and timing constraints at the level of tasking and message
passing. In essence, GRMS theory guarantees that all
tasks will meet their deadlines if the total system utiliza-
tion of these tasks lies below a known bound, and these
tasks are scheduled using appropriate algorithms. This
analytic, engineering basis makes real-time systems con-
siderably easier to develop, modify and maintain.

The generalized rate-monotonic scheduling theory be-
gins with the pioneering work of (Liu and Layland, 1973)
in which the rate-monotonic algorithm was introduced for
scheduling independent periodic tasks. The rate-mono-
tonic scheduling (RMS) algorithm gives higher priorities
to periodic tasks with higher rates. RMS is an optimal
static priority scheduling algorithm for independent peri-
odic tasks when task deadlines are at period boundaries.
The optimality of RMS is in the sense that if any static
priority scheduling algorithm can schedule a set of inde-
pendent periodic tasks with end of period deadlines, then
RMS can also schedule the task set. RMS theory has since
been generalized alyze the schedulability of aperiodic
tasks Madlmes and hard deadlines (Sprunt
and orkers, 1989), interdependent tasks that must
synchronize (Sha and co-workers, 1990b; Rajkumar and
co-workers, 1988; Rajkumar, 1991), tasks with deadlines
shorter than the periods (Leung and Whitehead, 1982),
tasks with arbitrary deadlines (Lehoczky, 1990), and single
tasks having multiple code segments with different prior-
ity assignment (Harbour and co-workers, 1991). An RMS-
based technique called “period transformation” allows a
task set to meet its critical deadlines even under overload
conditions as long as the utilization of the critical tasks is
below the schedulability bound (Sha and co-workers, 1986).
RMS has also been extended to analyze scheduling of wide
area networks (Sha and co-workers, 1992). RMS has also
been applied to improve response times of aperiodic mes-
sages in a token-ring network (Strosnider and Marchok,
1989). The implications of RMS to Ada scheduling rules
are discussed in (Sha and Goodenough, 1990), and the
schedulability analysis of input/output paradigms have
been treated in (Klein and Ralya, 1990). The theory has
also been applied in the development of the ARTS real-
time operating system (Tokuda and co-workers, 1987) and
the Real-Time Mach operating system (Tokuda, 1991).
Processor cache designs for real-time systems using RMS
were developed in Kirk and Strosnider, 1990. Schedulabil-
ity models for different operating system paradigms have
been developed in Katcher and co-workers, 1991. RMS has
also been applied to recover from transient hardware faults
(Ramos-Thuel and Strosnider, 1991). The rate-monotonic
scheduling algorithm with all its extensions is referred to
as Generalized Rate-Monotonic Scheduling (GRMS).

Because of its versatility and ease of use, GRMS has
gained rapid acceptance. For example, it is used for devel-
oping real-time software in the NASA Space Station Free-
dom Program (Gafford, 1990), the European Space Agency
(ESA, 1990), and is supported by the IEEE Futurebus+
Standard (Futurebus+, 1990) and IEEE POSIX.4 (POSIX,
1991). A review of the basic results follows and then these
results are illustrated with example applications.

U/(o/oo
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OVERVIEW OF GENERALIZED RATE
MONOTONIC SCHEDULING

The scheduling of independent periodic and aperiodic tasks
begins this article. Then the issues of task synchronization
and the effect of having task deadlines before the end of
their period boundaries is addressed.

Scheduling Independent Periodic Tasks

A periodic task tis characterized by a worst-case computa-
tion time C;and a period T:. Unless mentioned otherwise,
assume that each instance of a periodic task must finish by
the end of its period boundary when the next task instance
arrives. Tasks are independent if they do not need to syn-
chronize with each other. The following theorem (Liu and
Layland, 1973) can be used to determine whether a set of
independent periodic tasks is schedulable.

Theorem 1. A set of n independent periodic tasks sched-
uled by the rate-monotonic algorithm will always meet
their deadlines for all task start times, if

Cl 92. 9 Un _
7‘:+Tz+"'+T.,§n(2 1

where C,;is the worst-case execution time and T)is the
period of task .

