
Compilers, Hands-Off My Hands-On Optimizations

Richard Veras Doru Thom Popovici Tze Meng Low
Franz Franchetti

Department of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15215

{rveras, dpopovic, lowt, franzf}@cmu.edu

ABSTRACT
Achieving high performance for compute bounded numer-
ical kernels typically requires an expert to hand select an
appropriate set of Single-instruction multiple-data (SIMD)
instructions, then statically scheduling them in order to hide
their latency while avoiding register spilling in the process.
Unfortunately, this level of control over the code forces the
expert to trade programming abstraction for performance
which is why many performance critical kernels are written
in assembly language. An alternative is to either resort to
auto-vectorization (see Figure 1) or to use intrinsic func-
tions, both features offered by compilers. However, in both
scenarios the expert loses control over which instructions are
selected, which optimizations are applied to the code and
moreover how the instructions are scheduled for a target
architecture. Ideally, the expert would need assembly-like
control over their SIMD instructions beyond what intrin-
sics provide while maintaining a C-level abstraction for the
non-performance critical parts.

In this paper, we bridge the gap between performance and
abstraction for SIMD instructions through the use of custom
macro intrinsics that provide the programmer control over
the instruction selection, and scheduling, while leveraging
the compiler to manage the registers. This provides the best
of both assembly and vector intrinsics programming so that
a programmer can obtain high performance implementations
within the C programming language.

Keywords
SIMD, Performance Engineering

Acknowledgment
This work was sponsored by the DARPA PERFECT pro-
gram under agreement HR0011-13-2-0007. The content, views
and conclusions presented in this document do not necessar-
ily reflect the position or the policy of DARPA or the U.S.
Government. No official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPMVP ’16, March 13 2016, Barcelona, Spain
c© 2016 ACM. ISBN 978-1-4503-4060-1/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2870650.2870654

0 200 400 600 800 1,000 1,200
0

2

4

6

8

k (m = n = 1280)

G
F

L
O

P
S

Compiler Autovect versus Expert Nehalem

expert
gcc-autovect

icc-autovect

Figure 1: In this plot we compare the performance
of an expert implementation of matrix-multiply
against two compiler auto-vectorized implementa-
tions. The peak performance of the machine is 9.08
GFLOPS and the expert implementation reaches
near that performance, while the two compiler vec-
torized implementations fall well below that.

1. INTRODUCTION
Implementing high performance mathematical kernels such

as the matrix-matrix multiplication kernel is an extremely
difficult task because it requires the precise orchestration
of CPU resources via carefully scheduled instructions. This
typically requires using single instruction multiple data (SIMD)
units on modern out-of-order processors, such as Streaming
SIMD Instructions (SSE) and Advanced Vector Instructions
(AVX) [6] on Intel processors, AltiVec [2] on PowerPC pro-
cessors, or NEON [1] on ARM processors.

For key kernels, this task is often undertaken by expert
programmers who are knowledgeable about the application,
available SIMD instruction set, and hardware architecture.
This is because the programmer must manually select the
appropriate instruction for their implementation, then they
must schedule the instructions and finally orchestrate the
movement of data to efficiently use the SIMD units. There-

fore, many high performance libraries rely on assembly coded
kernels, mainly because of the high level of control offered by
such languages. For this reason, library instantiations of the
Basic Linear Algebra Subprograms (BLAS) [8, 4, 3] such as
GotoBLAS [5] (Now OpenBLAS [9]), BLIS [10] and ATLAS
[11] make use of routines written in assembly to implement
operations like vector additions, scalar multiplications, dot
products and matrix-matrix multiplications. In this work
we address this issue, and provide a bridge between the low
level control that an expert needs and the high level bene-
fits of a compiled language. We do this through the use of
custom intrinsic like macros.

