
Formal Loop Merging
for Signal Transforms

Franz Franchetti
Yevgen S. Voronenko

Markus Püschel

Department of Electrical & Computer Engineering
Carnegie Mellon University

This work was supported by NSF through awards 0234293, and 0325687.
Franz Franchetti was supported by the Austrian Science Fund FWF,
Erwin Schrödinger Fellowship J2322.

http://www.spiral.net

2

Problem

Runtime of (uniprocessor) numerical applications typically dominated
by few compute-intensive kernels

Examples: discrete Fourier transform, matrix-matrix multiplication

These kernels are hand-written for every architecture (open-source
and commercial libraries)

Writing fast numerical code is becoming increasingly difficult,
expensive, and platform dependent, due to:

Complicated memory hierarchies

Special purpose instructions
(short vector extensions, fused multiply-add)

Other microarchitectural features
(deep pipelines, superscalar execution)

3

Example: Discrete Fourier Transform (DFT)

GNU Scientific Library

vendor library

10x
performance gap

log2(size)

Ps
eu

do
-M

flo
p/

s
(h

ig
he

r i
s

be
tte

r)

Writing fast code is hard. Are there alternatives?

roughly the same
operations count

Performance on Pentium 4 @ 3 GHz

4

Automatic Code Generation and Adaptation

ATLAS: Code generator for basic linear algebra subroutines (BLAS)
[Whaley, et. al., 1998] [Yotov, et al., 2005]

FFTW: Adaptive library for computing the discrete Fourier transform
(DFT) and its variants
[Frigo and Johnson, 1998]

SPIRAL: Code generator for linear signal transforms (including DFT)
[Püschel, et al., 2004]

See also: Proceedings of the IEEE special issue on “Program
Generation, Optimization, and Adaptation,” Feb. 2005.

Focus of this talk:
A new approach to automatic loop merging in SPIRAL

5

Talk Organization

SPIRAL Background

Automatic loop merging in SPIRAL

Experimental Results

Conclusions

6

Talk Organization

SPIRAL Background

Automatic loop merging in SPIRAL

Experimental Results

Conclusions

7

SPIRAL: DSP Transforms

SPIRAL generates optimized code for linear signal
transforms, such as discrete Fourier transform (DFT),
discrete cosine transforms, FIR filters, wavelets, and many
others.

Linear transform = matrix-vector product:

Example: DFT of input vector x

output transform matrix input

8

SPIRAL: Fast Transform Algorithms
Reduce computation cost from O(n2) to O(n log n)

For every transform there are many fast algorithms

Algorithm = sparse matrix factorization

SPIRAL generates the space of algorithms using breakdown rules
in the domain-specific Signal Processing Language (SPL)

12 adds
4 mults

4 adds 4 adds1 mult
(when multiplied with input vector x)

9

SPL (Signal Processing Language)
SPL expresses transform algorithms as structured sparse
matrix factorization

Examples:

SPL grammar in Backus-Naur form

10

Compiling SPL to Code Using Templates

for i=0..n-1
for j=0..m-1

y[i+n*j]=x[m*i+j]

y[0:1:n-1] = call A(x[0:1:n-1])
y[n:1:n+m-1] = call B(x[n:1:n+m-1])

for i=0..n-1
y[im:1:im+m-1] = call B(x[im:1:im+m-1])

for i=0..n-1
y[im:1:im+m-1] = call B(x[i:n:i+m-1])

11

Some Transforms and Breakdown Rules in SPIRAL

Spiral contains 30+ transforms and 100+ rules

Base case rules

12

2B 33 0F ...

...
for (int j=0; j<=3; j++) {

y[j] = C1*x[j] + C2*x[j+4];
y[j+4] = C1*x[j] – C2*x[j+4];

}
...

...
for (int j=0; j<=3; j++) {

y[2*j] = x[j] + x[j+4];
y[2*j+1] = x[j] - x[j+4];

} ...

SPIRAL Architecture

Formula Generator

SPL Compiler

Se
ar

ch
 E

ng
in

e

Adapted
Implementation

Timer

C Compiler

0A FF C4 ...

