zhu, Kai Li, Hugo Patterson, “Avoiding the Disk Bottleneck in the Data Domain
Deduplication File System”, 6th USENIX Conference on File and Storage Technologies, Feb 26-29,
2008, San Jose, CA

An important consequence of using a splitting scheme like Rabin Fingerprinting is that segments are NOT
all the same size. Each segment might be a very different size, in fact. An important parameter to Rabin
Fingerprinting is the average segment size, which can be tuned to different values. This average
segment size is the granularity for this scheme. For practical reasons it is also likely that segments will be
required to be between a minimum and a maximum size.

One of the fundamental choices when designing a deduplication system is the granularity over which you
wish to detect duplicate content. Larger granularity requires less metadata (pointers in the files and
entries in the lookup table) and less frequent lookups, but larger granularity also leads to more identical
data that ends up combined with non-identical data in the same segment, or less space savings.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

11 of 19

Design specification
The goal here is to implement variable size segment deduplication for the data content stored in CloudFS.
To simplify the implementation, we ask you to apply deduplication only to files that are to be stored in the
cloud (i.e files bigger than a given threshold, not all files). So instead of automatically shipping the large
file to the cloud (as in Part 1), you will hand it over to a dedup code layer, which should then do its magic
and only store unique segments in the cloud, thereby reducing the data capacity consumption on cloud
storage and the corresponding data transfer costs. Your design and implementation of a deduplicating
system will be measured against lowering these cost metrics.

You should be able to enable/disable the de-duplication for one run of your operation through an
argument on this invocation command line. Deduplication should be enabled by default. Specifying ‘--no-
dedup’ should run the system without deduplication. This will aid you in debugging and us in testing your
program. A layered design with clearly defined interfaces will help you here and throughout the project.
You can assume that we will not be switching dedup modes during the running of your file system.

./CloudFS [--no-dedup] [--other-args]

There are various approaches to designing the dedup subsystem, but all designs should be able to cope
with addition and deletion of a few bytes in the files without losing (all of) the cost savings benefit. The
implementation will be measured against the total cost savings in the cloud.

Identifying the segment boundaries
We will be providing you with an implementation of the Rabin Fingerprinting algorithm along with the code
to partition the file stream into segments. You are free to use this or write you own (we do not intend to
give bonus points for doing your own Rabin Fingerprinting implementation). A sample program that prints
out the MD5 checksums of segments in a given file will also be included along with the support code.

To understand the Rabin Fingerprinting algorithm first look at the way it uses a rolling hash algorithm,
hashing a window of data in the file at every byte offset. A fast implementation incrementally calculates
the hash values over a given window of bytes (say ‘w’ bytes). We start at the first byte and slide the
window forward, one byte at a time, while calculating the rabin fingerprint at every byte offset in the file.
To determine a segment boundary, we look for a specific bit pattern in the generated rabin fingerprints.
For example we can mark a segment boundary every time all ‘b’ least significant bits (LSB) of the rabin
fingerprint are equal to zero, so that 2^b bytes will be the average segment size. To guard against a string
of nulls in the data or a huge segment, there will also be a minimum segment size and for ease of
implementation, a maximum segment size.

Your CloudFS implementation should support passing in the average segment size and window size for
the rabin fingerprinting algorithm to override the defaults.

./CloudFS [--avg-seg-size <bytes>] [--rabin-window-size <number>] [--other-args]

Identifying the duplicated segments
Consider a file system having 40 GB of data with an average segment size of 4 KB. In this case you will
end up storing and searching through 10 million hash values. And 40 GB, to be fair, is not a lot of data for
a file system that is backed by the cloud. So you need a good algorithm to search through the hash
values efficiently. The choices range from a simple hash table implementation to databases with bloom
filters or B+ trees.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

12 of 19

Another problem is that you may (in fact, should) not be able to fit everything in this lookup table into main
memory. In the real world this data structure needs to be mostly on storage, with only as much in memory
as it takes to go fast. The cost of reconstructing this data structure at startup can also be prohibitive, so
many implementations of this data structure have to be persistently updated on disk.

To simplify the design and implementation, we allow you to assume that all the hash values of all
segments in the filesystem fit into main memory. In this case a simple hash table should be sufficient, if it
is persistently backed on SSD. We will also allow you to recreate the data structure by doing a LIST on
the segments stored in the cloud, provided you have a good naming scheme for the segments.