Implementing a kernel directly in assembly requires a sub-
stantial amount of human effort and is typically reserved for
performance critical code. Thus, to ease the programmer’s
burden, vector intrinsics are often used as a replacement for
the low level assembly language. The compiler maps these
vector intrinsics to the specific vector assembly code. Fig-
ure 2 shows the mapping between different vector intrinsics
and assembly instructions. During the translation of the ap-
plication to machine code, the compiler applies various opti-
mizations to increase performance. In this process the com-
piler may move and schedule instructions and assign named
registers according to general purpose heuristics. Thus, the
programmer loses the control over the instruction schedule
of the application.

vmulpd %ymm8, %ymm5, %ymm9 //assembly

t9 = _mm256_mul_pd(t8, t5); //intrinsic

vaddpd %ymm9, %ymm1, %ymm1 //assembly

t1 = _mm256_add_pd(t9, t1); //intrinsic

vperm2f128 $1, %ymm5, %ymm5, %ymm6 //assembly

t6 = _mm256_permute2f128_pd(t5, t5, 1); //intrinsic

Figure 2: The vector assembly instructions can be
replaced with the vector intrinsics offered by ven-
dors. The named registers are replaced with vari-
ables names. The compiler performs the translation
between the intrinsics and assembly along with the
mapping between the variable names and the named
registers.

A programmer wants the best of both worlds. On one
hand, he or she wants full control over the instructions and
the scheduling mechanisms while on the other hand he or
she desires programmability. The programmer simply wants
to write the kernel in a high level language such as C, but
somehow inhibit the compiler from moving and scheduling
instructions, while still using it for operations such as regis-
ter coloring or other optimizations for the glue code around
the kernels. In other words, certain parts of the application
or the library should not be modified by the compiler.

In this paper, we propose a mechanism for preserving in-
struction order that is as transparent to the programmer
as existing compiler intrinsics. We use the inline assem-
bly compatible with the gcc compiler to have control over
application, however we embed our construct within param-
eterized C macros to hide the low-level details. Moreover
we use the volatile construct to notify the compiler not to
touch the instructions and preserve their statically sched-
uled order. Figure 7 shows an example of a vector addition

Block in the M dimension

+=

Block in the K dimension

+=

Original Input

C += A B

Figure 3: GotoBLAS approach layers loops around
an extremely tuned assembly coded kernel. It first
blocks the original input in the K dimension, then
it blocks in the M dimension after that the blocks
are fed to the tuned kernel.

described using our parametrized C macro. We use these
macro instructions within matrix multiplication kernels and
show that static scheduling of the kernels outperform the
same kernels written with the normal vector intrinsics com-
piled with the same compiler.

Contributions.
Our work contributes the following:

– Parametrized C macros. We introduce vector macros
that provide the same ease of programming afforded by
traditional vector intrinsics, while providing the pro-
grammer a level of control of instruction selection and
schedule that one would expect from programming in
assembly.

– Demonstration of flexibility. We demonstrate the
flexibility of these customized instructions through the
implementation of high-performance matrix-matrix mul-
tiply kernels. We used generated and optimized code
to show that when the customized instructions are
used the performance is increased in comparison to
generated code with of using compiler vector intrin-
sics.

2. BACKGROUND
As our running example, we focus our attention to matrix-

matrix multiplication. When coded and tuned by an ex-
pert, this operation can achieve near the peak machine per-
formance due to its O(N3) floating point operations to its
O(N2) memory operations. Furthermore, there is great in-
terest in achieving peak performance for every new architec-
ture because the basic linear algebra subroutines (BLAS),
specifically the level-3 BLAS [3], casts the bulk of its com-
putation in terms of matrix-multiplication. Therefore, any
improvements in the performance of matrix-multiplication
translates to improvements in the rest of the level-3 BLAS
and the numerical and scientific libraries that build upon it.

Without loss of generality, we further our focus on the
variant of matrix multiplication of the form.

C = AB + C (1)

// C = AB + C

for(int i = 0; i < m; ++i) {

for(int j = 0; j < n; ++j) {

for(int p = 0; l < k; ++k) {

C[i][j] += A[i][p] * B[p][j];

}

}

}

Figure 4: The simplest implementation for the
matrix-matrix multiplication algorithm. The inner-
most loop computes the inner product between the
rows of matrix A and the columns of matrix B.
The outer two loops iterate through the rows and
columns of the two matrices.

where the matrix C ∈ Rm×n. The simplest implementa-
tion of an algorithm for computing the matrix multiplica-
tion can be done with three nested loops, similar to the
example written in C in Figure 4. The inner-most loop (k
index) performs the inner product between row i of matrix
A and column j of matrix B. The outer two loops (i and
j index) iterate through the rows and columns of the two
matrices. Although the implementation is fairly simple, the
attainable performance of this approach is low. Thus, over
the past 20 years there has been substantial efforts in the
advancement of high performance implementation of matrix
multiplication.

