Introduction

Secret-sharing, also known as thresholding, is a way of breaking data up into N parts, called shares, such that any m of the shares can be used to completely reconstruct the data.  M is the threshold value, the data cannot be recovered from anything less than m shares.  Some thresholding algorithms do allow some data to be recovered from less than m shares, but m is the threshold value need to recover all of the data.  An overview of secret-sharing schemes can be found in [iv.], the secret-sharing used for this system is the polynomial scheme proposed by Shamir [v.], which does require all m shares before any data can be recovered. Secret-shared web pages is a system for accessing secret-shares distributed across N web servers and accessed using the http protocol.  The system is written in java to allow it to run in web browsers and uses the PASIS thresholding library to reconstruct the original data.  PASIS is a distributed data storage system that stores data in a secret-sharing scheme.  The paper discusses the motivation and goals for the project, describes how the system works, focusing on the algorithms for selecting the m shares from the N possible, and discusses the testing of those algorithms.  Unfortunately, there were problems with the testing phase and time constraints prevented correcting them.  In the conclusions section, there is a discussion of the problems and suggestions for how they could be corrected.  

Motivation

Secret-shared web pages provide security in accessing data in two primary ways.  The first is by increasing the availability of the data.  By distributing the data across multiple machines the system can withstand a loss of access to some of the servers, either through hardware or software failure or through malicious attacks.  In order to prevent access to the data, N-m-1 servers must be shutdown.  Having data distributed across multiple servers also has the advantage of being able to distribute the load and allowing for a higher level of concurrent access to the data.  Given the read-only nature of static web pages, the value of N can be made to be fairly large.  Reconstructing the data depends predominately on the size of thresholding value, m, not the number of shares, N.  So if one is willing to pay a higher computational cost in initially setting up the data, N can be made sufficiently large to give high levels of availability.  Note, that simple replication of the data would actually achieve higher availability since it would require all N of the servers to be shutdown to prevent access to the data.  However, simple replication, does not provide for the second method of securing access to the data. 

In a replication scheme, the data can still be accessed by the administrator at each server or anyone else who can bypass the security on the server.  The second level of security given by secret sharing is that it also protects the data from the administrators of the servers that the data is stored on.  No information is available from a single share value.  In fact, in recruiting web servers for testing, it was necessary to inform some of the administrators that they would not be able to read the data.  Server administrators can be a threat to the availability of data, if they chose to censor the information. In i. Anderson also cites a case where a third party threatened litigation in order to have information removed from web sites.  Some administrators may censor information for fear of lawsuits.  Others may censor simply because they disapprove of the content.  However, with secret shared data, individual administrators will not know what the data being stored on the server is.  Encrypting replicas would also achieve this goal.  However, if the cryptography is compromised, the data becomes exposed. In secret-sharing, there is no way to determine what the data is from a single (or even up to m-1) shares.

Goals

The main goal in designing the system was to be able to work with existing web servers and browsers.  The idea being that no code modifications would be needed for either the web server or browser as long as they adhere to accepted standards.  Therefore, the shares could be spread out among several different types of web servers running on different operating systems.  By using heterogeneous web servers to store the shared pages, the risk of a security hole in the operating system or web server software preventing access is significantly reduced.  For example, if all of the web servers where Microsoft NT machines running Microsoft’s web server software, then an attacker might be able to deny access to the data by exploiting a single weakness in the operating system and bringing down all N servers at once.  Using heterogeneous systems, however, does not guarantee protection against such attacks.  Since the http protocol is built on top of tcp/ip all of the servers will be using a common protocol which might be susceptible to something like a syn-flood attack.  In order to run on any web server the system stores the shares as though they were themselves complete web pages.  All that is necessary is for the share files to be stored on the web server in the same manner as static web pages would be.  The goal of not having to change the browser was to not have to force any reader to make a choice between MS internet explorer or Netscape (or any other browser capable of running java code.)  The goal was not completely met because the java code calls out to the PASIS C++ thresholding library.  So it requires that the thresholding library be installed on the client machine.  Implementing the secret-sharing system in java allows any java-compatible browser to be able to access secret-shared pages with the caveat that it be run on a system with the PASIS library installed (currently this library runs under unix and MS Windows OSes).  It is conceivable that the java code could be modified to assemble the shares directly, however, as discussed in the future works section there are other possible benefits to calling out to the PASIS libraries.  