C./T,is the utilization of the resource by task t;. The
bound on the total schedulable utilization, n(2Y"—1), rap-
idly converges to In 2=0.69 as n becomes large.

The bound of Theorem 1 is the least upper bound of
schedulable processor utilization for the rate-monotenic
scheduling algorithm. It is very pessimistic because the
worst-case task set is contrived and highly unlikely to be
encountered in practice. The actual boundary for task sets
encountered in practice is often over 90%. The remaining
utilization can still be used by background tasks with low
priority. An exact schedulability test based on the critical
zone theorem rephrased from (Liu and Layland 1973) can
be used to determine whether a set of tasks having utiliza-
tion greater than the bound of Theorem 1, can meet all its
deadlines.

Theorem 2. For a set of independent periodic tasks, if
a task 7, meets its first deadline D;<T;, when all the higher
priority tasks are started at the same time, then it can
meet all its future deadlines with any task start times.

It is important to note that Theorem 2 applies to any
static priority assignment, not just rate-monotonic priority
assignment. The following procedure (Lehoczky and co-
workers, 1989) verifies if a task can meet its first deadline.
Consider any task 1, with a period T,, deadline D,<T,
and computation C,. Let tasks 1, to 1,_;have higher priorit-
ies than t,. Suppose that all the tasks start at time £=0.
At any time ¢, the total cumulative demand on CPU time
by these n tasks is:

¢ t n t
W-“’=C'|-T..|*---*C"|—T-l= ~21C"’-Tj-l
n j=
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The term [¢/T; represents the number of times task T
arrives during interval {0, t] and therefore CJ ¢t/ T,-.l repre-
sents its demand during interval (0, t]. For example let
T,=10, C;=5. When ¢=9, task t,demands 10 units of execu-
tion time. When £=11, task 1, has arrived again, and the
cumulative demand becomes 15 units of execution.
Suppose that task T, completes its execution exactly at
time ¢ before its deadline D,. This means that the total
cumulative demand from the n tasks up to time ¢, Wy(t),
is exactly equal to ¢, that is, Wa(t)=t. A method for finding
the completion time of task 1; that is, the instance when
Wi(t)=t is given below.

Set Lo z Cj
=1
t, «— Wilto);
t, « Wit
{3 &« w,(tz);

b, Wilti-1);
Stop when (Wit} = &)

This procedure is referred to as the completion time
test. If all the tasks complete before their deadlines, then
the task set is schedulable. For example:

Example 1. Consider a task set with the following inde-
pendent periodic tasks with end of the period deadlines:

e Task Ty Cl=40', T1=100
o Task 1, C,=40; T,=150
e Task 13 C3=100; T,=350

The total utilization of tasks 1, and Tzis 0.67 which is
less than 0.828, the bound for two tasks given by boundary
Theorem 1. Hence these two tasks are schedulable. How-
ever the utilization of these three tasks is 0.90 which ex-
ceeds 0.779, Theorem 1’s bound for three tasks. Therefore,
apply the completion time test to determine the schedula-
bility of task 1.

to=cl+Cz+Ca=40+40+100=180
Tasks T, and 1, are initiated one additional time in the
interval (0, 180). Taking this additional execution into con-
sideration,
t,=Wi(t)=2C,+2C,+Cy= 80+80+100=260
Tasks T, and T, are initiated three and two times in the
interval (0, 260), respectively. Taking this additional exe-
cution into consideration,
tg=W;(t,)=3C|+2Cg+C3= 120+80+ 100=300
Tasks 1;and T are still initiated three and two times in

the interval (0, 300), respectively. Taking this additional
execution into consideration,

£y= Wa(‘2)=3C|+ZCz2+C3= 120+80+ 100=300=¢,;

Thus, task 1, completes at time 300 and it meets its
deadline of 350. Hence the completion time test determines
that Ty is schedulable even though the test of Theorem 1
fails.

scheduling Periodic and Aperiodic Tasks

A real-time system typically consists of both periodic and
aperiodic tasks. The scheduling of aperiodic tasks can be
treated within the rate-monotonic framework of periodic
task scheduling. The completion time test is illustrated in
the following example.