Layering for Performance.
GotoBLAS [5] (now maintained as OpenBLAS [9]) iden-

tified that a high performance implementation of matrix-
matrix multiplication can be achieved by layering loops around
an extremely tuned assembly implemented kernel. Figure 5
shows a simple implementation of a 4 by 4 kernel for matrix-
matrix multiplication. The exposed matrix-matrix kernel

vmovaps (%rcx), %ymm8

vmovaps (%rdx), %ymm4

vmulpd %ymm8, %ymm4, %ymm9

vaddpd %ymm9, %ymm0, %ymm0

vshufpd $5, %ymm4, %ymm4, %ymm5

vmulpd %ymm8, %ymm5, %ymm9

vaddpd %ymm9, %ymm1, %ymm1

vperm2f128 $1, %ymm5, %ymm5, %ymm6

vmulpd %ymm8, %ymm6, %ymm9

vaddpd %ymm9, %ymm2, %ymm2

vshufpd $5, %ymm6, %ymm6, %ymm7

vmulpd %ymm8, %ymm7, %ymm9

vaddpd %ymm9, %ymm3, %ymm3

Figure 5: An example of a matrix-matrix multipli-
cation of size m = 4 , n = 4, and k = 1 using vector
assembly instructions. Assembly coding with vec-
tor instructions provides control to the programmer,
but requires the programmer to select instructions,
manage registers, and schedule instructions manu-
ally.

operates on a large block L2 cache resident block of A.
Smaller portions of B and C are blocked for the L1 cache

and must be carefully implemented such that the kernel com-
putes floating point operations at the rate that the elements
are streamed from cache. In order to achieve this an expert
needs to perform the following optimizations:

– An appropriate mix of SIMD instructions need to be
selected such that the processor can sustain their rate
of execution.

– These instructions must be statically scheduled such
that their latencies are hidden by overlapping instruc-
tions.

Additionally, the following low level optimizations are nec-
essary in order to prevent the fetch and decode stage of the
processor from becoming a bottleneck.

– In some cases, we generate instructions that are meant
to operate on single-precision data instead of instruc-
tions that operate on double-precision data. An ex-
ample of this is the use of the vmovaps instruction
to load reg_a, instead of vmovapd. This is because
both instructions perform the identical operation but
the single-precision instruction can be encoded in fewer
bytes.

– For memory operations, address offsets that are be-
yond the range of −128 to 127 bytes require additional
bytes to encode. Therefore, we restrict address offsets
to fit in this range by subtracting 128 bytes from the
base pointers into A and B.

The optimizations require that the expert has a certain
level of control over their code. In the following sections we
will discuss the various alternatives that an expert can use
to implement the kernels.

Intrinsic functions.
Intrinsic functions are instructions offered by different pro-

gramming languages which are handled differently by the
compiler. The compiler replaces the intrinsic function with
an instruction or with a sequence of instructions (i.e. assem-
bly instructions) similar to an inline function. However, the
compiler has some extra knowledge regarding the intrinsic
function. This extra knowledge is helpful because it guides
the compiler to better optimize the application. These opti-
mizations are applied only when the user explicitly specifies
it to the compiler through a flag, i.e. -mavx for vector in-
trinsics using the Advanced Vector Extension (AVX) SIMD
instruction set, or -fopenmp for parallel intrinsics. In this pa-
per we focus on the vector intrinsic functions that may help
with the performance improvement on architectures that of-
fer vector units.

Vector intriniscs are intrinsic functions that specify to the
compiler that the instructions are vector assembly instruc-
tions and that the data on which the instructions operate
are stored in vector registers, as opposed to scalar registers.
The difference between a vector register and a scalar register
is that the vector register can store more data. For example,
a single AVX 256-bit width register can store up to four dou-
ble precision floating point number, whereas a scalar 64-bit
register that can hold exactly one double precision floating
point number.