Design

As mentioned previously each share appears to be a static web page to the host server.  Each http request to a secret-shared page is intercepted and split into several http requests to the servers containing the shares.  Each server returns the share as if that where the entire request.  When m shares have been returned to the client machine, they are reassembled and presented as if the original request was to a single server.  The user need not ever know a secret-shared web page was accessed.  Secret-share page names use prefix indexing to determine what servers can satisfy the request.  A prefix of the request points to a virtual server that does not necessarily exist, and a suffix which is the page name to reference on each of the share servers.  For example, a virtual request to: 


http://www.virtualserver.com/secret_page.html

may be split into:

http://www.share_server1.com/~anonymous/
  secret_page.html

http://www.share_server2.com/~guest/      secret_page.html

.

.

.

http://www.randomserver.com/~nobody/      secret_page.html

So each of the servers will have a common directory structure.  Using prefix indexing has a few advantages.  First it is easier to set up secret shared web pages.  Initially, the web pages are designed as any other set of web pages would be, then each file can be split into shares stored in directories mirroring the structure of the original pages.  Each of these directory trees can then be distributed to the servers.  Prefix indexing also allows for faster lookups of the servers, since virtual web page references with the same prefix will access the same set of server, eliminating the need to do a lookup request for every single virtual web page.  However, there is a disadvantage to using this prefix indexing scheme and that is that information can be contained in the file name.  For example, a filename “MP3/The Hooters-And We Danced.mp3” gives a very good indication of the contents even if it is not possible to actually access the file data. Note, however, the filenames could be obscured.  Since html displays links according to the label rather than the actual href value. The filename in the example above to be modified and the html reference given as something like <a href=”babyscreeching.mp3”>The Hooters-And We Danced.mp3</a>.  The user will see the link as “The Hooters-And We Danced.mp3”, but the web server administrator will see the file as “babyscreeching.mp3” and be unable to play the file to determine its contents.  C++ code was written to handle the splitting of the files into shares.  Since the PASIS library works on arbitrary size memory blocks, a blocking factor must be chosen when reading in the files.  The output share blocks will be slightly larger to hold information about how to assemble the shares.  For the test web pages an input block size of 8180 was chosen, which results in a share block size of 8K.  This size was chosen so share blocks will line up with page boundaries.  However, the system can use other share sizes.  The block size is part of the information that is given to the system about the secret-shared pages, along with the threshold value and the servers to use. 

The java code is multi-threaded with two thread classes, a single controller thread, and N server threads.  The controller thread determines which N web servers correspond to a given prefix, and what the threshold and blocking factor values are. Currently, this information is obtained by reading the data in from a file, but could easily modified to obtain the information from other sources.  The controller also selects which shares to request and re-assembles the original data.  After reading in the data about the shares, the controller initializes the server threads with the information.  There is one server thread per web server, initially spawned by the controller.  The server thread issues the actual web page request using its own server prefix and the common suffix.  Additionally, the server thread will maintain bookkeeping data about the web server response times that can be used in determining which shares to request.  Since there is one server thread per web server, once the controller thread selects which shares to retrieve it simply wakes the appropriate server threads and waits for m shares to be returned.  The controller thread will call out to the PASIS library routines to re-assemble the shares.  The initial design had the controller retrieving the shares from the server threads by reading from a memory block each server thread shares with the controller.  However, under this scheme, for files of more than one share block in size, all of the server threads would have to wait until the current share block is assembled.  Thus limiting the system to the slowest of the m servers that return each block.  On the other hand, large files would make it infeasible to allow each server thread to queue up share blocks with no limit.  So a blocking queue was added that allows each server thread to queue up to ten share blocks, before blocking until the controller frees up space. Each time the controller is signaled that a share block as been added to a queue it checks all of the thread queues.  If a queue has blocks in it that are lower numbered than the current share block being assembled they are simply discarded.

