
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Accelerating Architectural Simulation Via
Statistical Techniques: A Survey

Qi Guo, Tianshi Chen, Yunji Chen, and Franz Franchetti

Abstract—In computer architecture research and develop-
ment, simulation is a powerful way of acquiring and predicting
processor behaviors. While architectural simulation has been
extensively utilized for computer performance evaluation, design
space exploration, and computer architecture assessment, it still
suffers from the high computational costs in practice. Specifically,
the total simulation time is determined by the simulator’s raw
speed and the total number of simulated instructions. The
simulator’s speed can be improved by enhanced simulation
infrastructures (e.g., simulators with high-level abstraction, par-
allel simulators, and hardware-assisted simulators). Orthogonal
to these work, recent studies also managed to significantly reduce
the total number of simulated instructions with a slight loss of
accuracy. Interestingly, we observe that most of these work are
built upon statistical techniques. This survey presents a compre-
hensive review to such studies and proposes a taxonomy based
on the sources of reduction. In addition to identifying the simi-
larities and differences of state-of-the-art approaches, we further
discuss insights gained from these studies as well as implications
for future research.

Index Terms—Architectural simulation, design space explo-
ration (DSE), regression, statistical methods.

I. INTRODUCTION

WHEN designing a processor, designers have to estimate
architectural behaviors of the design before implemen-

tation and manufacture, so that the processor can meet specific
design objectives. As one of the most prevalent methodolo-
gies for addressing this problem, architectural simulation has
been extensively deployed since it offers designers a bal-
ance of cost, timeliness, and flexibility [1]. Application scopes
of architectural simulation include but are not limited to
performance evaluation, functional validation, design space
exploration (DSE), and assessment of architectural innova-
tions. In industry, all leading processor manufacturers have
devised their own cycle-accurate simulators to the design of

Manuscript received December 20, 2014; revised May 2, 2015; accepted
June 22, 2015. This work was supported in part by the Defense
Advanced Research Projects Agency PERFECT program under Grant
HR0011-13-2-0007, in part by the National Science Foundation of China
under Grant 61221062, Grant 61303158, Grant 61432016, and Grant
61473275, in part by the 973 Program of China under Grant 2015CB358800,
and in part by the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant XDB02040009. This paper was recom-
mended by Associate Editor S. Kim.

Q. Guo and F. Franchetti are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
USA (e-mail: qiguo.work@gmail.com).

T. Chen and Y. Chen are with the State Key Laboratory of Computer
Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100092, China.

Digital Object Identifier 10.1109/TCAD.2015.2481796

processor. For example, IBM maintains Mambo simulation
environment [2], which is designed for IBM PowerPC sys-
tems, ranging from embedded system (e.g., IBM’s 32-bit
embedded 405GP [3]) to supercomputer (e.g., BlueGene).
AMD develops SimNow simulator [4] that emulates AMD
Athlon 64 and AMD Opteron uniprocessor and multiproces-
sor systems. Intel also uses HAsim [5] to evaluate future
processor products. Architectural simulation also plays a crit-
ical role in academic research of computer systems, since
it enables validations of novel research ideas without man-
ufacturing real chips. One piece of evidence is that more
than 80% papers presented at premier conferences of com-
puter architecture research, ISCA/HPCA/Micro (2009–2011),
utilized architectural simulators to validate the proposed ideas.

While the importance of architectural simulation has been
widely acknowledged, the speed of architectural simula-
tor is notoriously slow. Specifically, the speed of a cycle-
accurate simulator is typically between 1 KIPS (thousand
instructions per seconds) and 1 MIPS (million instructions
per second) [6], which are several orders of magnitude
slower than the native execution. To improve the simu-
lator’s speed, many concrete simulators have been pro-
posed, including simulators with high abstract level (e.g.,
Sniper [7], [8]), parallel simulators (e.g., P-Mambo [9],
SlackSim [10], and Graphite [6]), and hardware-assist simula-
tors (e.g., FPGA-Accelerated Simulation Technologies [11],
ProtoFlex [12], research accelerator for multiple proces-
sors [13], and ScalableCore [14]). An overview of the above
simulators can be found in [6] and [8]. Nevertheless, even
with the help of such enhanced simulators, architects and
researchers still cannot afford the total simulation time in their
practice. The reason is that the total simulation time is deter-
mined not only by the simulator’s speed, but also by the total
number of simulated instructions.

To reduce the total number of simulated instructions,
recently many approaches have been proposed. The key idea
of these approaches is to extract a small subset of the rep-
resentative instructions from the complete set of simulated
instructions by using various statistical techniques (e.g., sam-
pling theory, regression analysis, and machine learning). Since
these approaches only need to simulate a reduced number of
instructions, we called them as partial simulation approaches
hereinafter. Apparently, partial simulation approaches are com-
pletely orthogonal to the afore-mentioned approaches that
need to greatly modify the simulators, and they can be eas-
ily applicable to state-of-the-art simulators to further improve
simulation efficiency. In the rest of this survey, we will
comprehensively review the partial simulation approaches.

Formally, the total number of simulated instructions (I)
can be expressed as I = N × T , where N is the number
of instructions per simulation run and T is the number of

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:qiguo.work@gmail.com
http://www.ieee.org/publications_standards/publications/rights/index.html

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Taxonomy of partial simulation approaches.

simulation runs.1 Based on this observation, we propose a
detailed taxonomy as shown in Fig. 1, where existing par-
tial simulation approaches are categorized into two classes.
The first class focuses on reducing the number of instruc-
tions per simulation run (N), and the second class tries to
reduce the number of simulation runs (T). In the first class,
the approaches are further classified into two kinds, since N
is mainly determined by the simulated program and its related
input sets. The first kind of approaches reduce the size of
input sets to reduce the simulation time, for example, the exe-
cution time of train input set could be only 25% of that of
the ref input set [15]. The second kind of approaches reduce
the simulation time by detailedly simulating a short instruction
trace instead of the original instruction trace. There are three
main approaches to achieve this goal: 1) statistical simulation;
2) sampling simulation; and 3) statistical sampling. Statistical
simulation only simulates a small program synthesized from
the original program based on its statistical characteristics.
Sampling simulation only simulates representative traces from
the original program trace. Statistical sampling simulates a
small subset of instruction traces from the original program
trace via statistical sampling theory. According to the reported
results, these approaches can reduce the simulated instructions
by about two or three orders of magnitude.

The second class of approaches focus on reducing the num-
ber of simulation runs (T). In practice, T is further determined
by the number of evaluated programs and the number of
simulated architectures. The main way to reduce the number
of evaluated programs is called benchmark subsetting, which
finds representative benchmarks among a large set of bench-
marks with statistical techniques such as principle component
analysis and clustering analysis. On the other hand, to reduce
the number of simulated architectures, several paradigms have
been proposed, such as regression modeling, ranking mod-
eling, heuristic searching, and analytical modeling. These
approaches are mainly used for DSE, i.e., finding the opti-
mal architectures from a large architectural design space in the
presence of design constraints. The key idea of these approach
is to selectively simulate only a small number of architectures
rather than the whole design space. In addition to the above
approaches, researchers also propose several approaches to
reduce both the number of evaluated programs and the number
of simulated architectures simultaneously.

1Traditionally, the practitioners need to undergo multiple simulation runs
to obtain the desired results. For example, the researchers have to run several
different benchmarks on the simulators to sufficiently validate their ideas.
Another more notable example is that the architects have to run thousands,
even millions of simulations to explore the exponential architectural design
space to find the optimal design tradeoffs.

II. BACKGROUND

A. Architectural Simulator

The architectural simulators that are widely used in com-
puter architecture research can be roughly divided into two
kinds, including trace-driven simulator and execution-driven
simulator.

1) Trace-Driven Simulator: In traditional trace-driven sim-
ulators, at first, traces (i.e., time-ordered records of dynamic
execution stream of instructions) are collected from real appli-
cations. Then, such traces are served as inputs to drive the
trace simulators to model the behaviors of the target architec-
tures, where functional simulation is separated from detailed
timing simulation. Since applications are not functionally exe-
cuted in the trace-driven simulators, it can obtain a slight speed
advantage over the execution-driven simulators [1]. Moreover,
trace-driven simulators are relatively easier to implement than
other alternatives, since they only need to consider minimal
amount information that is critical to the replay of programs.
However, the main drawback of trace-driven simulators is that
they cannot accurately model the speculation which is com-
mon in modern superscalar architectures. Moreover, in the
multicore era, trace-driven simulators suffer from the inabil-
ity of capturing timing-dependent behaviors of multithreaded
applications [16].

2) Execution-Driven Simulator: The execution-driven sim-
ulators combine the functional simulation and detailed timing
simulation together to obtain the simulated results. Execution-
driven simulators take an executable binary rather than a trace
as the input, and they are extensively used in the design
of modern processors. One of the most famous execution-
driven simulators is SimpleScalar, which was first written
by Todd Austin in 1994, and its first release was assem-
bled, debugged, and documented by Doug Burger in 1996
at the University of Wisconsin–Madison [17]. SimpleScalar
provides five execution-driven simulators in the release, rang-
ing from the simplest (and fastest) functional simulator to a
detailed, out-of-order (OOO) superscalar processor simulator.
RSIM [18] is another execution-driven simulator mainly tar-
geting shared-memory multiprocessors with instruction-level
parallelism (ILP) processors. It executes the instructions OOO
together with the timing model, and it supports accurate mem-
ory consistency and wrong path simulation. Actually, RSIM
sacrifices simulation speed for accuracy.

To facilitate the design of multicore processors, sev-
eral multicore execution-driven simulators have been devel-
oped. One of the most notable examples is SuperESCalar
simulator (SESC). SESC can characterize a variety of
architectures, including dynamic superscalar processors,
chip-multiprocessors (CMPs), processor-in-memory, and spec-
ulative multithreading architectures. The main targets of SESC
are to provide a fastest simulator, make the code understand-
able and extensible, and offer many flexible configurations for
architects. Simics is a commercial full system simulator [19],
and it can support detailed simulation of multiprocessors with
the help of general execution-driven multiprocessor simula-
tor (GEMS) [20]. Currently, GEMS is no longer maintained,
and the main efforts are shifted to the development of
gem5 simulator system [21], which merges the advantages of
M5 [22] and GEMS. The gem5 simulator provides a highly
configurable simulation framework, multiple instruction set
architectures, diverse CPU models, and a flexible memory

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 3

system for modeling modern processors. MARSSx86 is a
fast, cycle-accurate, full-system multicore simulator for x86-64
architecture [23], and it is built upon PTLsim [24].