Example 2. Suppose that there are two tasks. Let 1/be
a periodic task with peried 100 and execution time of 99.
Let 1, be a server for an aperiodic request that randomly
arrives once within a period of 100. Suppose 1 unit of time
is required to service each request. If the aperiodic server
can execute only in the background, i.e., only after the
completion of the periodic task, then the average response
time for the aperiodic request is about 50 units. The same
can be said for a polling server that provides one unit of
service time in a period of 100. On the other hand, deposit
one unit of service time in a “ticket box” every 100 units
of time; when a new “ticket” is deposited, the unused old
tickets, if any, are discarded. With this approach, no matter
when the aperiodic request arrives during a period of 100,
it will find there is a ticket for one unit of execution time
at the ticket box. Server task 1, can be allowed to use
the ticket to preempt, and execute immediately when the
request occurs. In this case, T,'s response time is precisely
one unit and the deadlines of T, are still guaranteed.

This is the idea behind a class of aperiodic server algo-
rithms (Lehoczky and co-workers, 1987) that can reduce
aperiodic response time by a large factor (a factor of 50 in
this example). The key is to allow the aperiodic servers to
preempt the periodic tasks for a bounded duration that
is allowed by the rate-monotonic scheduling formula. An
aperiodic server algorithm called the Sporadic Server that
handles hard deadline aperiodic tasks is described in (Sp-
runt and co-workers, 1989). Instead of refreshing the
server's “ticket-box budget” periodically, at fixed points in
time, replenishment is determined by when requests are
serviced. In the simplest approach, the budget is refreshed
one period after it has been exhausted, but earlier refresh-
ing is also possible.

A sporadic server is only allowed to preempt the execu-
tion of periodic tasks as long as its computation budget 18
not exhausted. When the budget is used up, the server
can continue to execute at background priority if time 18
available. When the server’s budget is refreshed, its execu-
tion can resume at the server’s assigned priority- There 18
no overhead if there are no requests. Therefore, the 8po-
radic server is especially suitable for handling emergency
aperiodic events that occur rarely but must be servic
quickly. .

An effective way to implement a sporadic server 18 as
follows: When an aperiodic request arrives, the system
registers the request time. The capacity consumed by thié




request is replenished one sporadic server period from the
request time. This replenishment approach guarantees
that the aperiodic response time is no greater than the
sporadic server period, provided that the system is schedu-
lable and sufficient server capacity is available. That is,
the worst-case aperiodic demand request within a duration
of the sporadic server period is no more than the server
capacity. In contrast, the worst-case response time for an
aperiodic request serviced by a polling server is bounded
by twice the period of the polling server. This situation
occurs when the request arrives just after the poll. It waits
one period for the next poll and up to another period to
complete its execution. From a schedulability viewpoint,
a sporadic server is equivalent to a periodic task that per-
forms polling, except that it provides better performance.

Task Synchronization

Tasks have been, so far, assumed to be independent of one
another. Tasks, however, do interact, and GRMS can be
applied to real-time tasks that need to interact. Common
synchronization primitives include semaphores, locks,
monitors, and Ada rendezvous. Although the use of these
or equivalent methods is necessary to protect consistency
of shared data or to guarantee the proper use of nonpre-
emptable resources, their use may jeopardize the system’s
ability to meet its timing requirements. In fact, a direct
application of these synchronization mechanisms may lead
to an indefinite period of priority inversion, which occurs
when a high priority task is prevented from executing by
alow priority task. Unbounded priority inversion can occur
as shown in the following example.

Example 3. Let 1,, 1, and 1; be three tasks listed in de-
scending order of priority. In addition, tasks t, and t;share
a resource guarded by a binary semaphore S. Consider the
following sequence of events:

1. T;0btains a lock on the semaphore S and enters its
critical section to use a shared resource.

2. 1, becomes ready to run and preempts T;, Next, 1,
tries to enter its critical section by first trying to lock
S. But S is already locked and hence 1, is blocked and
moved from ready queue to the semaphore queue.