3. CUSTOM INTRINSICS

__m256d y8 = (__m256d)_mm256_load_ps(&A[0]);

__m256d y4 = (__m256d)_mm256_load_ps(&B[0]);

__m256d tmp = _mm256_mul_pd(y8, y4);

y0 = _mm256_add_pd(tmp, y0);

__m256d y5 = _mm256_shuffle_pd(y4, y4, 5);

tmp = _mm256_mul_pd(y8, y5);

y1 = _mm256_add_pd(tmp, y1);

__m256d y6 = _mm256_permute2f128_pd(y5, y5, 1);

tmp = _mm256_mul_pd(y8, y6);

y2 = _mm256_add_pd(tmp, y2);

__m256d y7 = _mm256_shuffle_pd(y6, y6, 5);

tmp = _mm256_mul_pd(y8, y7);

y3 = _mm256_add_pd(tmp, y3);

Figure 6: The example in Figure 5 implemented
with the help of vector intrinsics. The variables are
declared as __m256d which specifies to the compiler
that the register is going to contain 4 double preci-
sion doubles.

3.1 Custom instructions
We introduce custom intrinsics that provide the control

offered by assembly instructions, while also allowing us to
leverage the assistance offered by the compiler when coding
with vector intrinsics or intrinsics in general.

Customized intrinsics are parameterized C macros that
assembly instructions into the code at compile time (See
Figure 7). Since customized intrinsics are replaced with as-
sembly instructions at compile time, it is the same as assem-
bly programming (at a slightly higher level of abstraction),
which implies that the programmer retains the same level
of control from programming in assembly. In addition, the
parameters of the macros are variables holding the inputs
and output of the assembly instructions. At compile time,
the variables are replaced with actual register names. This
leverages the register allocation algorithms in the compiler,
thus relieving the programmer from having to manually per-
form the book keeping.

The template for a customized instruction is shown in
Figure 8. We use inline assembly constructs so that the cus-

#define VADD(srca,srcb,dest) \

asm volatile(\

"vaddpd %[vsrca],%[vsrcb],%[vdest]\n" \

: [vdest] "=x"(dest) \

: [vsrca] "x"(srca), \

[vsrcb] "x"(srcb) \

);

Figure 7: The code represents an example of the cus-
tomized intrinsics, which is essentially a paramater-
ized C macro. The macro is marked as “volatile” to
prohibit the compiler from optimizing the instruc-
tion(s). As such, the macro will be translated di-
rectly to the vector assembly instruction that we
want to have in our kernel.

tomized instructions are recognized by most C preprocessors
and/or compilers. The __asm__ construct tells the compiler
that the arguments within the brackets represent the assem-
bly instruction and the extra information required by the
instruction. The first argument represents the assembly in-
struction which should follow a specific pattern, i.e. vaddpd

%[vsrca], %[vsrcb], %[vdest]. The next arguments rep-
resent the operands for the assembly instruction. Whenever
we desire to specify an output we have to mark the operand
with an = sign, i.e. [vdest] =x (dest).

The above template offers us control over the code, be-
cause we are still writing the application using assembly.
However, the compiler can still move these instructions around,
trying to schedule them according to the scheduling algo-
rithm specific for each compiler. A simple solution to dis-
able code movement is to use the “volatile” construct which
should lay in front of the assembly template, i.e.:
volatile __asm__(...).
Therefore one could statically schedule the code for a spe-

cific architecture, knowing that the optimization done by
the compiler will not affect the assembly inserted using the
customized intrinsics.

__asm__(assembler template

: output operands

: input operands

: optional list

);

Figure 8: The template for writing inline assembly
instructions that can be used within C programs.
The first argument represents a string for the assem-
bly instruction, while the next arguments represent
the operands for the instruction

In order to relieve the programmer from the task of man-
aging the use of the registers, we wrap the assembly con-
structs together using the macro definitions offered by the
programming languages, such as C/C++. In C, we define
the macros using the #define construct. We parameter-
ize the macro by adding arguments, where these arguments
will play the role of placeholders for the variables used in the
application. This allows us to leverage the compiler regis-
ter management capabilities. More importantly, this raises
the level of abstraction since the actual assembly instruc-
tions are hidden from the programmer, and the use of vari-
ables instead of register names allows one to treat these cus-
tomized intrinsics as regular intrinsic/function calls. More-
over, the customized intrinics permit us to schedule the
code before compilaton, without any worry that the com-
piler might move instructions around.

One particularly useful extension to our custom macros is
that we can implement our own intrinsics header file that
mimics the compiler’s built in intrinsics. This allows the
programmer to transition existing vectorized code to use our
macros.