Another kind of simulators heavily rely on dynamic binary
instrumentation tools (e.g., Pin [25]) to feed information to
the timing models. For example, CMP$im [26] employs the
Pin tool to generate memory information on-the-fly to feed
the cache model for the investigation of the cache system
on multiprocessors. Other examples include Graphite [6],
Sniper [8], and ZSim [27]. Since the applications are function-
ally emulated/executed on the host natively, these simulators
are relatively fast. For example, ZSim can achieve up to 300
MIPS to model a chip with 1024 OOO cores.

B. Usage of Architectural Simulation

The application scopes of architectural simulation are very
broad, including performance evaluation, functional valida-
tion, DSE, assessment of architectural innovations, as well as
software performance tuning.

1) Design Space Exploration: DSE is widely considered
as one of the fundamental problems during the design of
computer systems. The silicon advances significantly increase
the complexity of processors, which leads to a large num-
ber of design parameters (e.g., cache size, reorder buffer
size, and number of cores) to decide. This problem is fur-
ther exacerbated for heterogeneous architecture [28]. In DSE,
cycle-accurate architectural simulators are indispensable tools
for evaluating complicated and subtle design tradeoffs with
respect to large design spaces, and handling various design
constraints (e.g., power/area/thermal constraints and quality of
service requirements). In order to achieve efficient and effec-
tive DSE, architectural simulators should be portable, flexible,
accurate, and fast.

2) Assessment of Architectural Innovations: Assessment of
architectural innovations relies heavily on architectural sim-
ulation during the early design phase. In the absence of a
real system, architectural simulation offers a cost-effective
way of evaluating architectural innovations. For instance, pho-
tonic interconnection network has been acknowledged as one
of the most promising techniques to provide low-latency,
ultrahigh-bandwidth, and low-power network for intracore
communications. However, silicon-photonic integration is still
expensive and has to face several challenges in manufacture.
Under this circumstance, several photonic on-chip intercon-
nect network simulators, e.g., PhoenixSim [29], have been
developed to evaluate the effectiveness of such architectures.

3) Software Performance Debugging and Tuning: Although
the architectural simulation is mainly employed for the
architectural design of processors, it can also support var-
ious tasks in software engineering, including performance
analysis, debugging, and testing of software. For example,
Albertsson and Magnusson [31] proposed to leverage full sys-
tem simulation (i.e., Simics simulation environment [19]) to
build a temporal debugger to analyze real-time properties of
software [30], [31]. In the above debugger, the predictable,
nonintrusive debugging environment for checking temporal
errors should be attributed to the deterministic characteristics
of deployed architectural simulators.

C. Statistical Methods

1) Statistical Concepts: Here, we introduce several basic
statistical concepts that are closely related with partial

TABLE I
SAMPLING VARIABLES

simulation approaches. Sampling theory and hypothesis test-
ing are two of the core concepts in statistic. Both of them are
utilized to provide statistically rigorous approximation to the
estimated results offered by simulators.

a) Sampling theory: In practice, statistical analysis is
conducted on a chosen subset of the entire population, since it
is usually impossible to get all data from the entire population.
A subset of the entire population is also called a sample, and
how to choose a sample to estimate the property of the entire
population is investigated by sampling theory. In our applica-
tion, sampling theory is used to determine a proper sample
of instructions that can best characterize the property of all
simulated instructions [32].

As a basic type of sampling techniques, simple random
sample (SRS) is widely used, where each individual of the
population has the same possibility to be chosen. Table I gives
the statistical variables that are used to characterize the prop-
erty of population and sample in SRS. In SRS, a sample of
n individuals are selected at random from a population of N
individuals. The analysis of the entire population is usually
conducted on the n sampled individuals, and the true popula-
tion mean μ is estimated by the sample mean x̄. The variation
coefficient cv is the standard deviation σ normalized by mean,
that is, cv = σ/μ and ĉv = s/x̄ are calculated for the pop-
ulation and the sample, respectively. Similar to the standard
deviation, variation coefficient can also be used to measure the
dispersion of a probability distribution. However, the standard
deviation can be directly used to construct confidence interval,
which is expressed as an interval to indicate the reliability of a
mean estimate. In more detail, confidence interval can be cal-
culated as θ = z(σ/

√
n), where z is the upper (1−C)/2 critical

value for the standard normal distribution. Here C could be
interpreted in such a way that there is a C probability that x̄ is
with the range of ±θ of μ. Thus, for a sample with given stan-
dard deviation σ and size n, the achieved confidence interval
varies along with specified confidence level.

b) Statistical hypothesis testing: Another important con-
cept in statistics is statistical hypothesis testing (SHT), which
is a systematic method to make decisions using experimental
data. The most representative usage of SHT in computer archi-
tecture is to evaluate the performance comparisons of different
simulation runs [33], even native computer systems [34].

There are several components to define when conducting
the hypothesis testing, as shown in Table II. Hypothesis test-
ing always begins with a statement of the value of a population
statistic containing the condition of equality, e.g., μ = 0.5, and
such statement is called as null hypothesis, denoted as H0.
On contrary, the alternative hypothesis is the statement that
must be accepted if the null hypothesis H0 is rejected (i.e.,
false). Based on null hypothesis, one can calculate the prob-
ability of the observation under H0, which is called p-value.
Once p-value is less than a user specified significance level,

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE II
TERMS IN SHT

α (the most commonly used values are 5% and 1%), the null
hypothesis will be rejected at the given level of significance.
In this condition, the alternative hypothesis will be accepted
to reach a statistically rigorous conclusion.

2) Regression Analysis: Regression analysis focuses on
characterizing the relationship (i.e., regression function)
between a dependent variable and one or more independent
variables. It is mainly used for prediction and forecasting,
e.g., predicting the performance (dependent variable) of archi-
tectural parameters (independent variables) in architectural
simulation, which may partially overlap with the field of
machine learning that will be detailed later. There are two
kinds of regression techniques: 1) parametric and 2) nonpara-
metric regression. Parametric regression implies that the form
of regression function is predefined, only the corresponding
parameters should be estimated from the observed data. On
contrary, nonparametric regression does not give assumptions
on the concrete form of the regression functions, thus, large
sample size is required to construct the model structure and
model estimates. Actually, both parametric (e.g., linear regres-
sion) and nonparametric regression (e.g., spline function) have
been utilized for performance/power modeling to accelerate
architectural simulation.

Linear regression is one of the most notable paramet-
ric regression techniques, where the dependent variable is a
linear combination of the parameters (rather than the inde-
pendent variables). A general linear regression model can be
written as

yi = β1xi1 + β2xi2 + · · · + βpxip + εi

where xij is the ith observation on the jth independent variable,
and ε is an error term. The main task of regression analysis is
to determine the concrete value of βj(1 ≤ j ≤ p) via, typically,
least square approaches.

Interpolation is a technique to create new data points within
the range of a set of already known data points, which is
basically a nonparametric regression technique. Spline inter-
polation is a special interpolation technique where smooth
piecewise polynomial function, called spline, is utilized to
predict the value of dependent variable. Spline is divided
into polynomial intervals, and such intervals are connected by
knots. Actually, the number and location of knots are critical
to the approximation between the spline function and real data.

3) Machine Learning: Machine learning focuses on the
study of algorithms that can automatically improve the per-
formance through experience [35]. It has already been widely
used in the community of computer architecture, e.g., resource
allocation [36], task scheduling [37], hardware reconfigura-
tion [38], and architectural optimization [39]. Here, we present
several basic but critical concepts of machine learning.

In a traditional machine learning problem, given a training
set consisting of n training data, each data is a pair of objects
denoted as (xi, yi), where xi ∈ �d is the training example

and yi ∈ � is the corresponding label of xi, learning algo-
rithms (learners) try to find an appropriate inferred function
(or model) f : �d → � that implements the optimal mapping.
Then, for a new example xj, learned function could gener-
ate the predicted output yj as f (xj). In particular, for a binary
classification task the label yi is a binary variable such as
yi ∈ {−1, 1}. In contrast, in a regression task the label yi is
a continuous variable. Actually, such a learning problem is
a typical supervised learning problem since the learning pro-
cess is performed on supervised training data, i.e., training
examples and their corresponding labels. On the other hand,
unsupervised learning indicates that the training set only con-
tains training examples without labels, and the learning process
is conducted directly on the original example xi. According to
these concepts, it is easy to derive the definition of semisuper-
vised learning, that is, the training set contains both labeled
and unlabeled training examples. Actually, all three kinds
of learning techniques stated above have been leveraged to
accelerate the architectural simulation by researchers in the
community of computer architecture.

III. ACCELERATE SINGLE SIMULATION RUN

As stated, the simulation cost of a single simulation run is
primarily determined by the evaluated program and its input
sets. Thus, there are two categories of approaches to accelerate
a single simulation run, that is, reducing size of input sets
and simulating a short instruction trace. We will detail each
category in the following sections.

A. Reducing Size of Input Sets

The first category of approaches to accelerate single simu-
lation run is to reduce the size of input sets. MinneSpec [40]
is one of the earliest investigations that fall in this category,
which is a reduced input set for standard SPEC CPU2000
benchmark suite. SPEC CPU2000 benchmark suite contains
three standard data sets: 1) test; 2) train; and 3) ref, whose
scales increase in order. Among these data sets, programs run-
ning with the ref data set exhibit the most similar behaviors to
real-life applications, and MinneSpec tries to provide a small
data set to reasonably mimic the behavior of the ref data set.
MinneSpec is developed by modifying the input commands,
providing new input files, or modifying/truncating/replacing
ref files for all benchmarks in SPEC CPU2000. By comparing
several statistical characteristics, such as the instruction mix-
ture and memory behaviors, of MinneSpec with the original
ref data set, the authors found that MinneSpec can reasonably
mimic the behavior of ref data sets of SPEC CPU2000 bench-
marks. However, although MinneSpec has been recognized by
SPEC and distributed with Version 1.2 of SPEC CPU2000, it is
not widely used for evaluating existing modern architectures.
Eeckhout et al. [41] later validated that such reduce input sets
are only representative for some programs, but not for others.