The controller was designed to be able to use four different algorithms for selecting the m share from the N servers.  The first and simplest algorithm, All N, is to issue requests to all N servers and take the first m that respond.  This method guarantees that the fastest m servers will respond to the request.  However, it has the potential of overloading the client.  If N is very large the network card of the client may not be able to handle the amount of data being sent.  As discussed in the testing section, the All N method can also overload the controller as well. The other three methods discussed assume that the controller will issue m+X requests.  Where X is the overloading of the requests and can range from 0 to N-m (with is the All N method) and they will use the first m servers to respond.  Overloading allows the system to decrease latency by increasing the chances that a fast server will respond, however, limits the overhead of having to manage unnecessary share blocks.  The second algorithm for selecting m+X of N servers is round robin, RR.  RR is only slightly more complex than the All N to implement.  A potential problem with RR has to do with how the servers are listed.  If servers are grouped by some common trait (ex. location, OS used) then there is a higher probability that if one server is slow or fails others near it in the list will be more likely to be slow or fail as well.  A third algorithm is to simply pick the servers at random.  This algorithm eliminates any potential problems caused by groupings of servers as in RR.  The fourth algorithm is to pick servers with the lowest average response time, LRT.  Each server thread maintains the total bytes read and the total time spent reading the bytes for the server is communicates with.  The controller will select servers with the lowest time/bytes ratio.  A potential problem with LRT is that a fast server may have a transient slow down which could increase its average response value so that it is never selected again, even though it is a fast server.  One method considered to solve this was to periodically ping the servers to update response time, but this was considered to be a waste of network bandwidth.  Instead, only the first m servers are chosen by lowest response time and the overloaded, X, servers are picked at random.  So a server with a slow response time will eventually get a chance to improve the time.  In the case that X=0, then the first m-1 servers are chosen by lowest average response time and one server is picked at random. 

For the four algorithms implemented, once m shares have been received and correctly assembled, any excess requests with I/O pending must be aborted.  An unfortunate consequence of using java is that java I/O is not interruptible.  In order to abort a pending request, the network connection between the server thread and the web server is closed by the controller, causing an I/O exception in the server thread.  The decision to wait until after the controller assembles the m shares was made because this allows for the case that a bad share was received and also so that more accurate data on the server response times can be collected.  

A final consideration in the design is how to handle a server that does not accept a connection or times out before completing a request.  Servers that timeout are immediately replaced by selecting another server using whatever the current selection algorithm is being implemented.  Note, timed out servers are not put back into the selection pool for the current request.  However, if a server is not responding properly it may take a long time to time out, wasting time waiting for data that will never arrive.  The solution implemented is that after k responses (k < m) are received issue more requests, so there are always m+X outstanding requests until m responses have been received.  K is referred to as the replace-threshold.  Although, this has been implemented in the system, due to problem that occurred during testing the effects of this policy have not been tested.  

Testing

During testing a significant flaw in the system was discovered.  The problem is caused by java’s inability to interrupt I/O requests.  If a thread is reading data from a server, then it can be interrupted by having the controller close the connection to the server.  However, if a thread stalls while trying to connect to the server, there is no way to interrupt the I/O.  The biggest effect of this problem was the controller had to stall waiting to reset server threads at the beginning of each request.  This situation was not anticipated and caused some tests to be aborted and re-run later, due to two of the test servers having connection problems.  Because of this and time constraints, it was not possible to correct the problem and re-run all of the tests.  Therefore, these tests results should not be considered conclusive.  