3.2 A matrix-matrix multiplication example
Using the matrix-matrix multiplication kernel as an ex-

ample, one could use vector intrinsics rather than the vector
assembly instructions (See Figure 6). In this case, the com-
piler will have a more significant role, because it will have to
translate the application to machine code. Based on the ex-

inline __m256d _mm256_load_pd(double * A){

__m256d ret;

VMOV(ret, A);

return ret; }

inline __m256d _mm256_mul_pd(__m256d A, __m256d B){

__m256d ret;

VMUL(ret, A, B);

return ret; }

Figure 9: In the case of legacy code we can create a
drop-in replacement for the compiler intrinsics. The
existing compiler intrinsics can be redefined using
our custom macro instructions. This provides the
benefit that the instruction will be preserved while
keeping the same interface as the compiler intrinsics.

perience with matrix-matrix multiplication kernel, we have
identified a class of vector intrinsics that are useful for the
computation. The intrinsics can be classified in the following
categories:

– Load intrinsics are instructions that move data from
memory to registers, i.e. _mm256_load_pd. For exam-
ple, architectures that offer AVX support permit one
to store either 8 single precision floats or 4 double pre-
cision doubles. Moreover, different instructions can fill
the entire vector register with the same data points or
with completely different data points.

– Store intrinsics are similar to the load intrinics, they
move data from memory to registers, i.e. _mm256_store_pd.

– Permutation intrinsics are instructions that per-
form in register permutations or data shuffling, i.e.
_mm256_shuffle_pd or _mm256_permute2f128_pd. The
permutations are used for efficient computation of the
matrix-matrix multiplication kernel. The matrix-matrix
multiplication requires a reduction operation, which is
costly, therefore shuffle operations permits the move-
ment of data around to do the reduction computation.

– Compute intrinsics are the instructions that per-
form the compute similar to the example presented in
Figure 10. Additions and multiplications are the basic
instructions used for matrix-matrix multiplication, i.e.
_mm256_add_pd or _mm256_mul_pd. For newer archi-
tectures, one could use the fused-multiply add instruc-
tions, i.e. _mm256_fmadd_pd.

The vector intrinsics that fall in the 4 categories can be
used to implement the kernel for the matrix-matrix mul-
tiplication. Vector intrinsics raise the level of abstraction
and ease the burden on the programmer, such as the book-
keeping of the registers. Instead of using explicit vector reg-
isters, the programmer will have to declare the variables
with a specific data type that will give enough information
to the compiler to map the variables to the specific regis-
ters. The compiler uses a coloring algorithm when mapping
the variables to registers. The goal is to keep the data as
close as possible to the computation due to the low laten-
cies of accessing data in registers. Spilling to main memory
will increase the latency of bringing it back when computa-
tion requires it. Besides this optimization, the compiler also

Figure 10: Vector intrinsic applied on two vector
registers y_0 and y_1 of vector type __mm256d, which
is specific for AVX 256-bit width four way double
precision. The SIMD intrinsic describes a vector
addition between the two vector registers. The out-
put of the instruction is stored in the third vector
register y_3. The compiler translates this instruction
to the vector assembly instruction vaddpd.

applies scheduling of the instructions. In some situations
the scheduling is appropriate for the underlying architec-
ture. However, there are scenarios where the compiler may
cause performance degradation especially when the code is
already optimized and scheduled for a targeted architecture.

Typically the control over the code’s schedule is moved
given to the compiler. While writing the application in as-
sembly inhibits the compiler from moving instructions around,
using intrinsics makes it simpler to implement the problem
but it also forces one to interact with the compiler to obtain
the executable. Register coloring is a useful feature that re-
duces the burden on the programmer to keep track of how
data is being moved between instructions. Scheduling on the
other hand, may cause instructions to be moved around de-
stroying the static schedule, if one is applied. Based on the
advantages and disadvantages presented so far, one would
desire the best of both worlds, the control offered by the as-
sembly instructions and the ease of programmability offered
by intrinsics and the compiler.

4. EXPERIMENTS
In this section we demonstrate the effectiveness of our

custom macro instructions by comparing the performance
of various implementation of matrix-multiplication imple-
mented using our macros versus vector intrinsics and com-
piler auto-vectorization. The implementations that we se-
lected are representative of how an expert would tune an
optimize an implementation of a matrix-multiplication ker-
nel. What we will show is that our custom macros preserve
these hand optimizations.

