Algorithms and Computation In
Signal Processing

special topic course 18-799B
spring 2005
22" lecture Mar. 31, 2005

Instructor: Markus Pueschel
Guest instructor: Franz Franchetti
TA: Srinivas Chellappa

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’'s SSE
= |nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/L
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

|

Blackboard

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’'s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGene/L
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

BlueGene/L Supercomputer

System at Lawrence Livermore National Laboratory (LLNL)

= Aims at #1 in Top 500 list of supercomputers

= 65,536 processors
PowerPC 440 FP2 @ 700 MHz

= 360 Tflop/s peak performance
= 16 TByte RAM
= |n operation by end of 2005

Smaller systems will be commercially available
= QOther national labs, universities, Japan, Germany,...
= BlueGene/L consortium: open to everybody, community effort

The BlueGene/L System at LLNL

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board

(32 chips, 4x4x2)
16 Compute Cards

"T“\‘T‘!"l!‘
B
A

-dJ-L

dodd d d

Compute Card

(2 chips, 2x1x1) 180/360 TF/s

16 TB DDR
Chip

' 2.9/5.7 TF/s

256 GB DDR
90/180 GF/s

8 GB DDR

5.6/11.2 GF/s

2.8/5.6 GF/s 0.5 GB DDR

4 MB © 2004 IBM Corporation

One CPU

BlueGene/L CPU: PowerPC 440 FP2

V- N

PLBE (4:1) /32kf32kL1

SIMD unit: Double FPU

256
aefetch
440 CPU Buffers 4MB
One CPU - Shared EDRAM
) L3 directory
Multiported for EDRAM 1024+ L3 Cache
SRAM 144 ECC
32k/32k L1 Buffer ¥ Multibank
Lock
128 Prefetch |- o¢ i
440 CPU ’i_. Buffers | 256 Includes ECC
“Double FPU™ < 256
| !
¥
L Link buffers DDR
Ethernet JTAG and Control
Ghit Access Routing with ECC
Ghit 6 Bi-directional

Ethernet

1.4 Gbhis links
+ 2.8 Gh/s tree

144 bit wide
DDR (256MB)
5.6 GB/s _
© 2004 IBM Corporation

The Double FPU

BlueGene/L Double FPU: Two coupled FPUs
= Scalar and two-way vector FPU instructions

= Percycle: Either two-way FMA or two-way move,
and one two-way load or store

= Double precision

Supports complex arithmetic and two-way SIMD
= 20 instructions supporting complex multiply-add

= |mplicit parallel, cross and copy operations

= Vector sign changes and cross moves

re re re re re re

*

y
re re re

Parallel add =1 instr. Parallel mul = 1 instr. Complex mul = 2 instr.
Complex add (6 flops)

Vectorization Overhead

Complex arithmetic

= Native mode for BlueGene/L Double FPU
= However, many codes use real arithmetic
= Real codes require vectorization

Real vector code = faster computation but overhead

= QOverhead: prepare data for parallel computation
= (Goal: minimize or eliminate these reorder operations

BlueGene/L: Expensive data reorganization

re re = Work in parallel on real and imaginary parts
= One copy and two cross-copies
On BlueGene/L: 3 cycles = 12 flops

rejre

Benchmark: DFT, 2-powers, BlueGene/L

1600
1400 -

»n Q1200

5 £

S c 1000

“E‘ =

o = 800

g'i 600

2=

n Z

O, 400

200

/Two times faster

== SPIRAL C99 complex (440d)
== FFTW 2.1.5

—e-— SP|IRAL C real (440)

—o— SP|RAL C real (440d)

== GNU GSL mixed radix

Three times faster

l

4 8 16 32 64 128 256 512 1024 2048 4096 8192

Vector length N

BlueGene/L DD2 prototype at IBM T.J. Watson Research Center
Single BlueGene/L CPU at 700 MHz (one Double FPU), IBM XL C compiler

o Utilization of complex FPU via C99 Complex double
» Factor 2 over real code with compiler vectorization (IBM XL C)

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/L
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

