
746, Spring 2011, Greg Ganger and Garth Gibson © 1

Project 2

Storage Management

in a

Hybrid SSD/HDD File system

Part 2

Part 1

746, Spring 2011, Greg Ganger and Garth Gibson © 2

Project due on April 11th (11.59 EST)

  Start early
  Milestone1: finish part 1 by March 25th
  Milestone 2: finish part 2 by April 6th

  Last you a few days to work on performance analysis and
report writing

  “Oh well, I will write the report on April 11th”
  Bad idea
  30% of the project grade is divided among project report

and source code correctness/quality
  Project report consists of design overview and performance

analysis of your results

746, Spring 2011, Greg Ganger and Garth Gibson © 3

Summary of the project

  Write a user-level file system called MelangeFS and
two simple storage management applications
  File system in user-space (FUSE) toolkit
  Code to be written in C

  Testing and evaluation setup
  All development and testing done in Linux using the

VirtualBox virtual machine setup
  Your code must compile in the Linux images on the virtual

machine
  Demo after the slides!

746, Spring 2011, Greg Ganger and Garth Gibson © 4

Part 0: Primer on the FUSE toolkit

  Interposition layer to
redirect VFS calls to
your user-level code

  FUSE client code is
programmable
  Talk to remote nodes
  Interact with local FSs

  FUSE clients need to
implement a minimal
set of protocols

Application

VFS layer

FUSE
module

user-level code
(FUSE client)

Linux
ext3

746, Spring 2011, Greg Ganger and Garth Gibson © 5

FUSE API

  Supports most VFS
calls
  This API is the “high-

level” interface using
path names

  You don’t need to
implement all the calls
  Simple systems, such

as MelangeFS, can
getaway with basic calls

  More in the demo!

746, Spring 2011, Greg Ganger and Garth Gibson © 6

Part 1: Hybrid Flash-Disk Systems

  Hybrid storage systems: Best of both worlds
  Capacity cost closer to magnetic disk
  Random access speed closer to flash

  MelangeFS is a layered file system
  Higher-level file system (MelangeFS) splits data between

the two devices
  Each device is running it’s own local file system (Ext2)

which you will not modify

  Key idea
  All small objects in flash, all large objects in magnetic disk
  All small IO (metadata access) should go to the flash

746, Spring 2011, Greg Ganger and Garth Gibson © 7

Size-based data-placement
1)  App does create(f1.txt)

2)  MelangeFS creates “f1.txt” in SSD

3)  Ext2 on SSD returns a handle for
“f1.txt” to FUSE

4)  FUSE “translates” that handle into
another handle which is is returned
to the app

5)  App uses the returned handle to
write to “f1.txt” on the SSD

6)  When “f1.txt” grows big, MelangeFS
moves it to HDD, and “f1.txt” on the
SSD becomes a symlink to the file
on HDD

7)  Because this migration has to be
transparent, app continues to write
as before (all writes go to the HDD).

Your FUSE file system (melangefs)

SSD (ext2) HDD (ext2)

Application

1

2

3

4

5 6 7

<F1>
…

Skeleton Code for melangefs is
provided to you in the distribution

746, Spring 2011, Greg Ganger and Garth Gibson © 8

Attribute replication: avoid small IO on Disks

  After migration from SDD
to HDD, “ls –laR” will
follow the symlink and get
the attributes from HDD

  To avoid doing small IOs
on HDD, replicate “real”
attributes from HDD to
SSD

  Stored as empty, hidden
“dot” file whose xattrs
replicate the “real”
attributes from HDD

746, Spring 2011, Greg Ganger and Garth Gibson © 9

Logical and Physical View of MelangeFS

/

dirc

tiny

dira dirb

Hybrid file system

1B file 

directories 

big 1GB file 

/

dirc

tiny

dira dirb

Flash file system

1B file 

directories 

big Symbolic link 
/disk/big 

/

disk

Disk file system

Hidden directory 

big 1GB file 

+

746, Spring 2011, Greg Ganger and Garth Gibson © 10

Testing and Evaluation

  Test scripts (test_part1.sh) that perform three steps
  Extract an .tar.gz file in the MelangeFS mount point
  Compute checksum on all the files in the tar-ball
  Perform a directory scan of all files in the tar-ball

  Script allows you to test with different dataset sizes

  To facilitate measurements, each test …
  … will empty caches before runs by remounting melangeFS
  … will measure number of block IOs using “vmstat”
  (virtualized setup makes time-based measurement hard)

  More details in the README file in the “src/scripts/”

746, Spring 2011, Greg Ganger and Garth Gibson © 11

Expected output for correctness

  Test scripts returns the number of blocks read/written
during each of the step (by parsing “vmstat –d”)

  Other useful tool is btrace/blktrace

Testing step Expected Correct Output

Extracting the TAR file in
MelangeFS

For a small file, HDD should have zero
blocks written

Performing a checksum on the
all the files in the TAR file

For large files, HDDs should have a
large number of blocks being read
(compared to SSDs)

Scanning the whole directory
of the TAR file using “ls –laR”

With attribute replication, only the SSD
should have block reads (HDD should
have zero reads)

746, Spring 2011, Greg Ganger and Garth Gibson © 12

How to write the report?