3. T,becomes ready to run. Since only t,and t;are ready
to run, 1, preempts t; while 1;is in its critical section.

One might expect that, 1, being the highest priority task,
?Vill be blocked no longer than the time for T3 to complete
fts critical section. However, the duration of blocking is,
in fact, unpredictable. This unpredictably is because 1, is
preempted by the medium priority task t,. As a result,
tas.k T, will be blocked until t,and any other pending tasks
of Intermediate priority are completed. The duration of
p.nority inversion becomes a function of task execution
tfmes and is not bounded by the duration of critical sec-

tions, thus the name, “unbounded priority inversion.”
__The unbounded priority inversion problem can be
avoided by using a priority inheritance protocol (Sha and
OO-Work'ers, 1990b). The simplest such procotol is called
e basic priority inheritance protocol, which requires that
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Figure 1. Example of deadlock prevention.

any task preventing one or more higher priority tasks from
executing must inherit (use) the highest priority of the
tasks it blocks. This simple priority, inheritance can still
lead to relatively long durations of blocking for higher
priority tasks. It also does not address the question of
deadlocks. Unbounded priority inversion is avoided and
minimized by another priority inheritance protocol called
the priority ceiling protocol. The priority ceiling protocol
is a real-time synchronization protocol with two important
properties.

Theorem 3. The priority ceiling protocol prevents mu-
tual locks between tasks. In addition, under the priority
ceiling protocol, a task can be blocked by lower priority
tasks for at most one critical section.

The protocol works as follows: The priority ceiling of a
binary semaphore S is defined to be the highest priority
of all tasks that may lock S. When a task t attempts to
execute one of its critical sections, it will be suspended
unless its priority is higher than the priority ceilings of
all semaphores currently locked by tasks other than 1. If
task t is unable to enter its critical section for this reason,
the task that holds the lock on the semaphore with the
highest priority ceiling is said to be blocking t and hence
inherits the priority of 7. As long as a task 1 is not attempt-
ing to enter one of its critical sections, it will preempt
every task that has a lower priority. The following example
illustrates the deadlock avoidance property of the priority
ceiling protocol:

Example 4. Suppose that there are two tasks 1, and 1,
(see Fig. 1). In addition, there are two shared data struc-
tures protected by binary semaphores S, and S, respec-
tively. Suppose task 1, locks the two semaphores in nested
fashion in the order S,, S,, while t,locks them in the reverse
order. Further, assume that t, has a higher priority than
T, Since both t,and 1, use semaphores S, and S,, the priority
ceilings of both semaphores are equal to the priority of
task 1,. Suppose that at time ¢,, 7, begins execution and
then locks semaphore S,. At time ¢,, task t,is initiated and
preempts task 1,, and at time ¢,, task 1, tries to enter its
critical section by attempting to lock semaphore S,. How-
ever, the priority of 1,is not higher than the priority ceiling
of locked semaphore S,. Hence, task 1, must be suspended
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Figure 2. Task interactions for example 5. A,;'s deadline is 20 ms
before the end of each period.

without locking S;. Task T,now inherits the priority of task
1, and resumes execution. Note that T, is blocked outside
its critical section. As T;is not given the lock on S, but
suspended instead, the potential deadlock involving 4y and
1,is prevented. Once T, exits its critical section, it will re-
turn to its assigned priority and immediately be preempted
by task 1;. From this point on, 1, will execute to completion,
and then 1, will resume its execution until its completion.

There is a simplified implementation of the priority
ceiling protocol referred to as the ceiling semaphore proto-
col (Rajkumar and co-workers, 1988) or as priority ceiling
emulation (Sha and Goodenough, 1990a). In this approach,
once a task locks a semaphore, its priority is immediately
raised to the level of the priority ceiling. The avoidance of
deadlock and block-at-most once result still hold provided
that the following restriction is observed: a task cannot
suspend its execution within the critical section. (The full
implementation permits tasks to suspend within a critical
section.) The priority ceiling protocol has been extended
to deal with dynamic deadline scheduling (Chen and Lin,
1990) and mixed dynamic and static priority scheduling
(Baker, 1991).