100 ns80 ns

SP
IR

A
L

DFT_8.c
80 ns

Approach: Empirical search over alternative recursive algorithms

Transform

13

void sub(double *y, double *x) {
double t[8];
for (int i=0; i<=7; i++)

t[(i/4)+2*(i%4)] = x[i];
for (int i=0; i<4; i++){

y[2*i] = t[2*i] + t[2*i+1];
y[2*i+1] = t[2*i] - t[2*i+1];

}
}

Problem: Fusing Permutations and Loops

void sub(double *y, double *x) {
for (int j=0; j<=3; j++){

y[2*j] = x[j] + x[j+4];
y[2*j+1] = x[j] - x[j+4];

}
}

direct mapping

C compiler cannot do this

hardcoded special case

State-of-the-art
SPIRAL: Hardcoded with templates
FFTW: Hardcoded in the infrastructure

Two passes over the working set
Complex index computation

One pass over the working set
Simple index computation

How does hardcoding scale?

14

General Loop Merging Problem

Combinatorial explosion: Implementing templates for
all rules and all recursive combinations is unfeasible

In many cases even theoretically not understood

= permutations

15

Our Solution in SPIRAL

Loop merging at C code level: impractical

Loop merging at SPL level: not possible

Solution:
New language Σ-SPL – an abstraction level between
SPL and code

Loop merging through Σ-SPL formula manipulation

16

Talk Organization

SPIRAL Background

Automatic loop merging in SPIRAL

Experimental Results

Conclusions

17

New Approach for Loop Merging

SPL To Σ-SPL

Loop Merging

Index Simplification

SPL formula

Σ-SPL formula

Σ-SPL formula

Σ-SPL formula

Σ-SPL Compiler

Code

Formula Generator

SPL Compiler

Se
ar

ch
 E

ng
in

e

Timer

C Compiler

Adapted
Implementation

Transform

New SPL Compiler

18

Σ−SPL
Four central constructs: Σ, G, S, Perm

Σ (sum) – makes loops explicit
Gf (gather) – reads data using the index mapping f
Sf (scatter) – writes data using the index mapping f
Permf – permutes data using the index mapping f

Every Σ-SPL formula still represents a matrix factorization

Input Output

j=0

j=1

j=2

j=3

F2

Example:

19

Loop Merging With Rewriting Rules

SPL To Σ-SPL

Loop Merging

Index
Simplification

SPL

Σ-SPL

Σ-SPL

Σ-SPL

Σ-SPL Compiler

Code

for (int j=0; j<=3; j++) {
y[2*j] = x[j] + x[j+4];
y[2*j+1] = x[j] - x[j+4];

}

F2

XY

Rules:

F2

XY T

20

Application: Loop Merging For FFTs
DFT breakdown rules:

Cooley-Tukey FFT

Prime factor FFT

Rader FFT

Index mapping functions are non-trivial:

21

Example

Task: Index simplification

DFTpq

DFTp

DFTp-1

DFTr DFTs

DFTp-1

Cooley-Tukey

Prime factor

Rader

L

V

W

Given DFTpq
p – prime
p-1 = rs

WT

VT DFTq

D

p=7; q=4; r=3; s=2;
t=x[((21*((7*k + ((((((2*j + i)/2) + 3*((2*j

+ i)%2)) + 1)) ? (5*pow(3, ((((2*j +
i)/2) + 3*((2*j + i)%2)) + 1)))%7 :
(0)))/7) + 8*((7*k + ((((((2*j + i)/2) +
3*((2*j + i)%2)) + 1)) ? (5*pow(3,
((((2*j + i)/2) + 3*((2*j + i)%2)) +
1)))%7 : (0)))%7))%28)];

D

Formula fragment

Code for one memory access

22

Index Simplification: Basic Idea
Example: Identity necessary for fusing successive
Rader and prime-factor step

Performed at the Σ-SPL level through rewrite rules on
function objects:

Advantages:
no analysis necessary
efficient (or doable at all)

23

Index Simplification Rules for FFTs

These 15 rules cover all combinations.
Some encode novel optimizations.

Cooley-Tukey

Cooley-Tukey +
Prime factor

Transitional

Cooley-Tukey +
Prime factor +

Rader

24

// Input: _Complex double x[28], output: y[28]
int p1, b1;
for(int j1 = 0; j1 <= 3; j1++) {

y[7*j1] = x[(7*j1%28)];
p1 = 1; b1 = 7*j1;
for(int j0 = 0; j0 <= 2; j0++) {

y[b1 + 2*j0 + 1] = x[(b1 + 4*p1)%28] + x[(b1 + 24*p1)%28];
y[b1 + 2*j0 + 2] = x[(b1 + 4*p1)%28] - x[(b1 + 24*p1)%28];
p1 = (p1*3%7);

}
}

Loop Merging For the FFTs : Example (cont’d)