Hsu et al. [42] compared several statistical characteristics,
e.g., instruction per cycle (IPC), execution paths, and path cov-
erage, among test, train, and ref, and they found that both test
and train input sets have significant different characteristics to
that of ref data sets for several benchmarks. Thus, such input
data sets may not be suitable for profile-based optimization or
validation of research ideas, since the results of performance
evaluation conducted on these data sets could be misleading.

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 5

Fig. 2. General framework of statistical simulation process.

B. Simulating Short Instruction Trace

This category of approaches focuses on simulating a shorter
instruction trace than the original instruction trace of a given
program and its inputs. There are three different approaches,
i.e., statistical simulation, sampling simulation, and statistical
sampling.

1) Statistical Simulation: The basic idea of statistical sim-
ulation [43], [44] is to reconstruct a synthetic, small program
based on the statistical profiles (e.g., distribution of instruc-
tion types and branch behaviors) that are extracted from the
detailed simulation of the original benchmark. Thus, simu-
lation efficiency can be improved by replacing the original
large-scale program with a small synthetic version. Typically,
statistical simulation consists of four steps: 1) program trace
generation; 2) statistical profiling; 3) synthetic-trace genera-
tion; and 4) trace-driven simulation [44], as shown in Fig. 2.
At first, the program traces of given benchmarks can be gener-
ated by functional simulation. Then, the profiling tools extract
a set of statistical characteristics from such traces, and there
are two kinds of statistical profiling tools to accomplish this
task. The first is the microarchitecture-independent profiling
tools that only analyze the functional operations of the pro-
gram instructions and produce microarchitecture-independent
characteristics, such as instruction mix and instruction depen-
dencies. The second tool is specialized cache/branch predictor
simulators to collect the cache and branch behaviors from the
program trace, and these characteristics are closely related
to concrete architectures. The complete set of such statisti-
cal characteristics are then used to generate a synthetic trace
with the same statistical properties. Finally, such synthetic
traces can be efficiently executed on a trace-driven simulator
to obtain corresponding performance/power results. Obviously,
the effectiveness of statistical simulation should be measured
by comparing the simulated performance/power results of the
original program traces and the corresponding synthetic traces.
For SPECint95 benchmarks, statistical simulation results in
about 10% and 5% relative error for IPC and power, respec-
tively, while the number of simulated instructions can be
reduced by several orders of magnitude.

The selection of statistical characteristics is very crucial
to the accuracy of statistical simulation. Initially, basic block
size, instruction mixture, cache hit rate, etc., are treated as
statistical characteristics in a statistical simulator high-level

synthesized (HLS) [45]. In addition to such statistical charac-
teristics, Eeckhout et al. [46] proposed to utilize control flow
graph to characterize the control flow behaviors to enhance the
accuracy of statistical simulation. Besides, they also showed
that delayed update2 should be considered when characteriz-
ing branch behavior. Based on the experiments conducted on
an eight-way superscalar processor, the average error is 6.6%
and 4% for predicting performance and energy, respectively,
using SPECint 2000 benchmarks.

To facilitate the design of CMPs,
Genbrugge and Eeckhout [48], [49] further extended
statistical simulation to multithreaded programs. They pro-
posed several statistical characteristics of the cache access
behaviors, for example, the probabilities of set access and
per-set least recently used stack distance. Besides, they also
showed that it is important to model the time-varying behavior
to accurately capture the conflict behavior in accessing shared
resources. Experimental results demonstrate that the average
IPC prediction error is less than 5.5% while the simulation
speed-up can achieve 40× to 70×.

Hughes and Li [50] also extended statistical simulation to
multithreaded programs for CMPs. They proposed to build
synchronized statistical control flow graphs with the behaviors
of interthread synchronization and sharing patterns, so as to
capture the interactions between threads. Moreover, the mem-
ory access is captured by thread-aware data reference models,
and the branch behavior is captured by wavelet-based branch-
ing models. For the evaluated SPLASH-2 benchmarks, this
approach results in IPC errors from 3.8% to 9.8% and the
simulation time has been reduced by more than an order of
magnitude.

Recently, graphics processing units (GPUs) have been
employed to speed-up the general-purpose applications, lead-
ing to GPGPU computing. However, as GPGPU architectures
have many parallel hardware threads, current sequential cycle-
accurate GPU simulators such as GPGPU-Sim [51] take a long
time for simulation. To speed-up the simulation of GPGPU
architectures, Yu et al. [52] proposed to synthesize small
benchmarks with a reduced number of iterations compared
against the original workloads. To generate such small bench-
marks, several static and dynamic characteristics are collected
from the original workloads. Experimental results show that
the speed-up of this approach is 88× on average compared
with GPGPU-Sim.

2) Sampling Simulation: Different from statistical simula-
tion that reconstructs new small synthetic programs, sampling
simulation directly extracts a small fraction of representative
instructions from the original instruction trace. Compared with
the full simulation with billions of instructions, this approach
only needs to simulate several millions of instructions. The
most well-known approach is SimPoint [53].

SimPoint is proposed by Sherwood et al. [53], [54] based
on the concept of basic block vectors (BBVs). For a given
interval of execution (e.g., 100 million instructions), a BBV
is an array where each element represents a basic block in
the original program. More specifically, each element in a
BBV is the weighted count of how many times the related
basic block has been executed in this interval. Thus, BBV is

2It refers to the timing to update the predictor with branch results [47]. In
a typical pipelined processor, the branch is predicted in the fetch stage, but
the predictor is updated in the commit stage.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Illustrative example to compute the similarity between two execution
intervals.

an architecture-independent metric that can characterize the
behavior of arbitrary execution intervals in a program. To
compare the behaviors of execution intervals, the Manhattan
distance is utilized to measure the similarity between different
BBVs. An illustrative example to demonstrate the computa-
tion of similarity between two execution intervals is shown in
Fig. 3. There are two execution intervals in this example. For
interval 1, since basic block A has been executed for three
times, the value of its corresponding element in BBV is 3.
We can easily determine the value of other elements in the
BBVs of intervals 1 and 2. Then, the similarity (i.e., Manhattan
distance) of these two execution intervals is calculated as 4.

Based on the similarity metric of different intervals,
K-means clustering analysis is conducted to find the represen-
tative intervals that are closest to the center of corresponding
cluster for simulation, and these simulation intervals are called
simulation points. After conducting detailed simulations on the
set of simulation points, a weighted average for IPC can be
computed to approximate the performance of the entire pro-
gram’s execution. Experimental results show that by creating
multiple simulation points (≤10), the average IPC error is only
3% compared with the entire execution. Moreover, the detailed
tuning of SimPoint is also discussed in [55].

Van Biesbrouck et al. [56] further extended the SimPoint
methodology to estimate the performance of simultaneous
multithreading machines. The key idea is using the co-phase
matrix to represent the combinations of execution phases from
different programs that are running simultaneously, and each
entry in the matrix is the combination of the phase-IDs, called
as co-phase identifier. Then, the co-phase matrix is used to
determine fast-forwarding of threads between samples, and
estimate the performance of detailed simulation as well. On
the evaluated program pairs, this approach results in an error
rate of 4% on average, at the costs of only 1% of the full
simulation.

The profiled information of SimPoint is collected via sim-
ulation techniques, which may not be able to reproduce the
complex execution environment required by some real applica-
tions. Besides, it is often hard to port the latest version of com-
plicated applications to simulators. To address such problems,
a toolkit called PinPoint is created by Patil et al. [57]. PinPoint
is built upon SimPoint methodology and a dynamic instrumen-
tation tool, Pin [25], to automatically find the representative
execution intervals at run time on commodity computers.

Huang et al. [58] proposed to employ the sampling
technique for reducing the simulation cost of GPGPU

architectures. The proposed sampling technique includes inter-
launch sampling and intralaunch sampling, to select repre-
sentative kernel launches and instructions within one kernel
launch, respectively. The interlaunch sampling is achieved by
selecting a kernel launch from a group of kernels having sim-
ilar characteristics. The intralaunch sampling is achieved by
selecting the thread blocks with approximate performance. On
the evaluated kernels, the sample size of TBPoint is 2.6% with
a sampling error as 0.47%.

3) Statistical Sampling: In contrast to SimPoint that uses
clustering analysis to find representative traces, there are
also several studies employing statistical sampling theory to
reduce simulation traces. Conte et al. [59] proposed the state-
reduction method to statistically sample the simulation traces,
which is, to the best of our knowledge, the first piece of work
that applies statistical sampling to processor simulation. The
accuracy of the approach is guaranteed by reducing the sam-
pling bias (e.g., standard error) and nonsampling bias (e.g.,
branch predictor state).

Sampling microarchitecture simulation (SMARTS) selects a
small subset of instruction traces from the original instruction
trace with a specified confidence interval via statistical sam-
pling theory [32], [60]. In SMARTS, a sampling unit is defined
as U consecutive instructions in the program’s instruction
trace. When the total number of instructions is L, the number
of total sampling units N equals L/U. According to statistical
sampling theory, the required confidence on the estimation of
cycle per instruction (CPI) of the entire program execution can
be determined by the number of samples (recall n in Table I)
from N sampling units, and number of samples n can be
dynamically adjusted according to the coefficient of variation
of CPI (̂VCPI). In SMARTS, suppose sampling begins at off-
set j, that is, detailed simulation is performed at unit j and lasts
for U instructions. Then, SMARTS fastforwards U(k − 1)− W
instructions with only functional simulation, and subsequently
W instructions for warming-up are executed via detailed simu-
lation. Experimental results show that for typical applications,
a sample size of n = 10 000 units with unit size U = 1000
can achieve 99.7% confidence of ±3% error.

In SMARTS, to produce unbiased estimates, the func-
tional warming period is the dominant part of entire sim-
ulation. To eliminate the functional warming bottleneck,
Wenisch et al. [61] further proposed TurboSMARTS, which
chooses a minimal subset of warmed states and stores them in
checkpoints. Therefore, subsequent experiments can directly
load the states from such checkpoints to improve the simula-
tion efficiency. TurboSMARTS maintains the same accuracy of
existing simulation sampling approaches while achieves over
250× speedup.