There were 11 secret-share web servers used (N=11) and the threshold was 4.  Most of the servers were Unix machines, however, one server was a Mac running MacOSX and another server was running Windows NT. All tests were run from a Sparc Ultra-1 running the Solaris 2.7 (SunOS 5.7) operating system. Each test was run 10 times and the resulting response times averaged.  Each of the 4 algorithms (All N, RR, random, LRT) for server selection was tested.  Each test consisted of requesting 30 shared pages ranging in size from 284 bytes to 2167640.  The total bytes requested by each test was approximately 4.5M.  10 pages were under 8K; 11 pages were between 8K and 80K; and 9 pages were over 80K in size. For all but the All N test, each test was run with 0, 1, and 3 overload servers being requested.  These overloading values give initial server request sizes of m, N/2 (rounded down), and 2N/3 (rounded up) respectively. The ordering of the test runs was to run each algorithm through all values of overloading.  This allows for more accurate comparisons of how overloading effects each method, at the expense of accuracy of comparisons among methods.  It would probably be best to re-run the tests varying each method for a common overloading value.  Table 1 gives the results where the requested files are aggregated into: Small (under 8K in size), Medium (between 8K and 80K), and Large (> 80K) files.  Small files are files that are less than or equal to one data block in size.  Medium files are files that can fit into the data buffer queue for each thread, and therefore can be completely retrieved from the server without the thread having to block waiting for service from the controller.  Large files are those that may block trying to give the data to the controller.  The graphs show the data, averaged from all 10 runs, on a per file basis.  The x-axis is the file size, the y-axis is the time to retrieve.  Each graph compares the different algorithms for the various overloading values, and group into small, medium, and large file data sets.  The All N is shown in each graph as the limit as m+X goes to N.  The combined graphs compare the best case overloading (according to the aggregate data in Table 1) for each algorithm.  The spike at 1618 shows the first file that is accessed.  The spike is the initial overhead of making the first connection to the web server. 

From the table data, it can be seen that the all N method for picking servers gives the worst case results.  Examination of the individual file results so that this algorithm isn’t always the slowest, but it is in bottom half of all tests, and gives the slowest results for large file tests.  Examining the test results show that this is not an artifact of the I/O problem.  The reason for this is that the controller thread spends a lot of time reading data from the buffer queues that it will simply discard.  And in some cases server threads will be blocked waiting for their queues to be read.  For similar reasons methods that use an overload value of 3 also fair poorly for large files.  For small and medium files, overloading gives varying results.  LRT has the best response for small files with an overload value of 1.  Looking at the individual file times, the best results vary between using an overload value of 1 and 3.  Remember, that LRT with an overload value of 1 means that the first m servers selected will be those with the smallest response time values.  Round Robin (RR) did well on small and medium files with an overload of one.  Individual file analysis for the RR case shows that it behaved very similar to zero overloading.  Additionally, RR with an overload of three behaved more like the all N method.  Random had little variation in response times for the differing overload values.  Note, the large spike at 4811 was caused by the I/O problem.    

	Method
	File Type
	Overload
	Average response time

	LRT
	Small
	0
	254.65 ms

	
	
	1
	227.10 ms

	
	
	3
	243.83 ms

	
	Medium
	0
	965.53 ms

	
	
	1
	970.52 ms

	
	
	3
	1014.25 ms

	
	Large
	0
	9739.56 ms

	
	
	1
	9539.24 ms

	
	
	3
	9792.00 ms

	Random
	Small
	0
	274.07 ms

	
	
	1
	240.60 ms

	
	
	3
	233.99 ms

	
	Medium
	0
	1012.53 ms

	
	
	1
	1012.54 ms

	
	
	3
	1080.34 ms

	
	Large
	0
	9916.08 ms

	
	
	1
	9472.68 ms

	
	
	3
	9830.97 ms

	Round Robin
	Small
	0
	232.91 ms

	
	
	1
	211.09 ms

	
	
	3
	271.90 ms

	
	Medium
	0
	980.78 ms

	
	
	1
	974.46 ms

	
	
	3
	1116.32 ms

	
	Large
	0
	9519.39 ms

	
	
	1
	9601.86 ms

	
	
