18-647 Computational Problem Solving for Engineers

Course Mechanics

Franz Franchetti Instructor

Eric Tang Teaching Assistant

Course Philosophy

- Learn how to solve real engineering problems including AI/ML with large(r) computers
- Your productivity is key: shortest time to solution
- Learn how to scale from laptop to large machines and the cloud productively
- No need to become a performance engineer, but know your computer stuff

Electrical & Computer

18-647: 10,000 Foot View

Scalable Algorithms

Larger-Scale Hardware

Course Mechanics

Lectures: 80 minutes, Tues/Thurs 9:30am – 10:50am

Recitation: 50 minutes, Fri 10:00am – 10:50am

Homeworks: Solve 5 smaller homeworks that give a tour through the cross-section of the course material

Blog post: Pick interesting result from the homeworks and write a blog post explaining what you learned

5 Homeworks: Explore Computing

Deeper-dive into algorithm families Algorithms underlying CSE, AI and ML

- **Explore performance vs. productivity** High level/scripting vs. high performance languages
- **Explore range of computer systems** Linux servers, cloud, HPC, high throughput
- High productivity through specialization Frameworks and problem solving environments
- Assess how good is your solution Profiling, timing, modeling, assessing results

EXPLORE COMPUTING with the TRS-80

Blog Post: For An Interesting HW Problem

- Problem specification
- Algorithm
- Hardware and software
- Outcome
- Scalability and complexity
- Quality of the result
- Performance analysis

Carnegie Mellon

Electrical & Computer

Grading

In-class participation: 20%

- Blog post: 20%
- **5** Homeworks: 60%

18-647 Additional Material

Advanced Engineering Mathematics, 10th Edition

Edward J. Norminton, Herbert Kreyszig, Erwin Kreyszig

Computer Systems: A Programmer's Perspective, Third Edition

Randal E. Bryant and David R. O'Hallaron, Carnegie Mellon University

Numerical Recipes: The Art of Scientific Computing *William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery*

Parallel Programming In C with MPI and OpenMP Michael Quinn

There is no course text book but these books cover the space

Tentative Schedule (Guest Lectures may move)

Dates	Торіс
January 16	State of computing: What is the current state of the art from embedded devices through desktops, servers, and consumer system all the way to cloud, HPC, and supercomputing
January 18	Computer architecture: Relevant computer architecture concepts
January 23	Software stack: ISA, operating system, virtualization, messaging, containers
January 25	Mathematics for Engineers: The central role of numerical linear algebra
January 30	The ECE Computing Environment: number cluster, Andrew systems, capability machines, GPU access, cloud access, Pittsburgh Supercomputing Center and XSEDE
February 1	Algorithm analysis, scalability, complexity: Getting answers in time
February 6	Guest Lecture: Quantum Computing and Quantum Algorithms
February 8	Parallelization: Sequential vs. parallel algorithms, scalability vs. performance
February 13	Need for speed: Principles of code optimization, when and how to optimize code
February 15	Cloud computing and HPC: Amazon EC2/Windows Azure/Google Cloud, Computational Grids, Scientific Workflows, Computing Centers
February 20	Numerical Analysis: How good are your answers? How to make them better?
February 22	Scalable algorithms: Dense numerical linear algebra, CNNs/DNNs, FFTs

Schedule (Cont'd)

Dates	Торіс
February 27	Scalable algorithms: Graph algorithms and sparse numerical linear algebra
February 29	Scalable algorithms: ODE and PDE solvers, stencils, filters, discretization
March 12	Scalable algorithms: Discrete and continuous optimization, ML training
March 14	Scalable algorithms: Informatics, symbolic computing, higher level AI
March 19	Scalable algorithms: Statistics: Monte Carlo, MCMC, statistical ML
March 21	Data: Obtaining real data sets, data visualization, data bases, data stores, file systems
March 26	Modern CPUs I: Super-Scalar Out-of-order, multicore
March 28	Modern CPUs II: vector extensions
April 2	Hardware Acceleration: GPUs, FPGAs, TPU, Tensor Cores,
April 4	From productivity to performance: C++, OpenMP, MPI, CUDA, Autotuning
April 9	Guest Lecture: Software Engineering vs. Performance Engineering
April 16	Guest Lecture: Pittsburgh Supercomputing Center and Usable HPC and High Performance AI/ML
April 18	Research Talk: SPIRAL: Formal Software Synthesis of Computational Kernels
April 23	Student Blog Presentations and Homework Lessons Learned
April 25	Summary and Beyond

Electrical & Computer

Homework and Blog Post Schedule

Dates	Торіс
January 25	Release homework 1
February 6	Homework 1 due, release homework 2
February 20	Homework 2 due, release homework 3
March 14	Homework 3 due, release homework 4
April 2	Homework 4 due, release homework 5
April 18	Homework 5 due
April 23	In class: Blog Presentations and Homework Lessons Learned
April 25	Blog post due

Electrical & Computer

Teaching Staff

Instructor Franz Franchetti Office Hours: Mon 2pm—3pm HH A312 http://www.ece.cmu.edu/~franzf

Teaching Assistant Eric Tang Office Hours: TBD

Canvas:

https://canvas.cmu.edu/courses/39200

TAs, Recitation, and Office Hours

- TAs are mentors for your blog post and give advise regarding homeworks and system issues
- Weekly recitation to help with homework issues that may be prevalent across entire class
- Weekly faculty office hours to discuss homeworks and general course related topics
- Faculty and TA one-on-ones if needed, schedule via email

Other Logistics

ECE IT Helpdesk email: <u>help@ece.cmu.edu</u>

ECE Course Support: HH 1113 email: <u>ece-asc@andrew.cmu.edu</u>

Accounts: ACCESS, ECE, Amazon EC2,...

Software access/licenses

ECE ITS and Pittsburgh Supercomputing Center (PSC)

Enjoy