Methodology.
For all of our experiments we compare the performance

of various tuned and untuned matrix-multiplication kernels.
Our implementations are compiled using either the GNU
Cross Compiler version 4.8.3 and Intel Compiler version
14.0.3.174. The two machines used in are experiments are
an Intel Xeon X7560 running at 2.27GHz (Nehalem) with a
peak of 9.08 GFLOPS and an Intel Xeon E3-1225 running
at 3.10 GHz (Sandy Bridge) with a peak of 24.8 GFLOPS.

0 200 400 600 800 1,000 1,200
6

7

8

9

k (m = n = 1280)

G
F

L
O

P
S

Various Schedules for Nehalem (gcc-macro)

Best

SWP-1

SWP-2

SWP-3

SWP-4

Straightline

0 200 400 600 800 1,000 1,200
6

7

8

9

k (m = n = 1280)

G
F

L
O

P
S

Various Schedules for Nehalem (icc-macro)

Best

SWP-1

SWP-2

SWP-3

SWP-4

Straightline

Figure 11: Here we demonstrate that our custom macro instruction wrappers preserve instruction order after
compilation. We do this by implementing the same kernel with different instruction schedules and comparing
their performance. The line labeled Best was scheduled using the software pipelining algorithm which overlaps
instructions for different iterations and achieves the overall best performance. The lines labeled SWP-N are
variants of best but with decreased amounts of instruction overlap. The larger the N in SWP-N the more
overlap and the more likely the implementation will incur instruction stalls. The line labeled Straightline has
no instruction overlap and does not hide the latency of each instruction like the other variants. what this
demonstrates is that static scheduling affects performance even on out-of-order processors. On all plots peak
performance is the top of the y-axis. Note on this plot the minimum value of the y-axis is offset to show the
relative difference of the lines.

Auto-vectorization versus Expert.
In this first experiment, we establish the need for an ex-

pert for implementing a matrix multiply kernel. To demon-
strate this we compare the performance of a straight line
C implementation of a matrix-multiplication kernel against
the same kernel that was expertly implemented using our
custom macro instructions and compiled using gcc. The
straight line C implementations were compiled using the
auto-vectorization optimization such that the inner-most loop
of the kernel was transformed to use SIMD instructions. In
the expertly implemented kernel, we determined an efficient
instruction schedule that minimized stalls and used our cus-
tom macros to implement it.

The results (Figure 1) can be interpreted as follows: on
the X-axis we vary the size of the k dimension where m =
n = 1280. This value is selected so that when k is large
we see the behavior of the operation as it operates on data
in the memory for large values of k while at the same time
when k is small we also see the behavior of the operation
when it operates on cache resident data. On the y-axis we
measure GFLOPS, where the top of the y-axis represents the
peak performance of the machine. Each line represents an
implementation. The expert tuned kernel reaches near the
peak performance of target hardware. However, the gcc im-
plementation only achieves slightly above 25% of the peak of
the machine. The icc performs better, but still falls below
the expert implementation. When we inspect the assem-
bly code emitted by the compilers it is clear that compiler
does not make efficient use of the registers and resorts to

spilling and filling from memory. This is because the matrix-
multiplication kernel is a tightly constrained operation and
requires careful instruction scheduling in order to prevent
spilling while still achieving high performance. Even with
auto-vectorization, compilers fall short on delivering the per-
formance that an expert programmer can achieve.

Static Scheduling Matters.
In the first experiment we demonstrated that high per-

formance can be achieved from a kernel implemented in C
using our custom macros. In this second experiment, Fig-
ure 11, we show that static instruction scheduling is still
necessary for performance and our custom instructions pre-
serve the relative instruction order after being compiled by
the gcc and icc. Even in the absence of spilling, the same
instructions scheduled in different ordering achieve different
performances. This suggests that static scheduling impacts
performance of tightly constrained numerical kernels even
on out-of-order processors. In both plots the straightline
implementation is a compiler scheduled unrolled implemen-
tation.

The line labeled Best is statically scheduled in a software
pipeline fashion [7] to maximize theoretical performance.
Software pipelining is a approach for instruction schedul-
ing that is typically used for Very Long Instruction Word
(VLIW) processors that hides the latency of instructions
in a loop by restructuring the loop by interleaving non-
conflicting instructions from different iterations. Using this
approach the latency of each instruction is hidden by over-

lapping instruction from different iterations. By decreasing
how much the instructions overlap we get the lines labeled
SWP-N. These are variants of Best, where the larger the
number is the less instruction overlap is performed and the
more instruction stalls occur.