	3
	10038.50 ms

	All N
	Small
	
	11441.93 ms

	
	Medium
	
	1334.81 ms

	
	Large
	
	287.27 ms


Table 1.
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Related Work
In [i.] Anderson describes his framework of a storage server distributed across the Internet.  The primary goal is to prevent censorship of information.  Censorship in the form of denial of service attacks, loss of data due to hardware failures, refusal of access by service providers, or even government interference.  Anderson just gives a general discussion of what is needed and why, not a specific implementation.  However, this paper is a useful source for understanding why data might need to be made secure against server administrators as well as outside attackers.  In, [ii.] Goldberg and Yianilos describe and Internet wide data storage system.  Data is stored in a hierarchical fashion.  The entire data block is stored at the top, then it is dispersed over more and more nodes at each level down.  At each level data is dispersed using a thresholding method so only a subset of nodes is required to reconstruct the entire block of data.  Payment for use of the system is disk space.  Users contribute disk space for a specific period of time, for that they get a fraction of this disk space in the intermemory system and accrue interest on that memory.  As time goes by the user’s available disk usage in the system increases and their data disperses through-out the intermemory.  As the system grows it becomes less and less likely for data to be lost as the number of nodes that would need to fail increases significantly.  As long as m nodes remain, data at a failed node could be recovered from other nodes.  Intermemory is an interesting proposal, but a drawback is that everyone involved in its use, administrators and clients, must literally and figuratively, “buy into” the system.  Secret-shared web pages do not even require that the web server administrators are even aware of the secret-sharing.  The PASIS system[iii.] is a distributed storage system using secret-sharing to distribute data among storage devices.  The thresholding gives greater fault-tolerance and the PASIS system allows for automatic recovery of failed nodes.  The PASIS system is currently being developed to work with a variety of different protocols, not only allowing the client to view the storage system in different ways, but also allowing the PASIS system to store and retrieve data using various protocols as well.  Since PASIS is a read/write system it is far more sensitive to how many servers, N, the data is shared on.  The higher N is the more expensive writes to the system are.  Since web pages are essentially read only, there is only the initial write of sharing the pages.

Future Directions
One problem with the system is that if someone is able to obtain a list of the secret sharing web servers, an unauthorized person may be able to collect enough of the shares to reassemble the data. Preventing this unauthorized access could be done by having an authentication scheme on the web servers.  For example, if all of the web servers where Kweb web servers the java code could pass along the users kerberos tokens to authenticate.  A draw back of this is it requires all of the servers to implement the same authentication scheme.  A further improvement would be to implement well-known meta-data servers.  The java code could authenticate to the meta-data servers (also implementing a secret sharing scheme, but not necessarily via the http protocol) and pass the prefix string to the servers.  The meta-data servers would respond with the threshold value, list of secret-share web servers for the prefix and any security access information for each server.  Another improvement could be to have the java code connect to the PASIS multi-drive system, rather than simply using the secret share portion of the PASIS code.  The PASIS project is working on getting data via a variety of protocols (NFS, FTP, etc).  By having java connect to this system, the secret-share pages would not necessarily have to be stored as web pages at all.  The java portion of the system would simply be to translate the http request into a PASIS multi-drive request.  

Conclusions
Although there were problems with testing, secret-sharing has been show to work.  Web pages were shared and distributed to several servers.  The data at each server was unintelligible, but by combining shares from any 4 servers the files were successfully restored.  The tests were able to show that the All N algorithm behaves poorly compared to the other 3 algorithms for selecting m shares.  One optimization that could improve performance, for All N and other overloaded cases, is to have the server thread first check if any of the share blocks in the queue are stale before blocking on the queue.  This way the server thread may discard the blocks that have already been assembled, relieving some of the work from the controller thread and preventing the thread from blocking unnecessarily.  

The method of testing should be also be changed.  Due to the length of time to perform each test, approximately 1.5 to 3 minutes, the tests should not run all 10 trials at once before changing the parameters to measure.  The test should be grouped by the parameter to measure, selecting shares algorithm, overloading term, or replace-threshold, and then run the ten tests on each group.  Attempting to run the tests concurrently also presents problems.  To many tests could cause memory and/or network I/O contention on the client, and running on separate clients could skew the results as well.  During testing it was noticed that running on a Sparc Ultra-60 gave a noticeable performance improvement.  Running all 10 (or just a subset) trials on different systems would work, but tests across a given measure need to be run on the same client machine.  Additionally, data on the server throughput rates (which can be measure from the server threads total bytes/time data) could be used to determine why some tests run slower than others.  Also, the amount of data that gets discarded for overloaded requests could also be looked at.  

Solving the I/O problem is a bit harder.  The controller thread could kill the server thread after a given timeout.  However, testing would have to be done to determine the effect of restarting the thread, recall the spike for the initial file request.  This effect would have to be weighed against how long to wait before restarting a server.  
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