  Key design ideas and
data-structures
  Pictures are useful; but

good one need thought
and time (start early)

  Reason about the
performance
  Don’t just copy-paste

the output in the report
  Show us that you know

why it is happening

Data
set

of blks read
SSD HDD

of blks written
SSD HDD

d1 123 23 756 345

d2 144 0 101 1623

746, Spring 2011, Greg Ganger and Garth Gibson © 13

Part 2: Faster Storage Management

  Storage management
  UNIX examples: “find [filter]” and “du –s”
  Other examples: context search, backups

  Key idea – scan the file system looking at attributes
of all objects (and apply the user-defined “filter”)
  readdir() + lstat() on each object (lots of random IO)
  On current FSs, with 106 files, queries may run for hours
  Future FSs, with 109 to 1012 files, may run for days/weeks

  Goal – design and implement optimizations to speed
up storage management queries

746, Spring 2011, Greg Ganger and Garth Gibson © 14

Motivating example (on a real SSD)

  Prototype implementation: Mac OS X (HFS) on SSD
  Simple approach: “du” to list sizes of all files on one volume
  My approach: built a way that avoids random IO (hint)

  Performance results
  Two cases: 1.15 million and 2 million files (different SSDs)
  Average of three runs (zero variance) with empty caches
  Of course, this is simple case with no real “computation”

DataSet 1: 1.15M files DataSet 2: 2M files
Completion time of
simple approach 149 seconds 163 seconds

Completion time of
my approach

1.3 seconds
(>100X speed up)

1.4 seconds
(>100X speed up)

746, Spring 2011, Greg Ganger and Garth Gibson © 15

Design decisions (and hints)

  Tradeoff – who does more work: the file system or
the storage mgmt application?
  No FS support for queries may need to perform full scans
  With FS support fast queries, but high memory footprint

  Goal – what optimizations can FSs provide to speed
up storage management queries?
  Two kinds of queries: top-k and aggregator (read handout)

  Designs used by real file systems
  IBM GPFS: ioctl() to dump i-nodes of all files and directories
  Microsoft NTFS: replicate attributes in the directories
  Use an external database to store all attributes

746, Spring 2011, Greg Ganger and Garth Gibson © 16

Storage Management Strategies
  Applications continue to do

their operations normally

  Your code in MelangeFS
does the “cool things” to
speed up storage
management

  Storage management
apps perform their queries
using different ways

  GPFS-like ioctl()
  Leverage “cool

things” directly
  Or your trick

MelangeFS

SSD (ext2) HDD (ext2)

Application

Skeleton Code for melangefs is
provided to you in the distribution

Storage
Management

FS-mgmt
tricks

746, Spring 2011, Greg Ganger and Garth Gibson © 17

Problem Specification: top-k, aggregator

  Two kinds of storage management applications
  top-k
  aggregator

  You will implement these two user-level storage
management programs

  DO’s and DON’Ts
  No in-memory solutions
  Out-of-core structures can use space on SSDs
  Storage management apps can ONLY read/lookup

attributes; on the FUSE file system can write/update
attributes and related data-structures

746, Spring 2011, Greg Ganger and Garth Gibson © 18

Testing and Evaluation

  Test scripts (test_part2.sh) that perform three steps
  Starts with a file system with some data and run sample

queries that emulate both “top-K” and “aggregator”
  You should extend these scripts to use your of “top-k” and

“aggregator” programs

  You will be graded on correctness and performance
  Examples of extending tests:

  Performance – Run sample queries in the script, measure
number of block IOs, perform queries using your program,
measure again

  Correctness – Run queries, check output, do some FS
operations to files, run queries, check that output is correct

746, Spring 2011, Greg Ganger and Garth Gibson © 19

How to write the report?

  Key design ideas and
data-structures

  Questions
  What is the speed up in

storage management?
  How much more work

did MelangeFS do to
get this benefit (i.e.,
more block IO?)

Data
set

Simple approach
(# of blks read

Your approach
of blks read)

X1 245 23

X2 378 32

Data
set

of blks written
without StrMgmt

of blks written
with StrMgmt

Y1 37 50
(33% more)

Y2 124 250
(100% more)

746, Spring 2011, Greg Ganger and Garth Gibson © 20

Once again – start early

  Project due on April 11th 2011
  Milestone1: finish part 1 by March 25th
  Milestone 2: finish part 2 by April 6th

  Leaves you a few days to work on performance

  Demo
  VirtualBox
  FUSE

  Running tests

746, Spring 2011, Greg Ganger and Garth Gibson © 21

More analysis and performance debugging

746, Spring 2011, Greg Ganger and Garth Gibson © 22

Analyzing statistics tools

  First, what is in the flash and disk ext2 file systems?
  ls –ailR /tmp/flash /tmp/disk
  du –ak /tmp/flash /tmp/disk