We are not looking for a fancy data structure; make it fast, persistent, small and above all simple. Note
that the hash values that are being stored and searched in this lookup table are MD5 hashes of the
content in the segments; these hashes have nothing to do with the hash that Rabin Fingerprinting
algorithm generates internally to select the segment boundaries.

Mapping files to segments
Last piece of the dedup puzzle is to tie down the newly created segments to the file they belong to.
Segment naming and management is internal to your file system and are not exposed to the user. You
have to build and maintain a mapping of CloudFS “big file” name to a list of segments. You can come up
with various ways of achieving this mapping. You could create a on-SSD data structure that maps a key
(filename) to values (all the segments that belong to the file). One of the simplest approaches is to use
the hidden proxy file that you may have used in Part 1 to store the attributes of the file in cloud. You could
store the segment identifiers in this file. Do note that you need to also maintain the correct ordering of the
segments.

Deleting segments on file deletion
You must be able to recover the cloud storage space used by a segment whenever all files to which the
segment belongs gets deleted. To achieve this, you may come up with a reference counting scheme for
the segments stored in the cloud. You may choose to store the reference counts as part of the lookup
table that is used to search for duplicated segments.

Test and Evaluation
Your Part 2 program will be tested for the amount of capacity and cost savings that you can bring about
by implementing deduplication. While correctness, performance and cost are all important, correctness is
the most important.

The test script for Part 2 generates a large number of big files. The files will sometimes share data chunks
with other files. At the end of test, capacity consumption of cloud storage is measured. As in Part 1 tests,
the Part 2 test is also wrapped around two measurements (vmstat and cloud stats). Capacity savings by
deduplication is most important for grading Part 2, but a part of the grade will depend on how well you
manage segment metadata on SSD and minimize cloud operation costs.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

13 of 19

Part 3 : File-level Caching on SSD
In this part, you will implement file level caching for the CloudFS. As mentioned in Part 1, cloud storage
charges for operations and it has a very much longer average access latency compared to SSD. Your
goal for caching is to improve performance and minimize cloud operation costs. This is actually quite
complicated because moving medium sized files out of the cloud costs more, per byte moved, than a
larger file, because of the fixed per-operation cost, and because deduplication is more effective when the
average segment size is smaller. The best policy is very workload dependent, so we will be interested in
your reasons for a selected policy, and you explanation for the tradeoffs.

Design specification
The direct goal of this part is to build a file-based cache layer between the core part of the hybrid file
system from Part 1 and the deduplication in Part 2. This cache layer caches whole files in a hidden
directory, for example “.cache” on SSD.

You should be able to enable/disable the cache for one run of your operation through an argument on this
invocation command line. Caching should be enabled by default. Specifying ‘--no-cache’ should run the
system without caching. This will aid you in debugging and us in testing your program. You can assume
that we will not be switching modes during the running of filesystem.

The size limit of the hidden cache directory is given as an input parameter. You should make sure that the
size of hidden directory for caching does not exceed the given cache size.

./CloudFS [--no-cache] [--cache-size cache_size] [--other-args]

Cache replacement policy
A cache is never big enough for all files but until the cache is (near) full it is reasonable not to migrate any
big files to the cloud. What files should be moved to the cloud when you must move something? This is a
cache replacement policy. You can imagine that frequently accessed files should reside in local storage,
to prevent unnecessary transfers from the cloud, to keep medium sized file access response times small
as well as limiting data transferring costs. Note that moving many, small, rarely read files to the cloud may
cost more than moving a slightly more recently used large file. You are encouraged to design more
sophisticated replacement algorithms to reduce response time and cloud storage costs.

As in Part 1, open files must be entirely in SSD, and are not considered part of the cache. In real file
systems, sharing space with huge open files is a challenging and messy. For this project you are allowed
to assume infinite hidden space for open files only (not closed files).

Persistency of cache contents

The whole file cache in a SSD is persistent storage space. Therefore, you can reuse the cache contents
and get benefits from caching even across multiple remounts. To make this work, you must be able to
recognize each file in the cache without having a record in memory of putting it there. This should sound
a bit like fsck. At mount time, CloudFS can scan its cache to figure out what is contained there and build
an in-memory lookup table describing the cache contents. Figuring out what is contained in the cache will
require you to define and manage on-SSD metadata for the cache. This might be in the construction of a
name, or attributes, or even in the links in the small stub files in the SSD namespace.

For simplicity of the fsck cases, you can assume that the cloud storage service never crashes and never
loses, damages or adds to things you have given it.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

14 of 19

Evaluation and Testing
Your Part 3 CloudFS program will be tested for the amount of performance and cost savings that you can
bring about by implementing caching.