The schedulability impact of task synchronization can
be assessed as follows. Let B;be the duration in which
task 1;is blocked by lower priority tasks. The effect of this
blocking can be modeled as though task t's utilization is
increased by an amount B/ T:.

Example Application

Consider the following simple example which illustrates
the application of the scheduling theory.

Example 5. Consider the following task set (see Fig. 2)

1. Emergency handling task: execution time=5 ms.;
worst case interarrival time=>50 ms.; deadline is 6
ms. after arrival.

2. Aperiodic event handling tasks: average execution
time=2 ms. (assume that it is uniformly distributed
between 1 ms. to 3 ms).; average inter-arrival
time=40 ms.; fast response time is desirable but
there are no hard deadlines.

3. Periodic task 1,: execution time=20 ms.; period=100
ms.; deadline is at the end of each period. In addition,
1;may block 1, for 10 ms. by using a shared communi-
cation server, and task 1, may block 1, for 20 ms. by
using a shared data object.

4. Periodic task 1,: execution time=40 ms.; period=150
ms.; deadline is 20 ms. before the end of each period.

5. Periodic task T;: execution time=100 ms.; pe-
riod=350 ms.; deadline is at the end of each period.

Solution: First, create a sporadic server for the emer-
gency task, with a period of 50 ms. and a service time
5 ms. Since the server has the shortest period, the rate
monotonic algorithm will give this server the highest prior-
ity. It follows that the emergency task can meet its dead-
line.

Since the aperiodic tasks have no deadlines, they can
be assigned a low background priority. However, since fast
response time is desirable, we create a sporadic server
executing at the second highest priority. The size of the
server is a design issue. A larger server (i.e., a server with
higher utilization) needs more processor cycles but will
give better response time. In this example, choose a large
server with a period of 100 ms. and a service time of 10
ms. There are now two tasks with a period of 100 ms.—the
aperiodic server and periodic task 1;. The rate-monotonic
algorithm allows us to break the tie arbitrarily, and hence
let the server have the higher priority.

Now check if the three periodic tasks can meet their
deadlines. Since under the priority ceiling protocol a task
can be blocked by lower priority tasks at most once, the
maximal blocking time for task t,is B,=max(10 ms., 20
ms.)=20 ms. Since T;may lock the semaphore S associated
with the communication server and the priority ceiling of
S.is higher than that of task T, task 1, can be blocked by
task 1; for 10 ms. At this point, directly apply the appro-
priate theorems. However, the number of steps in the anal-
ysis can be reduced by noting that period 50 and 100 are
harmonics and treating the emergency server mathemati-
cally as if it had a period of 100 ms. and a service time of
10 ms., instead of a period of 50 ms. and a service time of
5 ms. There are now three tasks with a period of 100
ms. and an execution time of 20 ms., 10 ms., and 10 ms.
respectively. For the purpose of analysis, these three tasks
can be replaced by a single periodic task with a period of
100 ms. and an execution time of 40 ms. (20+10+ 10). Now
there are the following three equivalent periodic tasks for
analysis:

e Task 1,; C,=40; T,=100; B,=20; U,=04
e Task 1 C;=40; T,=150; B,=10; U,=0.267
e Task T, C3=100; T;=350; B;=0; U,=0.286

Note that B, is zero since a task can only be blocked by
tasks of lower priority. Since t;is the lowest priority task,
it cannot be blocked. Apply the completion time test and
Theorem 2.

Task 1, t, = C,+B, = 60, which is less than the dead-
line 100.
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Figure 3. Distributed system configuration.

Task 13 £,=C;+Cy+B,=40+40+10=90 and W,(¢,) =90
=t,. That is, task 1; finishes at 90 which is earlier than
its deadline 130 (150—20).

Task 13: The analysis here is identical to the analysis
for Task 3 of example 1. It follows that all three periodic
tasks can meet their first deadlines. By Theorem 2, they
will meet all their deadlines.

The response time for the aperiodics can be determined.
The server capacity is 10% and the average aperiodic work-
load is 5% (2/40). Because the emergency task rarely runs
and most of the aperiodic arrivals can find “tickets,” a
good response time would be expected. Indeed, simulation
indicates that the average 4 msec response-time require-
ment can be satisfied. The results derived for this example,
show how the scheduling theory puts real-time program-
ming on an enalytic engineering basis.