4) Multiprocessor Sampling: SimFlex [62], [63], which is a
fast and accurate full-system simulator built upon Simics sim-
ulation environment, applies SMARTS methodology to rapidly
choose a representative sample of each workload. A key
innovation of SimFlex is that it applies statistical sampling
techniques to multiprocessor programs. A multiprocessor pro-
gram execution consists of multiple instruction streams with
nondeterministic communications among them, which makes
it hard to find the optimal sample of the full program. SimFlex
tackles this problem by focusing on the critical path of mul-
tiprocessor execution. In more detail, in order to estimate
the execution time of the full program, it is unnecessary
to consider none-critical-paths since they do not contribute

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 7

to the overall execution time. By only considering the pro-
gram sections on the critical path, the sampling process can
be treated as a (uniprocessor-like) interleaving of executions
across different processors.

In traditional instruction-based sampling such as SimPoint
and SMARTS, the original execution is sampled based on
a fixed length of instructions, leading to the divergence of
execution progress among threads. In this case, the over-
lap of different threads may not be the representation of the
actual behavior of a multithread application. On contrary, the
time-based sampling (TBS) samples the original execution
based on a fixed number of cycles, preserving the progressed
time of the original execution [64]. Therefore, TBS is able
to sample the simulation of multicore processors with no
limitation in terms of application type (e.g., multithreaded,
multiprogrammed, or both) and architecture heterogeneity.
TBS is further implemented as an open source simulator,
called enhanced SESC or ESESC. Similarly, Carlson et al. [65]
proposed to track simulated time rather than instruction count
for multithreaded applications. Besides, they also consider the
application synchronization events during the fast-forwarding
to improve the prediction of application execution. Recently,
Carlson et al. [66] further proposed BarrierPoint to accelerate
sampling simulation by using globally synchronizing barriers
in multithreaded applications. The key idea of BarrierPoint
is that it only simulates a selected number of representative
interbarrier regions, from which the total application execution
time can be predicted. BarrierPoint automatically identifies
most representative regions by conducting clustering analy-
sis on the microarchitectural independent characteristics of all
regions. Compared with prior TBS techniques, BarrierPoint
is more efficient since it eliminates full-application functional
simulation and it can be simulated in parallel.

IV. REDUCING TOTAL SIMULATION RUNS

In the design phase of processors, the total number of sim-
ulation runs can be determined by the number of evaluated
programs and the number candidate architectures. Thus, the
reduction of total simulation runs can be considered from these
two aspects.

A. Reducing Evaluated Programs

In the recent years, the number of computer applications
increases significantly, which results in a large number of
benchmarks to evaluate during the design phase of computer
systems. For example, the designers of general-purpose pro-
cessors often need to consider SPEC CPU benchmark suits
(e.g., SPEC CPU2000/2006), MiBench, and PARSEC in per-
formance evaluation. It is quite time-consuming to simulate
all these programs due to extremely slow simulation speed.
The situation is further exacerbated with the ever-increasing
scale of the input sets of modern programs. Therefore, many
investigations try to reduce the number of evaluated programs
during architectural design based on the observation that there
always exists statistical redundancy among benchmarks.

Eeckhout et al. [67] proposed to use principal components
analysis (PCA) as a statistically rigorous way to select a rep-
resentative subset from a benchmark suite. In their paper,
several program characteristics are proposed to characterize
each benchmark. These characteristics include instruction mix,
branch prediction accuracy, D-/I-cache miss rate, sequential

flow breaks, and ILP. Such characteristics are extracted via
profiling tools at first. Then, PCA is employed to obtain
the uncorrelated principal components, which can reduce
the dimensionality of the data and generate better cluster-
ing results. Finally, different benchmarks are clustered based
on the Euclidean distances. Through choosing one benchmark
from each cluster, a representative subset of the benchmark
suit can be constructed.

Eeckhout et al. [68] further proposed to use sev-
eral microarchitecture-independent characteristics to find a
set of representative program phases for simulation. Such
microarchitecture-independent program characteristics are also
used to measure the similarity among benchmarks, and then
clustering analysis is utilized to group similar benchmarks
together [69]. Following the basic idea of benchmark sub-
setting, only representative programs in each group are used
to subset the original benchmark suite for efficient simu-
lation. For the SPEC CPU2000 benchmark suite, by using
eight representative programs to subset the entire benchmark
suite, the error in average IPC is less than 5%, and by using
five representative programs to subset all the 32 MiBench
and MediaBench benchmarks, the error in average IPC is
less than 3.9%. Actually, the proposed microarchitecture-
independent characteristics can be used not only for finding
representative program subset but also for performance pre-
diction [70], performance optimization [71], and compiler
optimization [72].

Yi et al. [73] proposed to use the
Plackett and Burman (P&B) design to determine the
critical parameters of the performance. The effects of param-
eters are determined by the magnitudes that are computed
by using the P&B matrix and the simulated results (e.g.,
execution time). Then, the similarity among benchmarks is
measured by the rank of effects of all parameters. Finally,
such similarity is utilized to determine the representative
benchmarks for simulation.

Phansalkar et al. [74], [75] analyzed the redundancy and
application balance in the SPEC CPU2006 benchmark suite.
They applied multivariate statistical analysis techniques such
as PCA and hierarchical clustering analysis (HCA) to identify
the similarity among SPEC CPU2006 programs. According
to their evaluation, using four and six benchmarks to sub-
set the entire CINT2006 benchmarks lead to 5.8% and 3.8%
average performance errors, respectively. Also, using six
and eight benchmarks to subset the entire CFP2006 bench-
marks achieve 10.8% and 7% average performance errors,
respectively.

Jin and Cheng [76] also proposed a benchmark subsetting
methodology and conducted a case study using a bioinformatic
benchmark suite called ImplantBench. Their methodology
contains two steps. First, factor analysis is employed to
reduce the dimensionality of benchmark characteristics and
HCA is utilized to demonstrate the inherent correlation and
similarities among programs. In the second step, a distance-
based program selection strategy is proposed to select the
subset of benchmarks given desired workspace variance cov-
erage. Moreover, Jin and Cheng [77], [78] further proposed
a general benchmark subsetting framework based on evolu-
tionary algorithms, where a subset of given benchmark suite
can be generated based on the microarchitecture-independent
characteristics, desired workload space coverage, and total
execution time.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Reducing simulated architectures via predictive modeling techniques.

B. Reducing Simulated Architectures

1) Predictive Modeling: In the design phase of processors,
there always exists a large number of candidate architec-
tures for evaluation. To reduce the candidate architectures,
Yi et al. [73] proposed to use the P&B design to determine
the critical parameters of the performance. To further reduce
the simulated architectures, predictive modeling techniques
have been proposed recently. The basic idea of predictive
modeling technique is to simulate a subset of architectures
to build predictive models that can rapidly estimate the
performance/power of all candidate architectures.

The basic flow of applying predictive models for DSE can
be divided into two phases: 1) the training phase and 2) the
predicting phase as illustrated in Fig. 4. In the training phase,
a small fraction of architectures in the entire design space
are sampled for simulation to obtain the simulated processor
responses (e.g., performance, power, and area). Then, the sim-
ulated architectures will be treated as the training data to build
predictive models via various learning/regression algorithms.
In the predicting phase, such predictive models can be uti-
lized to predict the responses of any architectures that are not
involved in the training phase without additional simulation
runs. Since the responses of all candidate architectures can be
estimated by the predictive models, it is relatively trivial to find
the optimal architecture via directly comparing the predicted
results of all architectures.

Joseph et al. [79] first proposed to use linear regres-
sion models to characterize the relationship between design
parameters and processor performance. Since linear regres-
sion models can directly quantify different impacts of design
parameters on performance, it can provide more insights and
opportunities for performance optimization. To validate this
approach, they conduct experiments on a design space con-
taining 26 different variable design parameters. According to
the built linear model, it can be concluded that the depth of
pipeline, reorder buffer, and the size of issue queue are three
most critical design parameters on the processor performance
for the evaluated design space.

Although linear models are shown to be capable to provide
accurate estimation of the significance of design parameters
and their combination, they cannot accurately capture the non-
linear relationship between design parameters and processor
responses. Thus, a widely used nonlinear model, radial basis
function (RBF) networks, is used to construct accurate pre-
dictive models at low simulation costs [80]. According to
experiments on SPEC CPU2000 benchmark suite, such non-
linear models only result in 2.8% average error in CPI across
the design space. Lee and Brooks [81] also observed that there
exists nonlinear relationship between architectural parameters

and performance. They proposed to use spline functions for
building predictive models. More specifically, restricted cubic
splines are utilized to capture the complex, highly curved rela-
tionships between parameters and performance/power. They
conducted experiments on a design space that contains nearly
1 billion architectures, and by sampling 4000 architectures for
training model, the mean prediction errors for performance and
power are 4.1% and 4.3%, respectively. In fact, spline function
is also used for Pareto frontier analysis, pipeline depth analy-
sis, and processor heterogeneity analysis [82], [83]. Recently,
spline function is also used by Wu and Lee [84] to construct
predictive models to explore the hardware–software co-spaces.

Lee et al. [85] further proposed the composable performance
regression (CPR) to efficiently build scalable models for mul-
tiprocessors. This paper focuses on efficiently predicting the
performance of multiworkloads running on multiprocessors,
while previous predictive modeling techniques only estimate
the performance of a single (either single-threaded or multi-
threaded) workload. The CPR model consists of uniprocessor,
contention, and penalty models to produce the performance
estimation of multiprocessors at the costs of a small num-
ber of simulations. In more detail, given a set of benchmarks
B = B1, . . . , Bn running on a n-core multiprocessor, at first
CPR iteratively estimates the performance of each bench-
mark in B. For one specific benchmark Bi, CPR framework
also predicts its contention indicator when it contends with
other benchmarks in the set B for shared resources (such as
LLC, memory controller). Finally, a penalty model is used to
combine the baseline performance of Bi and the contention
indicator together to obtain the estimated performance of Bi
when running with other benchmarks in the set B. Actually, the
uniprocessor model and contention models are also trained by
cubic spline function on the full parameter space and shared
resource space, respectively.