Part 3 test consists of two sub tests: a stress test and a cache test. In the stress test, the script will
generate random sized files which may share chunks of data, and verify correctness. In the cache test,
the test will run a set of workloads and performance metrics are measured. In Part 3, the cost savings
provided by the cache is the most important part in grading, after correctness.

Project Logistics

Resources
The following resources are available in the project distribution on the course website.

• CloudFS skeleton code: The files inside src/cloudfs/ are the skeleton code that you will modify and
extend for your project. “cloudfs.h” and “cloudfs.c” contain the skeleton code for FUSE file system.
“cloudapi.h” and “cloudapi.c” contain the wrapper functions of libs3 C library. The file cloud-example.c
gives you an example of how to use our wrapper of libs3 to communicate with the Amazon S3 simulation
server. The file rabin-example.c gives you an example for Rabin Segmentation API. Use the “make”
command under src/cloudfs/ to create the binary code of “cloudfs” in the directory “src/build/bin/cloudfs”.

• Amazon S3 simulation web server: The file “src/s3-server/s3server.pyc” is the compiled python code
that simulates Amazon S3 storage service. To run the web server, you can use the command line:
“python s3server.pyc”. The web server depends on the Tornado web server framework (http://www.
tornadoweb.org/), which has been already installed inside the Virtual Box Image. It stores all the files by
de- fault in /tmp/s3/ (do not change this). To enable logging, you can simply run it with parameter “--
verbose”. More options can be checked out by using “--help” option.

• VirtualBox disk images: There are two images used by Virtual Box: ubuntu10.10-OS.vdi which is the OS
disk image and SSD.vdi which is the SSD disk image. Instructions to setup VirtualBox using these .vdi
files are included in the README file after you unpack the vbox images.tar.gz files.

• VirtualBox setup scripts: There are three scripts, format disks.sh, mount disks.sh and umount disks.sh,
that are required to manage the VirtualBox environment with the SSD.

All the scripts are placed in the scripts/ directory and have a README file that describes their usage in
details. NOTE that these scripts are provided for your assistance; it is a good idea to write your own
scripts to debug and test your source code.

Deliverables
The homework source code and project report will be graded based on the criteria given below (note: this
is the rough criteria and is subject to change).

25 % Part 1 (Hybrid FS)

25 % Part 2 (Deduplication)

25 % Part 3 (Caching)

25 % Project report, source code documentation, etc. Target size should be 5 or fewer pages.

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

15 of 19

For each of the Part 1, 2 and 3 milestones, you should submit a tar file that contains only a directory “src/”
with the source files of CloudFS. You should use the same code structure as given in handout, and make
sure that there exists a Makefile that can generate the binary “src/build/bin/cloudfs”. We will test this in
Autolab, and your code should compile correctly (Test this yourself!).

In your final “report” submission, you should submit a file “andrewId.tar.gz” which should include at least
the following items (and structure):

• src/ directory with the source files, and any test suites you used for evaluation in your report. (Please
keep the size of test suite files small (≤ 1MB), otherwise omit them.)

• andrewId.pdf containing your 5-page report

• suggestions.txt file with suggestions about this project (what you liked and disliked about the project and
how we can improve it for the next offerings of this course).

Source code documentation: The src/ directory should contain all your source files. Each source file
should be well commented highlighting the key aspects of the function without a very long description.
Feel free to look at well-known open-source code to get an idea of how to structure and document your
source distribution.

Project report: The report should be a PDF file no longer than 5 pages in a single column, single-spaced
10-point Times Roman font with the name AndrewID.pdf. The report should contain design and
evaluation of all three parts, i.e. discuss Part 1, Part 2 and Part 3 goals, design, evaluation and evidence
of success. The design should describe the key data-structures and design decisions that you made;
often figures with good descriptions are helpful in describing a system. The evaluation section should
describe the results from the test suite provided in the hand-out and your own test suite. Your report
should explicitly answer the following questions explicitly:

1 Explain all the cost/performance tradeoffs that you did as part of this project

2 Explain the tradeoffs in choosing the right average segment size in deduplication

3 If the system crashes, what might go wrong when restarting your CloudFS, that is, what should
CloudFS-fsck do ?

How to submit?

All your submissions will go to Autolab. For the milestones, Autolab’s results will be used in your grade,
but for the final grading we will do many tests that Autolab does not run for you. Autolab only runs compile
scripts and basic test scripts we have provided in the handout. The goal of milestone submission is to
ensure that you make steady progress. For the final submission, include both source code and project
report as described above. Please use the same directory structure provided in handout to ease our
grading.

