
Solutions to Midterm I

Fall 2003 15-712

Please write your name on the following line (and on each page of the exam):

This midterm is open book and open notes.
You should write brief, precise, and legible answers. Rambling brain-dump

answers may be punished twice — you run out of time writing them and we run
out of patience reading them. :–)

If in doubt, list any assumptions you made about the question.
There are eight questions but we will only grade six. List the six questions

we should grade:

1



Name:

1. LFS as a database

(a) Parameterize LFS in terms of Haerder and Reuter’s database taxon-
omy. For each paramter, circle one value and give a short (one or two
sentence) justification.

Propagation Strategy: ATOMIC / ¬ATOMIC

ATOMIC: LFS doesn’t overwrite data; it looks like shadow paging.

Note that this atomic means “not update-in-place,” as opposed to the A
in ACID that guarantees correctness.

Buffer Replacement: STEAL / ¬STEAL

¬STEAL: LFS writes an entire log segment at once.

End of Transaction Processing: FORCE / ¬FORCE

FORCE: Once a log segment is ready, it is written out. One could argue
that because these writes are asynchronous, they aren’t forced.

Checkpoint Types: TOC / TCC / ACC / FUZZY

TOC (if FORCE above): Using above policy, TOC comes for free. Even
if one argues for ¬FORCE above, TCC comes for free because the log is
kept in order so we know when each transaction has completed.

Also, one could argue TCC because of checkpoints.

(b) What does LFS need to undo and redo on a crash?

Because all writes are “atomic” and dirty buffers aren’t “stolen,” any log
in LFS marked completed is consitent. Hence, nothing needs to be undone.

Because segments aren’t marked completed until a checkpoint, any seg-
ments written since the last checkpoint must be redone.

We must also fix invalid directory entries during redo.

2



Name:

2. The eager writing disk array was designed to support transaction process-
ing workloads. Two designers are arguing about whether adding support
for track-aligned extents would improve performance for environments in
which the database is frequently scanned (for report generation) in addi-
tion to its normal transaction processing activity. Give an argument for
one of the two positions.

Con: Eager writing tends to scramble the disk layout, which would make
apparent track-aligned extents (in terms of LBNs) not work properly. If
there were not a mechanism for preventing (or defragmenting) such prob-
lems, it would fail to improve performance.

Pro: Track-aligned extents are an ideal access pattern for sequential scan-
ning applications that must share a storage system with other activity.
It will result in almost streaming bandwidth for the portion of the time
that the scanning application gets the disk head, IF the LBNs comprise an
actual track.

3



Name:

3. A server crash can affect a clients’ ability to read and write files. For each
of AFS and Pangaea, explain which files can and cannot still be read and
written, and why.

AFS

read: any cached files for which callbacks have not yet been revoked can
still be read, because the server is not consulted. Anything not in cache
cannot be read, because the server has the data and won’t answer.

write: any open files on which writes are being done can still be worked on,
but they cannot successfully be closed with new data, because the server is
not there to accept it.

Pangaea

read: there should be no effect on ability to read files, because of the redun-
dancy. Only if all machines with gold replicas crash is there a problem.

write: there should be no effect on ability to write files (same as above).
Of course, consistency is weak, but that’s the semantic model.

Everyone tried this problem.

4



Name:

4. (In)Secure systems

(a) Consider a secure coprocessor such as Aegis or an IBM 4758. Suppose
this hardware is running Linux, and that it has a kernel module that
provides an encryption service. (Users send the encryption module
a message and a key, and it returns an encrypted version.) Say
this system is hacked into through a buffer overrun in the module.
List three violations of Saltzer’s security design principles that were
exploited for this attack, and explain how.

Economy of Mechanism. A full-size monolithic kernel like Linux is l
ikely too big to examine line-by-line.
Least privelege. What was the encryption module doing running in
kernel mode?
Least common mechanism. Why was there a shared kernel module,
rather than a simple library procedure? (This is even the case Saltzer
gives!)
Work Factor. This was an easy penetration.
There may be arguments for Complete mediation, Separation of Priv-
ilege, Fail-safe defaults, or Compromise Recording, but the explana-
tion would be a bit different.
Psychological acceptability and Open design are not acceptable an-
swers.

(b) Which class would Anderson assign to such an attack and why?
Class I (clever outsiders). No sophisticated equipment needed, no
proprietary knowledge needed; the attacker took advantage of an ex-
isting weakness.

5



Name:

5. The NASD model for file services lets clients directly access objects on
storage devices, but uses a “file manager” for directories and other meta-
data management functions. Give and explain two reasons why it does
so.

Trust: corrupted directory structures could mislead client machines into
all kinds of badness, from just crashing to reading or writing the wrong
object for a given name (but using the client’s credentials).

Simplicity: centralizing metadata management functions makes them much
easier. Implementing a consistent decentralized directory, for example,
would significantly increase the size of the interface specification needed,
not to mention the code itself.

Control: related to trust item, the file manager can implement controls
like quotas to prevent space exhaustion denial-of-service attacks.

Portability: by separating the file manager, it is easier to create interfaces
to different filesystem abstractions.

Embedded Performance: the file manager limits the intelligence required
in the computationally limited ASIC on the disk.

6



Name:

6. Two implementors are arguing about whether direct memory access would
be a good augmentation to a River-like system. Take a position (pro or
con) and explain.

This question should have said “remote direct memory access.” Students
were not penalized for not reading our minds, though most did.

Pro: I think this would be a good match. River could flow data at the
client system, as it is able to produce it, and stick it directly into memory
very efficiently.

Con: The queues already eliminate performance bottlenecks; RDMA is
unneeded.

7



Name:

7. A friend argued that the Pangaea architecture would be a great way to
improve the Harvest proxy cache system. Give one argument for each the
pro and the con.

Pro: Pangaea would allow updates to be propagated quickly, reducing the
window of inconsistency for web pages that change.

Con: the graph for popular web pages could be huge, leading to waste for
those that don’t change. Also, pages that change frequently could end up
creating a lot of extra work for (perhaps) minimal benefit, given users’
traditional expectations of WWW consistency.

8



Name:

8. Some systems researchers are considering extensions to Harvest to support
direct memory access (ála DAFS) among nodes in the cache hierarchy.
State whether you think this is good idea and explain why.

I think it’s not a good idea, because the memory overhead associated with
proxy server interactions is unlikely to be significant, given the speeds of
network access points in most environments. This means that the overhead
of data copies is unlikely to be high enough to merit the extra system
complexity.

An argument could be made for it in corporate network environments with
high-speed interconnects. An argument could also be made for it if the
company has invested in a very high-speed network link. Such assumptions
should be stated explicitly to support using this scheme.

We assumed most people would realize that RDMA in a high-latency net-
work is nonsensical. However, my favorite answer came from an argument
in favor: If Harvest is used as an HTTP accelerator, RDMA makes a lot
of sense!

9