Artificial neural networks (ANNs) are considered as one
of the most powerful and popular learning algorithms in
real applications. Ïpek et al. [86], [87] proposed to utilize
ANNs to capture the relationship between architectural param-
eters and performance/power. Besides, to reduce the number
of sampling architectures to build a model meeting specific
accuracy constraints, intelligent sampling is used to achieve
an efficient training process. The experiments on the design
spaces of a memory subsystem and a CMP system vali-
date that ANN-based regression models generally predict IPC
with 1%–2% error, while reducing the required simulation
runs by two orders of magnitude compared with the full
simulation.

Cook and Skadron [89] advocated to use genetic
programming (GP) to create polynomial functions (or response
surface) to characterize the relationship between the perfor-
mance and architectural parameters. The original GP is used
to optimize a population of programs based on evolutionary
biology. A distinguish feature of this approach is that the pre-
dictive function is modeled as a expression tree, where each
node represents a user-defined operator (e.g., simple arithmetic
operators, a square operator, and a logarithmic operator) or
a design parameter. Then GP imposes evolutionary process
(i.e., selection, crossover, and mutation) to this expression tree
to obtain the predictive functions. Thus, the predictive func-
tions are built automatically and explicitly. They conducted
experiments on the data sets investigated in [81] and [86],
and experimental results demonstrate that this approach can

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 9

obtain highly accurate predictive functions at the cost of a
few detailed simulation runs.

In contrast to previous predictive modeling techniques that
are only evaluated by the prediction accuracy on different
architectures, another kind of work focuses on improving the
quality of predicted Pareto set that represents the architectures
with best performance/energy tradeoffs. Palermo et al. [90]
investigated four regression models, i.e., linear regression,
shepard-based interpolation, ANNs, and RBFs, to predict the
performance and energy. The Pareto sets found by these pre-
dictive models are compared with the actual Pareto set with
the metric average distance from reference set.3 Experimental
results demonstrate that ANNs achieve the best performance
among investigated four models in their proposed DSE
framework.

Actually, the afore-mentioned approaches only consider
supervised learning techniques to model the relationship
between design parameters and processor responses, that is,
only simulated architectures are utilized for model construc-
tion. Inspired by recent advances on semisupervised learning,4

Guo et al. [91] proposed the co-training model tree (COMT)
approach to exploit unlabeled architectures to improve the
accuracy of predictive models. To be specific, COMT works in
a co-training style, where two learning models label unlabeled
architectures for each other. According to their experiments,
COMT outperforms ANN-based model given the same num-
ber of simulated architectures via random sampling. Moreover,
Chen et al. [92] proposed the COAL approach that com-
bines semisupervised learning and active learning5 together
to further improve the performance of predictive models.

In addition to the above regression-based approaches,
recently Chen et al. [93] proposed a ranking-based approach
for DSE. The key observation is that architects mostly need
the relative ranking of two architectures, rather than accu-
rately estimating the performance of each architecture. Thus,
by formulating the DSE as a ranking problem, ArchRanker is
proposed to train ranking models to predict the relative ranking
of architectures. Experimental results show that ArchRanker
can not only more accurately predict the relative ordering of
two architectures, but also require much fewer simulation runs
to obtain the same accuracy compared with ANN-based regres-
sion models. To facilitate the design of heterogeneous systems,
Mariani et al. [94] proposed the DRuiD framework to rank dif-
ferent heterogeneous architectures for a target functionality.
Specifically, DRuiD uses machine learning approaches (i.e.,
random forests and genetic algorithms) to determine the most
suitable computational element (e.g., the hardware accelerator
implemented on the FPGA) to be used for a certain application
kernel.

With the developing of machine learning techniques, it is
expected that more opportunities could be provided to fur-
ther reduce the number of simulated architectures for training
accurate predictive models.

2) Heuristic Searching: In contrast to predictive model-
ing techniques that explicitly construct approximate func-
tions between design parameters and processor responses,

3It measures the distance to the actual Pareto set of entire design space.
4As stated in Section II-C3, semisupervised learning techniques leverage

unlabeled training examples to enhance the prediction accuracy given limited
labeled training examples.

5In active learning, selected unlabeled architectures are actively sent for
simulation to improve the modeling accuracy.

another methodology uses heuristic searching algorithms (e.g.,
evolutionary algorithms) to directly find the most promis-
ing architectures under design constraints. In other words,
such methodology treats DSE as a multiobjective optimiza-
tion (MOO) problem, and by solving this problem, the number
of indispensable simulated architectures can be significantly
reduced.

In order to identify the promising architectures with best
performance/energy tradeoffs for a superscalar architecture,
Palermo et al. [95] formed this problem as an MOO, and
proposed a DSE framework based on heuristics algorithms.
Moreover, the authors compared the effectiveness of three
heuristic algorithms: 1) random search; 2) simulated anneal-
ing; and 3) tabu search, to reduce the overall simulation runs.
Experimental results show that the proposed framework can
reduce the number of simulation runs up to three orders of
magnitude compared to an exhaustive search strategy.

Ascia et al. [96] combined multiobjective evolutionary algo-
rithms and fuzzy systems together to reduce the simulation
costs of an SoC platform. Multiobjective evolutionary algo-
rithms are used as exploration heuristic to approximate the
Pareto set, and fuzzy systems are used to accelerate the
evaluation of each configuration via predicting the perfor-
mance rather than simulation. They conducted experiments
on a highly parameterized SoC platform, and experimental
results demonstrate that this approach can improve the quality
of Pareto set and reduce simulation costs for a given set of
multimedia applications.

Recently, Mariani et al. [97] proposed an iterative DSE
approach to derive the most promising architectures via
correlation-based models. In each iteration, only the archi-
tecture with the maximal expected improvement over present
Pareto set is considered for simulation. This architecture with
maximal expected improvement is selected by using a sin-
gle objective genetic algorithm. Such an evolutionary process
continues until the Pareto set is unchanged or a maximum
number of simulation runs has been reached. Comparing
with several mature MOO algorithms (including the notable
NSGA-II [98]), this approach can speed up the overall explo-
ration phase up to 65%.

Mariani et al. [99] proposed the DeSpErate++ framework
to exploit predictive models to improve the DSE efficiency
on a parallel computing platform. More specifically, an esti-
mation of distribution algorithm is applied to heuristically
identify the distribution of optimal design configurations in
the design space. Orthogonally, a predictive model such as
ANN is exploited to predict the simulation time of architec-
tural configurations to organize their schedule over a parallel
computing system.

Actually, in [90], [96], [97], and [99], predictive model-
ing (such as those described in Section IV-B1) is exploited
in orthogonality to heuristic optimization approaches (such as
the ones described in [95] and [98]) to achieve high DSE
efficiency.

3) Analytical Modeling: In contrast to afore-mentioned
empirical models such as ANNs that treat the processor
as a “black box,” mechanistic analytical models are
derived from the internal mechanisms of processors to
estimate the performance without detailed full simulation.
Karkhanis and Smith [100] proposed a first-order model to
predict the performance of superscalar processors. The basic
idea is to first count the miss events (e.g., branch misprediction

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

and cache misses) through relatively simple trace-driven sim-
ulation, and then the performance penalties caused by such
miss events are added to the ideal CPI.

Eyerman et al. [101] proposed interval analysis to first
divide the program execution into discrete intervals by miss
events, then determine the performance of each interval based
on the corresponding miss events, and finally aggregate the
performance of all intervals to obtain the overall performance.
In contrast to prior studies that model the performance based
on the issue rate, Eyerman et al. [102] further presented a
simplified interval model that is built upon the dispatch width.

As in-order processors gain more attentions due to the
energy concern, Breughe et al. [103] built an analytical
model for scalar in-order processors by considering both
miss events and hazards due to dependencies. After that,
Breughe et al. [104] further built a mechanistic analytical
model for superscalar in-order processors. The model also
takes the profiled program characteristics (e.g., instruction
mix, cache miss rates, and branch misprediction rates) as the
input, while it is greatly enhanced with modeling functional
unit contention and interinstruction dependences.

The above work requires profiling to obtain architecture-
dependent characteristics such as cache misses, and the corre-
sponding profiling cost cannot be neglected for a large design
space. To reduce the profiling cost, Van den Steen et al. [105]
constructed an analytical model based on architecture indepen-
dent (while program dependent) profiles, including instruction
mix and dependences, memory behavior, and branch behavior.
Such profiles are sent to the analytical model, together with
the architecture parameters such as pipeline depth, to obtain
both the performance and power estimation.

Processor queueing model [106] is another example of ana-
lytical model. Although the queuing model also relies on
processor parameters (e.g., memory latency) and program
characteristics (e.g., loads per instruction), it mainly focuses
on the interactions between the pipeline, buffers, and caches in
the memory hierarchy. The queuing model is validated against
cycle-accurate simulators, and it can be easily integrated into
a multiprocessor system model.

C. Reducing Both Programs and Architectures

The aforementioned approaches manage to cut down the
total number of simulation runs by reducing either the
number of evaluated programs or the number of simulated
architectures. To further reduce the number of simulation
runs, Dubach et al. [107] and Khan et al. [108] indepen-
dently proposed signature-based approaches. The key of these
approaches is incorporating several simulated responses on a
small number (e.g., 8 or 32) of typical architectures, named as
signatures, for each program during the training process. Then,
when encountering a new program, only a small number of
simulation runs are required to obtain its signature. With the
help of such signature, the responses of the new program can
be predicted without additional simulation runs. Although the
basic ideas of these two work are similar, Dubach et al. [107]
used linear models to combine several models trained from
different programs, while Khan et al. [108] directly treated
the signatures as the inputs of the learning algorithm.

Fig. 5 compares the number of simulation runs of the
signature-based approaches and traditional predictive model-
ing approaches. Conventionally, the total number of simula-
tion runs is m × N, where m is the number of simulated

(a) (b)

Fig. 5. Comparison of (a) traditional predictive modeling techniques and
(b) signature-based approaches.

Fig. 6. Comparison of different fast simulation methodology via statistical
techniques.

architectures and the N is the number of evaluated programs.
In comparison, the total number of simulation runs of the
signature-based approaches is m × n + (N − n) × k, where
m is the number of simulated architecture, n is the number of
trained programs, N is the number of evaluated programs, and
k is the size of signature (e.g., 8). Thus, it can be observed
that the total number of simulation runs could be significantly
reduced, especially when more programs should be evaluated.