The line labeled Best uses a schedule that achieved the
best overall performance between the two compilers. This
performance was achieved on the gcc but not on the icc. We
suspect that the optimizations performed by the icc are not
as effective on already optimized code. Furthermore, we sus-
pect that the icc is very aggressive with its transformation
because the performance of the SWP-N variants are much
closer to each other than in the gcc plot. In the gcc plots,
the less overlap in the code (SWP-N with larger numbers
and straightline) the lower the performance because the in-
struction latency is not hidden. We believe that the reason
why the SWP-3 performance is worse than SWP-4 and the
straightline might be because this implementation clusters
large instructions together which would require multiple cy-
cles to decode.

When we examine the assembly generated by the compil-
ers, the ordering of the instructions are preserved. The re-
sults show that our macros can affect the instruction sched-
ule in a predictable manner and that static scheduling im-
pacts performance.

Experts needed for Scheduling.
In the previous experiment we demonstrated that static

scheduling affects performance even on out-of-order proces-
sors. In this following experiment we will demonstrate that
given our custom macro instruction an expert can schedule
a matrix-multiply kernel that achieves better performance
than a compiler. We do this by comparing an expert sched-
uled kernel that was implement using our macros, in order
to preserve the selected schedule, against a compiler sched-
uled implementation using compiler intrinsics. This allows
the compiler to determine an ordering of those selected in-
structions. In both implementations the resulting code has
the exact same instructions, but potentially in a different
ordering.

In Figure 12 we compare the performance of the best
scheduled implementation using our custom macros versus
a compiler scheduled implementation using compiler intrin-
sics. The lines labeled Intrinsic Compiler Scheduled repre-
sent the performance of a compiler scheduled, straight-line
implementation of the matrix multiply kernel that uses the
built-in compiler intrinsics. This implementation gives the
compiler the freedom to schedule the instructions in the ker-
nel as it sees fit. The lines labeled Custom Macro Scheduled
are the implementations that have been scheduled for perfor-
mance and implemented using our macros to preserve said
schedule. For both systems and both compilers the sched-
uled implementation using the custom macros outperforms
the compiler scheduled implementation. We suspect that for
tightly constrained kernels the heuristics used by the com-
pilers are not as effective as software pipelining.

Compiler Intrinsics are not enough.
In the previous experiment, we established that for a high

performance implementation of matrix multiplication an ex-
pert cannot rely on the compiler to schedule the instructions
in the implementation. In this experiment, Figure 13, we
compare the effectiveness of our custom macros against the

built in compiler intrinsics. For each compiler and system
combination we use the software pipelined, expert imple-
mented scheduled from the previous experiment (Figure 12)
and implement it with our custom macros and the compiler
intrinsics. What we want to test is if the compiler preserves
the instruction ordering when intrinsics are used or if our
custom macros are needed to preserve ordering.

On the Nehalem there is a significant performance differ-
ence between the two implementations on both compilers.
Even though both implementations have the same instruc-
tion order, the compiler reorders the intrinsic implementa-
tion, but does so sub-optimally. On the Sandy Bridge the
performance difference is slight. We examined the assem-
bly code generated by both the icc and gcc and in the two
cases ordering of the instructions are not the same as the
initial ordering, so the intrinsics do not maintain the order-
ing. In the previous experiment (Figure 12) the ordering was
not close enough to an optimal one and from the compiler
scheduled implementation the compiler did not achieve the
same performance as the expert. We suspect that because of
its large reorder windows, the Sandy Bridge is less sensitive
to the instruction order than the Nehalem.

5. CONCLUSION
In this paper, we show a simple solution where the pro-

grammers can have full control over the code without explic-
itly using assembly language. We propose parametrized C
macros that wrap inline assembly instructions marked with
the “volatile” construct. The macro instructions hide the
low level details of the assembly language, permitting the
programmer to use high level constructs such as variables
and leave the mapping of the variables to the named regis-
ters in the scope of the compiler. Moreover, the “volatile”
construct inhibits the compiler from touching the instruc-
tions and moving them around. Therefore, in the scenario
that the code is automatically generated and scheduled, the
programmer will have the guarantee that the compiler will
not affect the code. We use these parametrized macro in-
structions within matrix-matrix multiplication kernels and
show that they actually bring benefits, in comparison to the
same code which makes use of the normal off the shelf vector
instrinsics.