SPL To Σ-SPL

Loop Merging

Index
Simplification

SPL

Σ-SPL

Σ-SPL

Σ-SPL

Σ-SPL Compiler

Code

25

// Input: _Complex double x[28], output: y[28]
int p1, b1;
for(int j1 = 0; j1 <= 3; j1++) {

y[7*j1] = x[(7*j1%28)];
p1 = 1; b1 = 7*j1;
for(int j0 = 0; j0 <= 2; j0++) {

y[b1 + 2*j0 + 1] = x[(b1 + 4*p1)%28] +
x[(b1 + 24*p1)%28];

y[b1 + 2*j0 + 2] = x[(b1 + 4*p1)%28] –
x[(b1 + 24*p1)%28];

p1 = (p1*3%7);
}

}

After, 2 Loops.

Before, 11 Loops.

// Input: _Complex double x[28], output: y[28]
double t1[28];
for(int i5 = 0; i5 <= 27; i5++)

t1[i5] = x[(7*3*(i5/7) + 4*2*(i5%7))%28];
for(int i1 = 0; i1 <= 3; i1++) {

double t3[7], t4[7], t5[7];
for(int i6 = 0; i6 <= 6; i6++)

t5[i6] = t1[7*i1 + i6];
for(int i8 = 0; i8 <= 6; i8++)

t4[i8] = t5[i8 ? (5*pow(3, i8))%7 : 0];
{

double t7[1], t8[1];
t8[0] = t4[0];
t7[0] = t8[0];
t3[0] = t7[0];

}
{

double t10[6], t11[6], t12[6];
for(int i13 = 0; i13 <= 5; i13++)

t12[i13] = t4[i13 + 1];
for(int i14 = 0; i14 <= 5; i14++)

t11[i14] = t12[(i14/2) + 3*(i14%2)];
for(int i3 = 0; i3 <= 2; i3++) {

double t14[2], t15[2];
for(int i15 = 0; i15 <= 1; i15++)

t15[i15] = t11[2*i3 + i15];
t14[0] = (t15[0] + t15[1]);
t14[1] = (t15[0] - t15[1]);
for(int i17 = 0; i17 <= 1; i17++)

t10[2*i3 + i17] = t14[i17];
}
for(int i19 = 0; i19 <= 5; i19++)

t3[i19 + 1] = t10[i19];
}
for(int i20 = 0; i20 <= 6; i20++)

y[7*i1 + i20] = t3[i20];
}

26

Talk Organization

SPIRAL Background

Automatic loop merging in SPIRAL

Experimental Results

Conclusions

27

Benchmarks Setup

Comparison against FFTW 3.0.1

Pentium 4 3.6 GHz

We consider sizes requiring at least one Rader step
(sizes with large prime factor)

We divide sizes into levels depending on number of Rader
steps needed (Rader FFT has most expensive index
mapping)

28

One Rader Step Average SPIRAL speedup: factor of 2.7

29

Two Rader Steps Average SPIRAL speedup: factor of 3.3

30

Three Rader Steps Average SPIRAL speedup: factor of 3.4

31

Talk Organization

SPIRAL Background

Automatic loop merging in SPIRAL

Experimental Results

Conclusions

32

Conclusion

General loop optimization framework for linear
DSP transforms in SPIRAL

Loop optimization at the “right” abstraction level: Σ-SPL

Application to FFT: Speedups of a factor of 2-5 over FFTW

Future work: Other Σ-SPL optimizations
Loop merging for other transforms
Loop elimination, interchange, peeling

http://www.spiral.net

	Formal Loop Merging �for Signal Transforms
	Problem
	Example: Discrete Fourier Transform (DFT)
	Automatic Code Generation and Adaptation
	Talk Organization
	Talk Organization
	SPIRAL: DSP Transforms
	SPIRAL: Fast Transform Algorithms
	SPL (Signal Processing Language)
	Compiling SPL to Code Using Templates
	Some Transforms and Breakdown Rules in SPIRAL
	SPIRAL Architecture
	Problem: Fusing Permutations and Loops
	General Loop Merging Problem
	Our Solution in SPIRAL
	Talk Organization
	New Approach for Loop Merging
	S-SPL
	Loop Merging With Rewriting Rules
	Application: Loop Merging For FFTs
	Example
	Index Simplification: Basic Idea
	Index Simplification Rules for FFTs
	Loop Merging For the FFTs : Example (cont’d)
	Talk Organization
	Benchmarks Setup
	One Rader Step
	Two Rader Steps
	Three Rader Steps
	Talk Organization
	Conclusion