In addition to exploring the program and architecture co-
design space, researchers also manage to explore the joint
space consisting of not only architectural options but also vari-
ous compiler and hardware circuit options. Dubach et al. [109]
utilized predictive modeling (i.e., support vector machines) to
explore the joint space of architecture and compiler options.
Azizi et al. [110] proposed to use spline functions to explore
the joint space of architecture and circuits. The joint space of
program and processor architecture is also explored by spline
functions in [84].

V. SUMMARY AND COMPARISON

Fig. 6 presents the above partial simulation approaches via
statistical techniques from another perspective. It is notable
that all those approaches can be classified in four orthogonal
dimensions. In the first dimension, the approaches improve
simulation efficiency via reducing the input size, where the
most representative approach is MinneSPEC [40]. In the
second dimension, the approaches speed-up simulation by
reducing the number of simulated dynamic instructions of
each program. Statistical simulation, sampling simulation, and
statistical sampling are three main paradigms in this cat-
egory. The approaches in the third dimension manage to
reduce the number of programs for evaluation, where clus-
tering analysis technique is most widely used to select a small
but representative subset from the original benchmark suite.
Finally, in the fourth dimension, the approaches reduce the
number of simulated architectures via predictive modeling

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 11

Fig. 7. Design and evaluation flow of accelerator-centric architecture.

techniques. To construct such predictive models, various statis-
tical regression techniques, including linear regression, spline
function, and machine learning techniques, have been exten-
sively studied by researchers. Moreover, the number of simu-
lated architectures can also be reduced by heuristic searching
and analytical modeling.

It is possible to combine these afore-mentioned approaches
from different dimensions to achieve a more efficient fast sim-
ulation methodology. For example, given a DSE task for N
target programs, the total number of simulated instructions
should be M × N × P, where M is the number of architec-
tures in the entire design space and P is the average number
of dynamic instructions of each program. To accelerate the
architectural simulation, in the first step, architects can enforce
benchmark subsetting techniques on all target programs, and
only reserve n(n < N) programs for evaluation. Then, statisti-
cal simulation or statistical sampling techniques can be used to
reduce the number of simulated instructions by several orders
of magnitude [i.e., the average number of instructions is only
p(p << P)]. Finally, only a small proportion of all possible
architectures [e.g., m(m << M)] need to simulate for con-
structing predictive models. With the help of such predictive
models, it is no necessary to conduct simulations on remaining
architectures. Therefore, the total number of simulated instruc-
tions can be reduced from M × N × P to only m × n × p,
which can improve the simulation efficiency by several orders
of magnitude.

VI. IMPLICATIONS FOR FUTURE ACCELERATOR-CENTRIC

ARCHITECTURES

As the transistor densities continue to scale exponentially,
a chip cannot be fully powered at one time given limited
chip-level power budget, which results in the dark silicon
problem. To address this problem, customized and special-
ized hardware accelerators would be very promising and have
been investigated by many researchers. Actually, heteroge-
neous chips containing application-specific accelerators are
becoming increasingly common in mobile system, server,
and desktop systems [111], [112]. Fig. 7 shows a typical
design and evaluation flow of accelerator-centric architec-
tures [113], [114]. The first step is profiling the target program
to get its hotspot codes (e.g., the most time-consuming
functions). Then, several HLS tools (e.g., AutoPilot [115]) are
used to directly convert the C code to synthesizeable Verilog.
After that, the Verilog designs of the accelerators are sim-
ulated by register transfer level (RTL) simulation tools to
get their timing and power characteristics. With such tim-
ing and power information, cycle accurate simulation modules
of the accelerators can be generated and plugged into the

system-level cycle-accurate simulator such as Simics [19].
Once the system-level simulator is built, the executable binary
of the target program, which is compiled with the accelerator
libraries, is evaluated on such simulator to generate the overall
performance and power estimation.

According to the design flow as shown in Fig. 7, there
are several challenges to efficiently design accelerator-centric
architectures. The first one is how to efficiently generate an
accelerator given a target program. In addition to using tools,
such as AutoPilot and Spiral [116], to automatically gen-
erate the Verilog designs of accelerators, many researchers
also designed the application-specific accelerators manually,
such as thin servers with smart pipes [117] for memcached
and Q100 [118] for database applications. The second chal-
lenge is to determine which programs should be accelerated,
since there always exists a tradeoff between generality and
efficiency of processors. The third challenge is how to accu-
rately and efficiently evaluate different design options of
accelerators, so as to find optimal designs under specific per-
formance/power/area constraints. Here, we discuss the impli-
cation of reviewed partial simulation approaches on addressing
the later two challenges.

Although specialized architectures gain significant effi-
ciency at the cost of generality, it is still expected that more
applications can benefit from such architectures given limited
area and power budget. This problem can be formulated as to
find a representative subset of many widely used applications,
which has been extensively investigated by the benchmark
subsetting techniques. Inspired by the benchmark subsetting
techniques, we may use several statistical techniques (e.g.,
PCA and clustering analysis) to guide the selection of tar-
get applications for hardware acceleration. A typical work
that uses this methodology to design accelerators is the
10 × 10 project, which exploits workload analysis to drive the
design of heterogeneous architecture containing customized
accelerators [119], [120]. The project is built upon detailed
analysis of program characteristics, such as operations, data
types, and control flows. By conducting clustering analysis
on such extracted characteristics from various benchmark
suites, several clusters are carefully selected and supported
by customized microengines.

Similar to the design of general-purpose processors, there
also exists many tunable parameters for the design of accel-
erators. For example, during the design of DRAM-aware fast
Fourier transform (FFT) accelerator, there are many differ-
ent parameters such as FFT radix and streaming width [121].
Conventionally, RTL simulation is indispensable to evaluate
different design options. However, the simulation costs are
intractable due a large number of design options for evaluation.
To address this issue, Shao et al. [122] proposed a pre RTL
approach to efficiently evaluate the performance and power
of accelerator designs. In addition to such high-level models
for fast DSE, we also believe that several partial simulation
approaches, such as predictive modeling, can also be deployed
to further cut down the RTL simulation costs. As shown in
Fig. 4, only a sampled number of accelerator configurations are
analyzed by the RTL-based synthesis flow to generate corre-
sponding performance and power estimation. Then, predictive
models can be constructed with various statistical techniques.
Finally, the performance/power of all other accelerator config-
urations can be directly predicted by such models without any
costly simulation runs.

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

VII. CONCLUSION

In this paper, we review recent advances on partial sim-
ulation techniques. The basic idea of these techniques is
to simulate a small subset of the representative instructions
from the complete set of simulated instructions by using
various statistical techniques, such as basic statistical con-
cepts (sampling theory and non-parametric hierarchical perfor-
mance testing [34]), statistical analysis techniques (PCA and
clustering analysis), regression techniques (linear regression
and spline function), and machine learning techniques (RBF,
ANNs, and evolutionary algorithms). Technically, these tech-
niques tradeoff accuracy for speed, and they can be categorized
into four orthogonal dimensions, that is, input size reduction,
dynamic instruction reduction, program reduction, and archi-
tecture reduction. Also, these approaches can be combined
together to obtain a more efficient simulation methodology. We
believe that partial simulation methodology can also play an
important role during the design of future accelerator-centric
architectures.

ACKNOWLEDGMENT

The content, views, and conclusions presented in this paper
do not necessarily reflect the position or the policy of Defense
Advanced Research Projects Agency or the U.S. Government,
and no official endorsement should be inferred.

REFERENCES

[1] J. J. Yi et al., “The future of simulation: A field of dreams,” Computer,
vol. 39, no. 11, pp. 22–29, Nov. 2006.

[2] P. Bohrer et al., “Mambo: A full system simulator for the PowerPC
architecture,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31, no. 4,
pp. 8–12, Mar. 2004.

[3] PowerPC 405GP Embedded Processor Users Manual, IBM Corp.,
Research Triangle Park, NC, USA, 2000.

[4] R. Bedicheck, “SimNow: Fast platform simulation purely in
software,” in Proc. Hot Chips, Aug. 2004. [Online]. Available:
http://www.hotchips.org/wp-content/uploads/hc_archives/hc16/2_Mon/
15_HC16_Sess4_Pres1_bw.pdf

[5] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “HAsim:
FPGA-based high-detail multicore simulation using time-division mul-
tiplexing,” in Proc. HPCA, San Antonio, TX, USA, 2011, pp. 406–417.

[6] J. E. Miller et al., “Graphite: A distributed parallel simulator for
multicores,” in Proc. HPCA, Bengaluru, India, 2010, pp. 1–12.

[7] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:
Raising the level of abstraction in architectural simulation,”
in Proc. HPCA, Bengaluru, India, 2010, pp. 1–12.

[8] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proc. SC, Seatle, WA, USA, 2011, pp. 1–12.

[9] K. Wang, Y. Zhang, H. Wang, and X. Shen, “Parallelization of IBM
mambo system simulator in functional modes,” SIGOPS Oper. Syst.
Rev., vol. 42, no. 1, pp. 71–76, Jan. 2008.

[10] J. Chen, M. Annavaram, and M. Dubois, “SlackSim: A platform for
parallel simulations of CMPs on CMPs,” ACM SIGARCH Comput.
Archit. News, vol. 37, no. 2, pp. 20–29, May 2009.

[11] D. Chiou et al., “FPGA-accelerated simulation technologies (FAST):
Fast, full-system, cycle-accurate simulators,” in Proc. MICRO, Chicago,
IL, USA, 2007, pp. 249–261.

[12] E. S. Chung et al., “ProtoFlex: Towards scalable, full-system multipro-
cessor simulations using FPGAs,” ACM Trans. Reconfig. Tech. Syst.,
vol. 2, no. 2, Jun. 2009, Art. ID 15.

[13] Z. Tan et al., “RAMP gold: An FPGA-based architecture simula-
tor for multiprocessors,” in Proc. DAC, Anaheim, CA, USA, 2010,
pp. 463–468.

[14] S. Takamaeda-Yamazaki, R. Sasakawa, Y. Sakaguchi, and K. Kise,
“An FPGA-based scalable simulation accelerator for tile architectures,”
SIGARCH Comput. Archit. News, vol. 39, no. 4, pp. 38–43, Sep. 2011.

[15] M. Wong, “C++ benchmarks in SPEC CPU2006,” SIGARCH Comput.
Archit. News CAN, vol. 35, no. 1, pp. 77–83, Mar. 2007.