APPENDIX
A. REFERENCES
[1] Neon programmers guide.

[2] Power ISA Version 2.07. May 2013.

[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and
I. Duff. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft., 16(1):1–17,
March 1990.

[4] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.
Hanson. An extended set of FORTRAN basic linear
algebra subprograms. ACM Trans. Math. Soft.,
14(1):1–17, March 1988.

[5] K. Goto and R. van de Geijn. Anatomy of
high-performance matrix multiplication. ACM Trans.
Math. Soft., 34(3):12:1–12:25, May 2008.

[6] Intel Corporation. IntelR© 64 and IA-32 Architectures
Optimization Reference Manual. Sept. 2015.

[7] M. Lam. Software pipelining: an effective scheduling
technique for vliw machines. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, PLDI ’88, pages
318–328, New York, NY, USA, 1988. ACM.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Trans. Math. Soft., 5(3):308–323, Sept.
1979.

[9] http://xianyi.github.com/OpenBLAS/, 2012.

[10] F. G. Van Zee and R. A. van de Geijn. BLIS: A
framework for generating blas-like libraries. ACM
Trans. Math. Soft., 2013. Accepted.

[11] R. C. Whaley and J. J. Dongarra. Automatically
tuned linear algebra software. In Proceedings of SC’98,
1998.

0 200 400 600 800 1,000 1,200
0

2

4

6

8

k (m = n = 1280)

G
F

L
O

P
S

Scheduled with Custom Macros Nehalem (icc)

Custom Macro Scheduled

Intrinsic Compiler Scheduled

0 200 400 600 800 1,000 1,200
0

2

4

6

8

k (m = n = 1280)

G
F

L
O

P
S

Scheduled with Custom Macros Nehalem (gcc)

Custom Macro Scheduled

Intrinsic Compiler Scheduled

0 200 400 600 800 1,000 1,200
0

5

10

15

20

k (m = n = 1280)

G
F

L
O

P
S

Scheduled with Custom Macros Sandy Bridge (icc)

Custom Macro Scheduled

Intrinsic Compiler Scheduled

0 200 400 600 800 1,000 1,200
0

5

10

15

20

k (m = n = 1280)

G
F

L
O

P
S

Scheduled with Custom Macros Sandy Bridge (gcc)

Custom Macro Scheduled

Intrinsic Compiler Scheduled

Figure 12: In these plots we show that even when given the same mix of instructions to implement a kernel,
an expert implements a higher performance kernel than the compiler. For each of machine and compiler
combinations we compare an implementation that is hand scheduled and coded using our custom against the
same ordered set of instructions coded using compiler intrinsics. The hand scheduled instructions perform
significantly better than the compiler scheduled implementations.

0 200 400 600 800 1,000 1,200
0

2

4

6

8

k (m = n = 1280)

G
F

L
O

P
S

Best Schedule using Intrinsics versus Macros Nehalem (icc)

Best Macro

Best Intrinsic

0 200 400 600 800 1,000 1,200
0

2

4

6

8

k (m = n = 1280)

G
F

L
O

P
S

Best Schedule using Intrinsics versus Macros Nehalem (gcc)

Best Macro

Best Intrinsic

0 200 400 600 800 1,000 1,200
0

5

10

15

20

k (m = n = 1280)

G
F

L
O

P
S

Best Schedule using Intrinsics versus Macros Sandy Bridge (icc)

Best Macro

Best Intrinsic

0 200 400 600 800 1,000 1,200
0

5

10

15

20

k (m = n = 1280)

G
F

L
O

P
S

Best Schedule using Intrinsics versus Macros Sandy Bridge (gcc)

Best Macro

Best Intrinsic

Figure 13: In these plots we show that compiler intrinsics do not preserve the implemented instruction
schedule as well as our custom macro instruction wrappers. For each system and compiler combination
we implemented the same matrix-matrix multiply with the same static schedule using our custom macro
instructions and using the compiler intrinsics. The x-axis is the problem size and the y-axis represents
performance in GFLOPS. The top of the plots represent the peak performance of the target machines. For
the Nehalem there is a significant difference in the performance. On the Sandy Bridge the performance is
comparable, but the assembly code produced by the compiled intrinsics does not preserve the order of the
instructions. However, the compiler intrinsic implementations do not achieve this level of performance unless
the instructions are scheduled.