End-to-End Delays in Distributed Systems

Consider the system in Figure 3 which uses a message-
passing architecture for communication. Assume that the
network used is FDDI, and a prioritized backplane such as
the IEEE Futurebus+ is used. The sensor makes periodic
?bservations, and a signal processing task processes the
Incoming signals and averages it every 4 cycles before send-
ing it to the tracking processor. A tracking processor task
Processes the data and sends the result to the control proc-
essor. Task 7; on the control processor uses the tracking
mfgrmation. The unit of time in this example is millisec-
onds.

) Itisrequired that the end-to-end latency of the dataflow
Pipeline from the sensor to the control processor be no
more than 785. Let the task set on the control processor
be specified as given below:

. Qperiodic event handling with an average execution
time of 10 and an average interarrival time of 100.
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Create a sporadic server task as follows: Task 1,
C|=20; T|= 100.

A periodic task for handling local feedback control
with a computation requirement and a given period.
Task 1,: Co=78; T,=150.

¢ A periodic task that utilizes the tracking information
received. Again the computation time and period are
given. Task 1;; C3=30; T3=160.

¢ A periodic task responsible for reporting status across

the network with a given computation time and pe-
riod. Task Te C4=10; T4=300.

Assigning Message and Task Deadlines

An integrated approach to assigning deadlines to tasks
and interprocessor messages is to be used. Let the sensor
take an observation every 40. The signal processing task
processes the signal averaging every 4 cycles and sends it
to the tracking processor every 160. The tracking processor
task with a period of 160 sends a message to the control
processor. Task t;0n the control processor uses the tracking
information and has C;=30 and 7,=160 as given above.
Recall that the end-to-end latency for the control processor
to respond to a new observation by the sensor needs to be
less than 785.

Assume for the moment that the end-to-end delay is
the sum of the period for each resource. Since the signal
processor averages four cycles, each 40 long, its delay is
up to 160. Each of the other resources including the back
plane has a delay up to one period which is 160. That is,
the total delay using rate-monotonic scheduling is bounded
by 4*40+160+160+ 160+160=800. However, the speci-
fied maximum allowable latency is 785. Hence, some tasks
may have to be assigned deadlines earlier than their period
boundaries. From a software engineering viewpoint, it is
advisable to give a full period delay for global resources
such as the bus or the network since their workload is
more susceptible to frequent changes. Since there are two
bus transfers involved, attempt to assign a full period to
each. Also attempt to assign a full period to the signal and
tracking processors. Hence the required completion time
of the control processor task 1, should be no greater than
785—-4X(160)=145.

Scheduling Tasks on the Control Processor

The scheduling analysis of the control processor tasks is
similar to that presented in the Example of Figure 3 except
for one variation. The task set on the control processor is
as described earlier with task 1; modified to have a deadline
of 145. The completion time test for t;shows that its com-
pletion time is 148. In order to meet the deadline of 145
imposed by the maximum allowable latency requirement,
assign 13 a higher priority than 1, which has an end-of-
period deadline of 150. This priority assignment is known
as the deadline monotonic algorithm, an optimal general-
ization of RMS when deadlines are earlier than the periods
(Leung and Whitehead, 1982). If deadline-monotonic prior-
ity assignment is different from the rate-monotonic assign-
ment, Theorem 1 cannot be used directly. However, the
completion time test can be used without modification for
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the deadline-monotonic priority assignment. Its applica-
tion shows that t;now meets its deadline of 148. A similar
test shows that tasks 1, and 7, are also schedulable.

Scheduling Messages across a Network

The problem of guaranteeing message deadlines in the
FDDI network has been addressed in (Agrawal and co-
workers, 1992). FDDI employs a timed-token protocol that
results in a bounded token rotation time. A protocol param-
eter called Target Token Rotation Time (TTRT) is negoti-
ated at network initialization. Time-critical messages
must only use synchronous mode of transmission, and each
station can transmit once every TTRT for an amount equal
to an assigned synchronous capacity H;. The capacity to
each station is allocated proportionally using the following
formula (Agrawal and co-workers, 1992):

U; -
H; =3 (TTRT - D)

where H;is the capacity allocated to station S; U;is the
network bandwidth utilized by station S, U=U,+... +U,,
and D is the token round-trip propagation delay when the
network is idle.