Useful Pointers
• http://fuse.sourceforge.net/ is the de facto source of information on FUSE. If you download the latest
FUSE source code, there are a bunch on the examples included in the source. In addition, the
documentation about FUSE internals is helpful in understanding the behavior of FUSE and its data-
structures: http://fuse.sourceforge.net/doxygen/

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

16 of 19

You can Google for tutorials about FUSE programming. Some useful tutorials can be found at:

http://www.ibm.com/developerworks/linux/library/l-fuse/

http://www.cs.nmsu.edu/pfeiffer/fuse-tutorial/

• Disk IO stats are measured using vmstat -d. More information on can be found using the man pages.
btrace and blktrace are useful tools for tracing block level IO on any device. Read their man pages to
learn about using these tools and interpreting their output.

• We have provided instructions to setup VirtualBox in a README file in the vbox_images.tar.gz for this
project. More information about VirtualBox can be found at the following URLs: http://www.virtualbox.org
http://www.virtualbox.org/wiki/End-user_documentation

• We have provided instructions on Amazon S3 API specifications. More information about Amazon S3
API specifications can be found at the following URLs:
http://libs3.ischo.com.s3.amazonaws.com/index.html http://aws.amazon.com/s3/

Appendix

Amazon S3 API Specifications
To simulate the Amazon S3 cloud storage environment, we provide you with a web server running locally
in Virtual Box. This web server supports basic Amazon S3 compatible APIS including: LIST, GET, PUT,
DELETE on buckets and objects. On the client slide, you will use a open-source S3 client-library called
“libs3” in FUSE to allow CloudFS to communicate with web server.

The libs3 C library (http://libs3.ischo.com/index.html) provides an API for accessing all of S3’s func-
tionality, including object accessing, access control and so on. However, in this project, we only need to
use a subset of its full functionality. For your convenience, we provide a wrapper of libs3 C libaray in files
“cloudapi.h” and “cloudapi.c”, although you are free to use original libs3 C library for better performance.
All functions in the wrapper are listed in “cloudapi.h”. The following example shows how to use these
wrapper functions:
1 FILE *outfile;

2 int get_buffer(const char *buffer, int bufferLength) {

3 return fwrite(buffer, 1, bufferLength, outfile);

4 }

5

6 void test() {

7 cloud_init("localhost:8888");

8 outfile = fopen("./test", "wb");

9 cloud_get_object("test_bucket", "test", get_buffer);

10 fclose(outfile);

11 cloud_destroy();

12}

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

17 of 19

To use any wrapper function, you first have to initialize a lib3 connection by calling
“cloud_init(HOSTNAME)” (shown in line 7), where HOSTNAME specifies the IP address that the S3 web
server binds to. Line 8 uses the call “cloud_get_object” to download the file “S3://test_bucket/test” from
cloud to a local file “./test”. The “cloud_get_object” call, takes a bucket name, a file name, and a callback
function as input parameters. In the internal implementation of “cloud_get_object” call, it retrieves data
from S3 server into a buffer, and once the buffer is full or the whole object is downloaded, it will then pass
the buffer to the callback function for data processing. Line 2 to 4 shows a callback function that simply
writes the received data into the local file system. For more examples of using the wrapper of libs3, look
at the sample code “src/cloudfs/cloud-example.c”.

Rabin Segmentation API Specifications
The Rabin segmentation API should be used to define the segment boundaries. First you need to
initialize the data structures by calling rabin_init(). Once initialized, use rabin_segment_next() to run the
contents of a file through the Rabin fingerprinting algorithm. You may have to call the latter function
multiple times in a loop. Once you are done with all the fingerprinting for one file, you can call rabin_free
at the end. You can user rabin_reset() re-initialize the datastructure. We suggest you use initialize only
once at startup and then use rabin_reset() to use the same datastructure for multiple files. An example
program that uses this API is provided with the source code. It prints out the segment lengths and their
MD5 sums. To build the example do ‘make rabin-example’.