[16] A. Rico et al., “Trace-driven simulation of multithreaded applications,”
in Proc. ISPASS, Austin, TX, USA, 2011, pp. 87–96.

[17] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
Dept. Comput. Sci., Univ. Wisconsin–Madison, Madison, WI, USA,
Tech. Rep. 1342, Jun. 1997.

[18] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, “Rsim:
Simulating shared-memory multiprocessors with ILP processors,”
Computer, vol. 35, no. 2, pp. 40–49, Feb. 2002.

[19] P. S. Magnusson et al., “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[20] M. M. K. Martin et al., “Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset,” SIGARCH Comput. Archit. News,
vol. 33, no. 4, pp. 92–99, Nov. 2005.

[21] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, May 2011.

[22] N. L. Binkert et al., “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul./Aug. 2006.

[23] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system
simulator for multicore x86 CPUs,” in Proc. DAC, New York, NY,
USA, 2011, pp. 1050–1055.

[24] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in Proc. ISPASS, San Jose, CA, USA, 2007,
pp. 23–34.

[25] C.-K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proc. PLDI, Chicago, IL, USA, 2005,
pp. 190–200.

[26] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMP$im: A pin-
based on-the-fly multi-core cache simulator,” in Proc. MOBS, Beijing,
China, Jun. 2008. [Online]. Available: http://eng.umd.edu/∼blj/
papers/mobs2008.pdf

[27] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchi-
tectural simulation of thousand-core systems,” in Proc. ISCA, Tel Aviv,
Israel, 2013, pp. 475–486.

[28] N. Chitlur et al., “QuickIA: Exploring heterogeneous architectures
on real prototypes,” in Proc. HPCA, New Orleans, LA, USA, 2012,
pp. 1–8.

[29] J. Chan, G. Hendry, A. Biberman, K. Bergman, and L. P. Carloni,
“PhoenixSim: A simulator for physical-layer analysis of chip-scale
photonic interconnection networks,” in Proc. DATE, Dresden, Germany,
2010, pp. 691–696.

[30] P. S. Magnusson and J. Montelius, “Performance debugging and tuning
using an instruction-set simulator,” Swedish Inst. Comput. Sci., Kista,
Sweden, Tech. Rep. T97:02, 1997.

[31] L. Albertsson and P. S. Magnusson, “Using complete system simu-
lation for temporal debugging of general purpose operating systems
and workload,” in Proc. MASCOTS, San Francisco, CA, USA, 2000,
pp. 191–198.

[32] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proc. ISCA, San Diego, CA, USA, 2003, pp. 84–95.

[33] A. R. Alameldeen and D. A. Wood, “Variability in architectural sim-
ulations of multi-threaded workloads,” in Proc. HPCA, Anaheim, CA,
USA, 2003, pp. 7–18.

[34] T. Chen et al., “Statistical performance comparisons of computers,”
in Proc. HPCA, New Orleans, LA, USA, 2012, pp. 1–12.

[35] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[36] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in Proc. MICRO, Lake Como, Italy, 2008,
pp. 318–329.

[37] J. Li et al., “Machine learning based online performance prediction for
runtime parallelization and task scheduling,” in Proc. ISPASS, Boston,
MA, USA, 2009, pp. 89–100.

[38] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle, “A predic-
tive model for dynamic microarchitectural adaptivity control,” in Proc.
MICRO, Atlanta, GA, USA, 2010, pp. 485–496.

[39] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proc.
ISCA, Beijing, China, 2008, pp. 39–50.

[40] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC bench-
mark workload for simulation-based computer architecture research,”
Comput. Arch. Lett., vol. 1, no. 1, pp. 1–4, Jan./Dec. 2002.

[41] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Designing
computer architecture research workloads,” Computer, vol. 36, no. 2,
pp. 65–71, Feb. 2003.

http://www.hotchips.org/wp-content/uploads/hc_archives/hc16/2_Mon/15_HC16_Sess4_Pres1_bw.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc16/2_Mon/15_HC16_Sess4_Pres1_bw.pdf
http://eng.umd.edu/~blj/papers/mobs2008.pdf
http://eng.umd.edu/~blj/papers/mobs2008.pdf

GUO et al.: ACCELERATING ARCHITECTURAL SIMULATION VIA STATISTICAL TECHNIQUES: A SURVEY 13

[42] W. C. Hsu, H. Chen, P. C. Yew, and H. Chen, “On the predictability of
program behavior using different input data sets,” in Proc. INTERACT,
Cambridge, MA, USA, 2002, pp. 45–53.

[43] S. Nussbaum and J. E. Smith, “Modeling superscalar processors
via statistical simulation,” in Proc. PACT, Barcelona, Spain, 2001,
pp. 15–24.

[44] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere,
“Statistical simulation: Adding efficiency to the computer designer’s
toolbox,” IEEE Micro, vol. 23, no. 5, pp. 26–38, Sep./Oct. 2003.

[45] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining statistical
and symbolic simulation to guide microprocessor designs,” in Proc.
ISCA, Vancouver, BC, Canada, 2000, pp. 71–82.

[46] L. Eeckhout, R. H. Bell, Jr., B. Stougie, K. De Bosschere, and
L. K. John, “Control flow modeling in statistical simulation for accu-
rate and efficient processor design studies,” in Proc. ISCA, Munchen,
Germany, Jun. 2004, pp. 350–361.

[47] K. Skadron, M. Martonosi, and D. W. Clark, “Speculative updates of
local and global branch history: A quantitative analysis,” J. Instr. Level
Parallel., vol. 2, pp. 589–598, Jan. 2000.

[48] D. Genbrugge and L. Eeckhout, “Statistical simulation of chip
multiprocessors running multi-program workloads,” in Proc. ICCD,
Lake Tahoe, CA, USA, 2007, pp. 464–471.

[49] D. Genbrugge and L. Eeckhout, “Chip multiprocessor design space
exploration through statistical simulation,” IEEE Trans. Comput.,
vol. 58, no. 12, pp. 1668–1681, Dec. 2009.

[50] C. Hughes and T. Li, “Accelerating multi-core processor design
space evaluation using automatic multi-threaded workload synthesis,”
in Proc. IISWC, Seattle, WA, USA, 2008, pp. 163–172.

[51] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
ISPASS, Boston, MA, USA, 2009, pp. 163–174.

[52] Z. Yu et al., “Accelerating GPGPU architecture simulation,” in Proc.
SIGMETRICS, Pittsburgh, PA, USA, 2013, pp. 331–332.

[53] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. ASPLOS,
San Jose, CA, USA, 2002, pp. 45–57.

[54] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”
in Proc. ISCA, San Diego, CA, USA, 2003, pp. 336–349.

[55] G. Hamerly, E. Perelman, J. Lau, B. Calder, and T. Sherwood, “Using
machine learning to guide architecture simulation,” J. Mach. Learn.
Res., vol. 7, pp. 343–378, Feb. 2006.

[56] M. Van Biesbrouck, T. Sherwood, and B. Calder, “A co-phase matrix
to guide simultaneous multithreading simulation,” in Proc. ISPASS,
Austin, TX, USA, 2004, pp. 45–56.

[57] H. Patil et al., “Pinpointing representative portions of large Intel
Itanium programs with dynamic instrumentation,” in Proc. MICRO,
Portland, OR, USA, 2004, pp. 81–92.

[58] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “TBPoint: Reducing
simulation time for large-scale GPGPU kernels,” in Proc. IPDPS,
Phoenix, AZ, USA, 2014, pp. 437–446.

[59] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss
for effective trace sampling of superscalar processors,” in Proc. ICCD,
Austin, TX, USA, 1996, pp. 468–477.

[60] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“Statistical sampling of microarchitecture simulation,” ACM Trans.
Model. Comput. Simulat., vol. 16, no. 3, pp. 197–224, Jul. 2006.

[61] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe,
“TurboSMARTS: Accurate microarchitecture simulation sampling
in minutes,” in Proc. SIGMETRICS, Banff, AB, Canada, 2005,
pp. 408–409.

[62] N. Hardavellas et al., “SimFlex: A fast, accurate, flexible full-system
simulation framework for performance evaluation of server architec-
ture,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 4, pp. 31–35,
2004.

[63] T. F. Wenisch et al., “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, Jul./Aug. 2006.

[64] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator
using time-based sampling,” in Proc. HPCA, Shenzhen, China, 2013,
pp. 448–459.

[65] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of
multi-threaded applications,” in Proc. ISPASS, Austin, TX, USA, 2013,
pp. 2–12.

[66] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout,
“BarrierPoint: Sampled simulation of multi-threaded applications,”
in Proc. ISPASS, Monterey, CA, USA, 2014, pp. 2–12.

[67] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
design: Selecting representative program-input pairs,” in Proc. PACT,
Charlottesville, VA, USA, 2002, pp. 83–94.

[68] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation,” in Proc. IISWC, Austin, TX, USA, 2005,
pp. 2–12.

[69] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring
benchmark similarity using inherent program characteristics,” IEEE
Trans. Comput., vol. 55, no. 6, pp. 769–782, Jun. 2006.

[70] K. Hoste et al., “Performance prediction based on inherent pro-
gram similarity,” in Proc. PACT, San Francisco, CA, USA, 2006,
pp. 114–122.

[71] D. Shelepov et al., “HASS: A scheduler for heterogeneous multicore
systems,” ACM SIGOPS Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75,
2009.

[72] Y. Chen et al., “Evaluating iterative optimization across 1000 datasets,”
in Proc. PLDI, Toronto, ON, Canada, 2010, pp. 448–459.

[73] J. J. Yi, D. J. Lilja, and D. M. Hawkins, “A statistically rigorous
approach for improving simulation methodology,” in Proc. HPCA,
Anaheim, CA, USA, 2003, pp. 281–291.

[74] A. Phansalkar, A. Joshi, and L. K. John, “Subsetting the SPEC
CPU2006 benchmark suite,” SIGARCH Comput. Archit. News, vol. 35,
no. 1, pp. 69–76, 2007.

[75] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in Proc.
ISCA, San Diego, CA, USA, 2007, pp. 412–423.

[76] Z. Jin and A. C. Cheng, “Improve simulation efficiency using statistical
benchmark subsetting: An implantBench case study,” in Proc. DAC,
Anaheim, CA, USA, 2008, pp. 970–973.