Consider three periodic messages to be transmitted on
an FDDI network with the default TTRT of 8 ms. Let the
token propagation delay D be 1 ms. -

e Message 1,y C;=17; T\=100.
e Message 1,; C,=10; T,=145.
* Message T,y C3=15; T3,=150.

The utilization of the above message set, U=0.239.
Applying the above formula H,=2.05, H;=2.02, H;=2.93.

The schedulability analysis can then be carried out as
follows. Let there be at least four message priority levels.
The messages are first processed in the Network Operating
System (NOS), that executes on the end stations. The total
application-level delay is the sum of the processing delay
at the sender’s NOS, the delay in the FDDI ring, and the
processing delay in the receiver’s NOS.

The requirements on the application-level delays are
given in the table below. There are four message types
with the following timing requirements.

For meeting the timing requirements, polling or spo-
radic servers for each level can be created. For example,
to meet the average timing requirement, four polling
servers can be created with periods T, T,, T}, and T',, given
by 7 ms, 8 ms, 10 ms and 16 ms respectively. Each server
has a full period at the sending NOS, the FDDI and the
receiving NOS. If the total traffic is schedulable according
to the RMS formula, then the delays are expected to be

Table 1. Latency Metrics

Message Type Average Latency, ms.
M, Emergency 21 ms
M, Alert 24 ms
M, Fast 30 ms
M, Normal 48 ms

under 21 ms, 24 ms, 30 ms and 48 ms most of the time.
The absolute worst-case delays are 42 ms, 48 ms, 60 ms
and 96 ms since polling guarantees a responsiveness of
twice the period. If a sporadic server is used, the worst-
case performance will be 21 ms, 24 ms, 30 ms and 48 ms.

For schedulability analysis, consider four message-pro-
cessing tasks at the NOS level. Let task M;have a process-
ing requirement of C; per period T:. This sequence is deter-
mined by the number of messages the task processes per
period. For example, assume that the processing of one
message in task M;takes 0.5 ms, and there are three mes-
sages to be processed per period. Hence C,=1.5. Since the
NOS executes on the host processor, the message process-
ing tasks (C,, TY), (C,, T4), (C;, T3) and (C,, T,) are sched-
uled along with other application tasks if any. The schedu-
lability analysis on the processor side and in the receiving
NOS correspond to standard rate-monotonic analysis.

For message scheduling on FDDI, there can be four
message transmission tasks with transmission time C;for
task with a period of T;. For example, if 4 Kbyte packets
are used, each packet will take 0.33 ms to transmit. If a
message task M, has to transmit 3 packets its transmission
time C,is 0.99 ms.

Consider the scheduling of messages in a particular
station S,. Let the capacity allocated to the station be H,.
The station can transmit for up to H;ms every TTRT. This
can be treated as having another high priority task with
message transmission time (TTRT-H,) and period TTRT.
This task is referred to as the Token Rotation task M,.
Suppese TTRT=6 ms and H;=2 ms, then M,,=(C, =4,
T.=6). The task set for station S;is then (4, 6), (C, TY),
(Cy, Ty), (Cy, T5) and (C,, T'). This task set can be analyzed
in the standard rate-monotonic framework.

Finally, note that although the token rotation task be-
haves like the highest priority task at each station, it actu-
ally may be comprised of the transmission of lower priority
messages from other stations. In this sense, it constitutes
priority inversion and limits the schedulable utilization of
the network.

CONCLUSION

The rate-monotonic scheduling theory and its generaliza-
tions provide an analytic engineering basis for building
predictable real-time systems. This framework has been
adopted by national high-technology projects such as the
Space Station and have recently been supported by major
open standards such as the IEEE Futurebus+ and IEEE
POSIX. This article summarizes the basic elements of the
theory and illustrates them with examples. Extensive ref-
erences are provided for further study.
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