cloudfs $ make rabin-example
build/obj/rabin-example.o: Compiling object
build/bin/rabin-example: Building executable

cloudfs$ ls -l /tmp/bigfile /tmp/smallfile
-rw-r--r-- 1 guest guest 20480 2013-03-17 17:06 /tmp/bigfile
-rw-r--r-- 1 guest guest 1 2013-03-17 17:07 /tmp/smallfile

cloudfs$ cat /tmp/bigfile | ./build/bin/rabin-example
3190 cb26f4d170a93009e0d1c5b29b31796e
7862 409348f2fdd9aa2d18641a0d3d113108
3868 5e27fd72f47bb5a263f6443e39a8c5d7
5560 d61085ec3b8749ff57c4bbb4590760b3

cloudfs$ cat /tmp/smallfile /tmp/bigfile | ./build/bin/rabin-example
3191 c62235153f6148d2cc9fb94ef576b57b
7862 409348f2fdd9aa2d18641a0d3d113108
3868 5e27fd72f47bb5a263f6443e39a8c5d7
5560 d61085ec3b8749ff57c4bbb4590760b3

That’s the magic of rabin fingerprinting at work!!!

Below is the API Interface header dedup.h :

/**
	
 *	
 @file	
 dedup.h
	
 *	
 @author	
 Pavan	
 Kumar	
 Alampalli
	
 *	
 @date	
 15-­‐mar-­‐2013
	
 *	
 @brief	
 Interface	
 header	
 for	
 dedup	
 library

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

18 of 19

	
 *
	
 *	
 This	
 header	
 file	
 defines	
 the	
 interface	
 for	
 the	
 dedup	
 library.
	
 *	
 The	
 interface	
 follows	
 the	
 basic	
 init,	
 call-­‐in-­‐a-­‐loop,	
 free	

	
 *	
 pattern.	
 	
 It	
 also	
 declares	
 an	
 opaque	
 structure	
 (rabinpoly_t)	

	
 *	
 that	
 will	
 be	
 used	
 by	
 all	
 the	
 functions	
 in	
 the	
 library	
 to	
 maintain	

	
 *	
 the	
 state.	

	
 *
	
 *	
 Note	
 that	
 the	
 memory	
 allocated	
 by	
 rabin_init()	
 has	
 to	
 be	
 freed
	
 *	
 the	
 calling	
 rabin_free()	
 in	
 the	
 end.	
 You	
 can	
 reuse	
 the	
 same	

	
 *	
 rabinpoly_t	
 structure	
 by	
 calling	
 a	
 rabin_reset().
	
 */

#ifndef	
 _DEDUP_H_
#define	
 _DEDUP_H_	

/**
	
 *	
 Rabin	
 fingerprinting	
 algorithm	
 structure	
 declaration
	
 */
struct	
 rabinpoly;
typedef	
 struct	
 rabinpoly	
 rabinpoly_t;

/**
	
 *	
 @brief	
 Initializes	
 the	
 rabin	
 fingerprinting	
 algorithm.	

	
 *
	
 *	
 This	
 method	
 has	
 to	
 be	
 called	
 in	
 order	
 to	
 create	
 a	
 handle	
 that	

	
 *	
 can	
 be	
 passed	
 to	
 all	
 other	
 functions	
 in	
 the	
 library.	
 The	
 handle
	
 *	
 should	
 later	
 be	
 free'ed	
 by	
 passing	
 it	
 to	
 rabin_free().	

	
 *	

	
 *	
 The	
 window	
 size	
 is	
 the	
 size	
 of	
 the	
 sliding	
 window	
 that	
 the	

	
 *	
 algorithm	
 uses	
 to	
 compute	
 the	
 rabin	
 fingerprint	
 (~32-­‐128	
 bytes)
	
 *
	
 *	
 @param	
 [in]	
 window_size	
 Rabin	
 fingerprint	
 window	
 size	
 in	
 bytes
	
 *	
 @param	
 [in]	
 avg_segment_size	
 Average	
 desired	
 segment	
 size	
 in	
 KB
	
 *	
 @param	
 [in]	
 min_segment_size	
 Minumim	
 size	
 of	
 the	
 produced	
 segment	
 in	
 KB
	
 *	
 @param	
 [in]	
 max_segment_size	
 Maximum	
 size	
 of	
 the	
 produced	
 segment	
 in	
 KB
	
 *
	
 *	
 @retval	
 rp	
 Pointer	
 to	
 a	
 allocated	
 rabin_poly_t	
 structure
	
 *	
 @retval	
 NULL	
 Incase	
 of	
 errors	
 during	
 initialization
	
 */
rabinpoly_t	
 *rabin_init(unsigned	
 int	
 window_size,
	
 	
 	
 	
 unsigned	
 int	
 avg_segment_size,	

	
 	
 	
 	
 unsigned	
 int	
 min_segment_size,
	
 	
 	
 	
 unsigned	
 int	
 max_segment_size);

/**
	
 *	
 @brief	
 Find	
 the	
 next	
 segment	
 boundary.
	
