Alan Wagstaff

Summary of Hauser93

Important Points

1) This paper examines two well-developed multi threading systems to determine various thread paradigms that are useful to the general programmer. 

2) The paradigms discovered include:

a. Deferred work, ie respond to user before work is accomplished, but start a background thread to do the real work.

b. Pumps, ie move output from one location to the input of another, potentially doing work in the middle, ie filtering. 

c. Sleepers, processes that remain asleep until either a certain time period has elapsed, or an event occurs, then do some action and either go back asleep or finish.

d. Deadlock avoiders, ie forking a process rather than releasing and recapturing the locks necessary to do work, while allowing the parent process to continue execution, ie screen redrawing. 

e. Task rejuvenation, create a new process to handle difficult exceptions that the parent process could not handle on its own.

f. Serializers, a process to preserver ordering of events.

g. Concurrency exploiters, designed to take advantage of multiprocessor systems

h. Encapsulated forks, procedures that create standard interfaces to common uses of forks, like the DelayedFork or PeriodicalFork.

3) “To understand systems it is not enough to describe how things should be; one also needs to know how they are.”

Critiques


This paper explores the experiences with these two systems, and suggests that more creative techniques may exist, or may be created in the future. I would have liked the authors to have speculated more about those ideas and maybe created general categories for all possible uses of system threads. While this is somewhat unrealistic, it seems that their experience examining this systems would make them the best for guessing at some of these possibilities. 

Conclusions


I believe the authors do a good job of showing the possible uses and pitfalls of using threads to accomplish different goals and did an in depth study of the systems they examined. I also found that their final statement about observing systems not just as they should be but also as they are is important for any real world product, not just computer systems. It also seems to me that often computer people get caught up in the computer with the way things should be, and do not pay enough attention to the underlying details of how they are. While the abstractions that we have developed help us design more complex systems they are increasingly hiding the way systems really behave, and making us rely on how they should be. In particular system modeling at the circuits level depends heavily on the correct characterization of electrical properties by simulation languages, like spice, that while highly accurate, are not actually how things are. 