[77] Z. Jin and A. C. Cheng, “Evolutionary benchmark subsetting,” IEEE
Micro, vol. 28, no. 6, pp. 20–36, Nov./Dec. 2008.

[78] Z. Jin and A. C. Cheng, “SubsetTrio: An evolutionary, geometric,
and statistical benchmark subsetting framework,” ACM Trans. Model.
Comput. Simulat., vol. 21, no. 3, pp. 1–23, 2011.

[79] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and
use of linear regression models for processor performance analysis,”
in Proc. HPCA, Austin, TX, USA, 2006, pp. 99–108.

[80] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive per-
formance model for superscalar processors,” in Proc. MICRO, Orlando,
FL, USA, 2006, pp. 161–170.

[81] B. C. Lee and D. M. Brooks, “Accurate and efficient regression model-
ing for microarchitectural performance and power prediction,” in Proc.
ASPLOS, San Jose, CA, USA, 2006, pp. 185–194.

[82] B. C. Lee and D. M. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in Proc. HPCA, Scottsdale, AZ,
USA, 2007, pp. 340–351.

[83] B. C. Lee and D. Brooks, “Applied inference: Case studies in microar-
chitectural design,” ACM Trans. Archit. Code Optim., vol. 7, no. 2,
pp. 1–37, 2010.

[84] W. Wu and B. C. Lee, “Inferred models for dynamic and sparse
hardware-software spaces,” in Proc. MICRO, Vancouver, BC, Canada,
2012, pp. 413–424.

[85] B. C. Lee, J. Collins, H. Wang, and D. Brooks, “CPR: Composable
performance regression for scalable multiprocessor models,” in Proc.
MICRO, Lake Como, Italy, 2008, pp. 270–281.

[86] E. Ïpek, S. A. McKee, R. Caruana, B. R. De Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive mod-
eling,” in Proc. ASPLOS, San Jose, CA, USA, 2006, pp. 195–206.

[87] E. Ipek et al., “Efficient architectural design space exploration via pre-
dictive modeling,” ACM Trans. Archit. Code Optim., vol. 4, no. 4,
pp. 1–34, 2008.

[88] C.-B. Cho, W. Zhang, and T. Li, “Informed microarchitecture design
space exploration using workload dynamics,” in Proc. MICRO,
Chicago, IL, USA, 2007, pp. 274–285.

[89] H. Cook and K. Skadron, “Predictive design space exploration using
genetically programmed response surfaces,” in Proc. DAC, Anaheim,
CA, USA, 2008, pp. 960–965.

[90] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: A response surface-
based Pareto iterative refinement for application-specific design space
exploration,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 28, no. 12, pp. 1816–1829, Dec. 2009.

[91] Q. Guo et al., “Effective and efficient microprocessor design space
exploration using unlabeled design configurations,” in Proc. IJCAI,
Barcelona, Spain, 2011, pp. 1671–1677.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[92] T. Chen et al., “Effective and efficient microprocessor design space
exploration using unlabeled design configurations,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 1, pp. 20:1–20:18, 2013.

[93] T. Chen et al., “ArchRanker: A ranking approach to design space
exploration,” in Proc. ISCA, Minneapolis, MN, USA, 2014, pp. 85–96.

[94] G. Mariani et al., “DRuiD: Designing reconfigurable architectures
with decision-making support,” in Proc. ASP-DAC, Singapore, 2014,
pp. 213–218.

[95] G. Palermo, C. Silvano, and V. Zaccaria, “Multi-objective design space
exploration of embedded systems,” J. Embedded Comput., vol. 1, no. 3,
pp. 305–316, 2005.

[96] G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti, “Efficient
design space exploration for application specific systems-on-a-chip,”
J. Syst. Archit., vol. 53, no. 10, pp. 733–750, 2007.

[97] G. Mariani et al., “A correlation-based design space exploration
methodology for multi-processor systems-on-chip,” in Proc. DAC,
Anaheim, CA, USA, 2010, pp. 120–125.

[98] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[99] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “DeSpErate++:
An enhanced design space exploration framework using predictive sim-
ulation scheduling,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 34, no. 2, pp. 293–306, Feb. 2015.

[100] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proc. ISCA, Munich, Germany, 2004, pp. 338–349.

[101] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-
mance counter architecture for computing accurate CPI components,”
in Proc. ASPLOS, San Jose, CA, USA, 2006, pp. 175–184.

[102] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanis-
tic performance model for superscalar out-of-order processors,” ACM
Trans. Comput. Syst., vol. 27, no. 2, pp. 1–37, 2009.

[103] M. Breughe et al., “How sensitive is processor customization to the
workload’s input datasets?” in Proc. ASAP, San Diego, CA, USA, 2011,
pp. 1–7.

[104] M. B. Breughe, S. Eyerman, and L. Eeckhout, “Mechanistic analytical
modeling of superscalar in-order processor performance,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 1–26, 2015.

[105] S. Van den Steen et al., “Micro-architecture independent analytical
performance and power modeling,” in Proc. ISPASS, Philadelphia, PA,
USA, 2015, pp. 32–41.

[106] T.-F. Tsuei and W. Yamamoto, “Queuing simulation model for multi-
processor systems,” Computer, vol. 36, no. 2, pp. 58–64, Feb. 2003.

[107] C. Dubach, T. M. Jones, and M. F. P. O’Boyle, “Microarchitectural
design space exploration using an architecture-centric approach,”
in Proc. MICRO, Chicago, IL, USA, 2007, pp. 262–271.

[108] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using predic-
tivemodeling for cross-program design space exploration in multicore
systems,” in Proc. PACT, Brasov, Romania, 2007, pp. 327–338.

[109] C. Dubach, T. M. Jones, and M. F. P. O’Boyle, “Exploring and pre-
dicting the architecture/optimising compiler co-design space,” in Proc.
CASES, Atlanta, GA, USA, 2008, pp. 31–40.

[110] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design:
A marginal cost analysis,” in Proc. ISCA, Saint-Malo, France, 2010,
pp. 26–36.

[111] J. D. Brown, S. Woodward, B. M. Bass, and C. L. Johnson, “IBM
power edge of network processor: A wire-speed system on a chip,”
IEEE Micro, vol. 31, no. 2, pp. 76–85, Mar./Apr. 2011.

[112] R. Golla and P. Jordan, “T4: A highly threaded server-on-a-
chip with native support for heterogeneous computing,” in Proc.
Hot Chip Symp., 2011. [Online]. Available: http://www.hotchips.org/
wp-content/uploads/hc_archives/hc23/HC23.19.7-Server/HC23.19.731-
T4-Golla-Oracle-hotchips_corrected.pdf

[113] G. Venkatesh et al., “Conservation cores: Reducing the energy of
mature computations,” in Proc. ASPLOS, Pittsburgh, PA, USA, 2010,
pp. 205–218.

[114] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich CMPs,” in Proc. DAC,
San Francisco, CA, USA, 2012, pp. 843–849.

[115] J. Cong et al., “High-level synthesis for FPGAs: From prototyping to
deployment,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 30, no. 4, pp. 473–491, Apr. 2011.

[116] M. Puschel et al., “Spiral: Code generation for DSP transforms,” Proc.
IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

[117] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing SoC accelerators for mem-
cached,” in Proc. ISCA, Tel Aviv, Israel, 2013, pp. 36–47.

[118] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
The architecture and design of a database processing unit,” in Proc.
ASPLOS, Salt Lake City, UT, USA, 2014, pp. 255–268.

[119] S. Borkar and A. A. Chien, “The future of microprocessors,” ACM
Commun., vol. 54, no. 5, pp. 67–77, 2011.

[120] A. Guha, Y. Zhang, R. Ur Rasool, and A. A. Chien, “Systematic
evaluation of workload clustering for extremely energy-efficient archi-
tectures,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 2,
pp. 22–29, 2013.

[121] B. Akin, F. Franchetti, and J. C. Hoe, “Understanding the design
space of DRAM-optimized hardware FFT accelerators,” in Proc. ASAP,
Zurich, Switzerland, 2014, pp. 248–255.

[122] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in Proc. ISCA, Minneapolis,
MN, USA, 2014, pp. 97–108.

Qi Guo received the B.S. degree in computer
science from the Department of Computer Science
and Technology, Tongji University, Shanghai,
China, in 2007, and the Ph.D. degree in computer
science from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China,
in 2012.

He is currently a Post-Doctoral Research
Associate with the Department of Electrical and
Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA. His current research interests

include computer architecture and high performance computing.

Tianshi Chen received the B.S. degree in math-
ematics from the Special Class for the Gifted
Young, University of Science and Technology of
China (USTC), Hefei, China, in 2005, and the Ph.D.
degree in computer science from the Department of
Computer Science and Technology, USTC, in 2010.

He is currently an Associate Professor with
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. His cur-
rent research interests include computer architecture,
parallel computing, and computational intelligence.

Yunji Chen graduated from the Special Class for the
Gifted Young, University of Science and Technology
of China, Hefei, China, in 2002, and the Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences, Beijing, China, in 2007.

He is currently a Professor with ICT. He was a
Chief Architect of Godson-3 processor. His current
research interests include computer architecture and
computational intelligence.

Franz Franchetti received the Dipl.-Ing.
(M.Sc.) degree in technical mathematics and the
Dr.Techn. (Ph.D.) degree in computational mathe-
matics from the Vienna University of Technology,
Vienna, Austria, in 2000 and 2003, respectively.

He is an Associate Research Professor with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA.
His current research interests include automatic
performance tuning and program generation for
emerging parallel platforms and algorithm/hardware
co-synthesis.

Prof. Franchetti was a recipient of the Carnegie Institute of Technology
Dean’s Early Career Fellowship by the College of Engineering of Carnegie
Mellon University in 2013. In 2006, he was a member of the team winning
the Gordon Bell Prize (Peak Performance Award), and in 2010, he was a
member of the team winning the HPC Challenge Class II Award (most
productive system).

http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.7-Server/HC23.19.731-T4-Golla-Oracle-hotchips_corrected.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.7-Server/HC23.19.731-T4-Golla-Oracle-hotchips_corrected.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.7-Server/HC23.19.731-T4-Golla-Oracle-hotchips_corrected.pdf