 *
	
 *	
 Consumes	
 the	
 characters	
 in	
 the	
 buffer	
 and	
 returns	
 when	
 it
	
 *	
 finds	
 a	
 segment	
 boundary	
 in	
 the	
 given	
 buffer.	
 The	
 segments	

	
 *	
 defined	
 by	
 this	
 function	
 will	
 never	
 be	
 longer	
 than	
 max_segment_size
	
 *	
 and	
 will	
 never	
 be	
 shorter	
 than	
 min_segment_size.	

	
 *
	
 *	
 It	
 returns	
 the	
 number	
 of	
 bytes	
 processed	
 by	
 the	
 rabin	
 fingerprinting
	
 *	
 algorithm.	
 Note	
 that	
 it	
 can	
 be	
 <=	
 the	
 number	
 of	
 bytes	
 in	
 the
	
 *	
 input	
 buffer	
 depending	
 on	
 where	
 the	
 new	
 segment	
 was	
 found	
 (similar
	
 *	
 to	
 shortcounts	
 in	
 write()	
 system	
 call).	
 So	
 you	
 may	
 need	
 to	
 call	

	
 *	
 this	
 function	
 in	
 a	
 loop	
 to	
 consume	
 all	
 the	
 bytes	
 in	
 the	
 buffer.
	
 *
	
 *	
 @param	
 [in]	
 rp	
 Pointer	
 to	
 the	
 rabinpoly_t	
 structure	
 returned	
 by	
 rabin_init
	
 *	
 @param	
 [in]	
 buf	
 Pointer	
 to	
 a	
 characher	
 buffer	
 containing	
 data
	
 *	
 @param	
 [in]	
 bytes	
 Number	
 of	
 bytes	
 to	
 read	
 from	
 the	
 buf
	
 *	
 @param	
 [out]	
 is_new_segment	
 Pointer	
 to	
 an	
 integer	
 flag	
 indicating	
 segment
	
 *	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 boundary.	
 1:	
 new	
 segemnt	
 starts	
 here
	
 *	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0:	
 otherwise.
	
 *
	
 *	
 @retval	
 int	
 Number	
 of	
 bytes	
 processed	
 by	
 the	
 rabin	
 algorithm.
	
 *	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐1	
 	
 Error	
 	
 	
 	
 	

15/18-746 Advanced Storage Systems Lab #2 (Spring 2013)

19 of 19

	
 */
int	
 rabin_segment_next(rabinpoly_t	
 *rp,	

	
 	
 	
 	
 const	
 char	
 *buf,	

	
 	
 	
 unsigned	
 int	
 bytes,
	
 	
 	
 	
 int	
 *is_new_segment);

/**
	
 *	
 @brief	
 Resets	
 the	
 Rabin	
 Fingerprinting	
 algorithm's	
 datastructure
	
 *
	
 *	
 Call	
 this	
 function	
 to	
 reuse	
 the	
 rp	
 for	
 a	
 different	
 file	
 or	
 stream.
	
 *	
 It	
 has	
 the	
 same	
 effect	
 as	
 calling	
 rabin_init(),	
 but	
 does	
 not	
 do
	
 *	
 any	
 allocation	
 of	
 rabinpoly_t.
	
 *
	
 *	
 @param	
 [in]	
 rp	
 Pointer	
 to	
 the	
 rabinpoly_t	
 structure	
 returned	
 by	
 rabin_init
	
 *
	
 *	
 @retval	
 void	
 None
	
 */
void	
 rabin_reset(rabinpoly_t	
 *rp);

/**
	
 *	
 @brief	
 Frees	
 the	
 Rabin	
 Fingerprinting	
 algorithm's	
 datastructure
	
 *
	
 *	
 This	
 function	
 should	
 be	
 called	
 at	
 the	
 end	
 to	
 free	
 all	
 the	
 memory	

	
 *	
 allocated	
 by	
 rabin_init.
	
 *
	
 *	
 @param	
 [in]	
 p_rp	
 Address	
 of	
 the	
 pointer	
 returned	
 by	
 rabin_init()
	
 *
	
 *	
 @retval	
 void	
 None
	
 */
void	
 rabin_free(rabinpoly_t	
 **p_rp);

#endif	
 /*	
 _DEDUP_H_	
 */