Example: Complex Multiplication SSE3

Complex C99 code + compiler vectorization
works reasonably well

Complex code features intrinsic
2-way vector parallelism

The Corresponding Assembly Code

SSE3:

movapd
movddup
mulpd
movddup
shufpd
mulpd
addsubpd
movapd

XMMWORD PTR A
QWORD PTR B
XmmO
QWORD PTR
xmmO, 1

XxmmO,
xmm2,
xmmz2,
xmml,
xmmO,
xmml, XxXmmO

xmm2, xXmml

XMMWORD PTR C, xmm2

B+8

SSE?2:

movsd
movapd
movsd
movapd
movsd
mulsd
mulsd
movsd
mulsd
mulsd
subsd
movsd
addsd
movsd

xmm3,
xmm4,
xmm5,
xmmO,
xmml,
xmm4,
xmmb,
xmmz2,
xmmO,
xmm3,
xmm4,
QWORD
xmmb,
QWORD

QWORD PTR A
xmm3

QWORD PTR A+8
Xxmm5

QWORD PTR B
xmml

xmml

QWORD PTR B+8
Xxmm2

Xxmm2

xXmmO

PTR C, xmm4
xmm3

PTR C, xmmb5

In SSE2 scalar code is better

Example: 3DNow! Basic Block Vectorization

m Utilizing instruction-level parallelism
m Inter-operand and intra-operand vector instructions

Scalar operations Vector operations
add+sub npacc+swap vadd+chshi vsub+chslo
[l] ,
s2[12] [s1]T1]| E] 1|12
S | | S
— _|_ .
= = L[] [m[s2 | [sts2) [] |
D] D2
G < e 99
D12 D1D2|

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’'s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/L
= Complex arithmetic and instruction-level parallelism
= Things that don’t work as expected

m Conclusion: How to write good vector code

Things that don’t work as expected

m Intel SSE/SSE2/SSE3
= SSE2 can't do complex arithmetic well
= Early application notes showed really bad code examples (split radix FFT)
= |ntel Compiler doesn't vectorize despite pragmas,...

m Intel Itanium processor family (IPF)
= No intrinsic interface to IPF native vector instruction
= Can only use 4-way SSE intrinsics to program 2-way IPF
= With Itanium 2, no vectorization speed-up possible any more

m AMD 3DNow! and AMD64
= AMDG64 can do 3DNow! and SSEZ2 in parallel — have fun!
= For along time they had no compiler support
= K7: One intra operand instruction is just missing (++,+-, --; -+??)

Things that don’t work as expected (2)

m Motorola/IBM AltiVec

No unaligned memory access (raises exception)

Subvector access: the actually read/written vector element depends on the
memory address referenced (!!)

A general shuffle requires a 128 bit register “howto” operand

Only fused-multiply-add (FMA) instruction — have to add explicitly (0,0,0,0)
for multiplication only

For a while, the GNU C compiler was buggy and the only compiler available

m |IBM Double FPU (BlueGene/L)

One shuffle or one vector FMA per cycle

= Data reorganization prohibitively expensive
= Have to fold that into special FMAs and multiply by one

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/L
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

How to Write Good Vector Code?

m Take the “right” algorithm and the “right” data structures
= Fine grain parallelism
= Correct alignment in memory
= Contiguous arrays

m Use a good compiler (e. g., vendor compiler)

m First: Try compiler vectorization

= Right options, pragmas and dynamic memory functions
(Inform compiler about data alignment, loop independence,...)

= Check generated assembly code and runtime

m |f necessary: Write vector code yourself
= Most expensive subroutine first
= Use intrinsics, no (inline) assembly
= |mportant: Understand the ISA

Remaining time: Discussion

	Algorithms and Computation in�Signal Processing��special topic course 18-799B�spring 2005�22nd lecture Mar. 31, 2005��Instruct
	Organization
	Blackboard
	Organization
	BlueGene/L Supercomputer
	Vectorization Overhead
	Benchmark: DFT, 2-powers, BlueGene/L
	Organization
	Example: Complex Multiplication SSE3
	The Corresponding Assembly Code
	Example: 3DNow! Basic Block Vectorization
	Organization
	Things that don’t work as expected
	Things that don’t work as expected (2)
	Organization
	How to Write Good Vector Code?
	Remaining time: Discussion