  Sorry for the lost+found side-effect of ext2
  Look for the appropriate symbolic links and xattribute holding files
  Look for the appropriate sizes of files (ext2 allocates 4KB blocks)

  getfattr /tmp/flash/small/a/1 reports all attributes of file 1

  Next, what operations get done on the file systems?
  In two separate terminal windows in Vbox, before your tests
  [window1] btrace /dev/sdb1 | tee flashtrace

  trace IOs to stdout (to watch) and file flashtrace (for later analysis)
  [window2] btrace /dev/sdc1 | tee disktrace

746, Spring 2011, Greg Ganger and Garth Gibson © 23

Btrace output

  dev, cpu, seq, time, pid, action, iotype, address+length, info
 8,16 0 1 0.000000000 23 A W 8279 + 8 <- (8,17) 8216
 8,17 0 2 0.000000844 23 Q W 8279 + 8 [pdflush]
 8,17 0 3 0.000012158 23 G W 8279 + 8 [pdflush]
 8,17 0 4 0.000016528 23 P N [pdflush]
 8,17 0 5 0.000018858 23 I W 8279 + 8 [pdflush]
 8,17 0 6 0.004114016 0 UT N [swapper] 1
 8,17 0 7 0.004132003 10 U N [kblockd/0] 1
 8,17 0 8 0.004152279 10 D W 8279 + 8 [kblockd/0]
 8,17 0 9 0.005084990 0 C W 8279 + 8 [0]
 8,16 0 10 22.818093118 3234 A R 12375 + 8 <- (8,17) 12312
 8,17 0 11 22.818093658 3234 Q R 12375 + 8 [flashndisk]
 8,17 0 12 22.818105498 3234 G R 12375 + 8 [flashndisk]
 8,17 0 13 22.818106768 3234 P N [flashndisk]
 8,17 0 14 22.818108018 3234 I R 12375 + 8 [flashndisk]
 8,17 0 15 22.818112428 3234 U N [flashndisk] 1
 8,17 0 16 22.818120222 3234 D R 12375 + 8 [flashndisk]
 8,17 0 17 22.818375643 3234 C R 12375 + 8 [0]
 8,16 0 18 22.818625434 3234 A R 20709447 + 8 <- (8,17) 20709384
 8,17 0 19 22.818625941 3234 Q R 20709447 + 8 [flashndisk]
 8,17 0 20 22.818627933 3234 G R 20709447 + 8 [flashndisk]
 8,17 0 21 22.818629149 3234 P N [flashndisk]
 8,17 0 22 22.818629811 3234 I R 20709447 + 8 [flashndisk]
 8,17 0 23 22.818633398 3234 U N [flashndisk] 1
 8,17 0 24 22.818640422 3234 D R 20709447 + 8 [flashndisk]
 8,17 0 25 22.825372038 0 C R 20709447 + 8 [0]

746, Spring 2011, Greg Ganger and Garth Gibson © 24

Understanding btrace output

  btrace is really blktrace | blkparse

  man blkparse tells you how to read the output

  As our devices are virtual, time is not very interesting

  We care about numbers of sectors read and written
  “Action C” is completion of an IO (address + length)

  Types are R read, W write, RA readahead

  Next you want to understand what is being read or
written – need to tie “address” to disk structure
  debugfs /dev/sdb1 # to debug ext2 file system on flash

746, Spring 2011, Greg Ganger and Garth Gibson © 25

Using debugfs to map files to disk sectors

  imap /small/a/1 # where is inode for file 1
  Inode XXXXXX is part of block group YY

located at block AAAA, offset 0x0400

  bmap /small/a/1 0 # block number of block 0 in file 1
  AAAA

  Blocks are not sectors, and the disk image is offset
  Blktrace sector address = AAAA*8+63
  Because blocks are 8 sectors, and the flash and disk

images are in partition 1, which is 63 sectors into the disk
  %> fdisk -lu /dev/sdb 

Disk /dev/sdb: 17.1 GB, 17179869184 bytes, 255 heads, 63 sectors/track, 2088
cylinders, total 33554432 sectors; Units = sectors of 1 * 512 = 512 bytes;
Disk identifier: 0x3bac36e8 
Device Boot Start End Blocks Id System 
/dev/sdb1 63 33543719 16771828+ 83 Linux

746, Spring 2011, Greg Ganger and Garth Gibson © 26

So the Analysis ……

  Can you attribute every sector read and written
during your runs of md5 and ls on the flash, the disk?
  Remember free list bitmaps for inodes and data blocks
  Remember directory entries
  Remember indirect blocks
  Remember extended attributes (linked like indirect blocks)
  Remember that inodes are smaller than blocks
  Remember that “allocate, free, allocate” may be a new block
  Accounting for everything may be hard, just try your best

  How well does this correspond to “small random on
flash, large sequential on disk”?

