
Computer Generation of Platform-Adapted Physical Layer Software

Yevgen Voronenko (SpiralGen, Pittsburgh, PA, USA; yevgen@spiralgen.com);
Volodymyr Arbatov (Carnegie Mellon University, Pittsburgh, PA, USA; arbatov@cmu.edu)

Christian R. Berger (Carnegie Mellon University, Pittsburgh, PA, USA; crberger@ece.cmu.edu)
Ronghui Peng (SpiralGen, Pittsburgh, PA, USA; jonathan.peng@spiralgen.com);

Markus P̈uschel (Carnegie Mellon University, Pittsburgh, PA, USA; pueschel@ece.cmu.edu)
Franz Franchetti (Carnegie Mellon University, Pittsburgh,PA, USA; franzf@ece.cmu.edu)∗

Abstract

In this paper, we describe a program generator for physical
layer (PHY) baseband processing in a software-defined radio
implementation. The input of the generator is a very high-
level platform-independent description of the transmitter and
receiver PHY functionality, represented in a domain-specific
declarative language called Operator Language (OL). The out-
put is performance-optimized and platform-tuned C code with
single-instruction multiple-data (SIMD) vector intrinsics and
threading directives. The generator performs these optimiza-
tions by restructuring the algorithms for the individual compo-
nents at the OL level before mapping to code. This way known
compiler limitation are overcome. Further platform tuningis
achieved by a feedback-directed search that determines the
fastest solution among a space of candidates. We demonstrate
the approach and the excellent performance of the generated
code on on the IEEE 802.11a (WiFi) receiver and transmitter
for all transmission modes.

1 Introduction

A major challenge in implementing true software-defined ra-
dios (SDRs) is meeting the real-time demands of the signal
processing in the physical layer (PHY). In most cases this
requires carefully choosing the proper algorithms, and hand-
optimizing and hand-tuning the implementation in assembly
for the chosen platform.

Until recently, most common SDR platforms used a hybrid
architecture consisting of one or more field-programmable gate
arrays (FPGAs), a digital signal processor (DSP) and a gen-
eral purpose processor (GPP). The PHY functionality was thus
partitioned across these devices. The partitioning and hand-
optimization process is usually extremely time-consuming, ex-
pensive and makes the implementation nonportable.

Today, it has become possible to achieve real-time PHY

∗This work was supported by ONR through the STTR contract N00014-
09-M-0332, by NSF through awards 0325687, 0702386, by DARPAthrough
the DOI grant NBCH1050009

performance with a single modern multi-core GPP, (e.g., Intel
Core [1]), or a single multi-core DSP (e.g., the Sandblaster
DSP [2, 3], Tilera). However, developing the code for the
performance-critical PHY layer on these processors is an ex-
tremely difficult task due to the very complex microarchitec-
tures, diverse cache hierarchies and memory subsystems, and
different forms of on-chip parallelism, such as multiple pro-
cessor cores, multiple threads per core, single-instruction multiple-
data (SIMD) instructions, and instruction-level parallelism. Ex-
acerbating the problem, these optimizations have to be redone
with every major update of the platform.

Contribution of this paper. In this paper, we propose to
overcome these problems using a program generator for PHYs.
The generator is based on Spiral [4–6] and automates the pro-
duction and optimization of PHY source code. The input to
the generator is a very high-level description of the receiver or
transmitter PHY functionality, described in a domain-specific
mathematical declarative language called Operator Language
(OL). It proceeds with automatically generating various al-
gorithms for the individual components (such as the discrete
Fourier transform or the Viterbi decoder), represented in OL.
These are then automatically restructured using a platform-
cognizant OL rewrite system with the goal to match the algo-
rithm’s structure to platform features such as multi-threading
and SIMD vector instructions. The obtained OL representa-
tion is then compiled into optimized C code including SIMD
intrinsics and threading directives. Further platform tuning
is achieved by feedback-directed search that determines the
fastest solution among a space of candidates.

We demonstrate the viability of the approach on both the
transmitter and receiver of IEEE 802.11a (WiFi). The gen-
erated code achieves real-time WiFi transmission speeds (all
data rates up to 54 Mbps) on an off-the-shelf Intel Core based
system. Further, we show that the computer-generated code
outperforms the best hand-optimized code.

The program generation approach hence achieves the seem-
ingly conflicting goals of producing highest performance code
while considerably reducing the production time and hence the
time it takes to port PHYs to new, more capable platforms.

Our work shows that the PHY functionality can be ex-

1

pressed mathematically at the very high-level in a way that
is amenable to mechanical manipulation by a computer. Our
representation is not merely a dataflow graph of a signal pro-
cessing pipeline, but actually exposes all low-level details of
the implementation as well, which enables the program gener-
ator to expoit all levels of on-chip parallelism. Because ofthat
this “domain-specific compiler” is able to replace the human
expert. In addition, we show that the proper representation
enables further optimizations, namely block combining opti-
mizations, that are often beyond reach of human experts due
to the inherent complexity.

Organization. In Section 2 we overview prior work on im-
plementing baseband PHY processing. Section 3 contains the
core technical content of the paper: it introduces the operator
language, and shows the description of PHY in OL. Section 4
briefly explains how PHY descriptions in OL can be compiled
into optimized code. Finally, we show performance results of
the auto-generated code and conclude the paper in Section 5.

2 Background and Prior Work

Early SDR platforms typically consisted of a combination of
one or more FPGAs and a part that could run software, like
a DSP or GPP. The computational intensive parts where then
mostly implemented on FPGAs, which acted as reconfigurable
hardware accelerators. Although such a setup has some flexi-
bility, as the platform can accomodate a variety of PHY func-
tionality, the PHY implementation is still mostly done in Ver-
ilog matching a non-SDR implementation in application spe-
cific integrated circuits (ASIC), and the main challenge is in
fitting the computational intensive parts onto the FPGAs.

The difference compared to a true software PHY implem-
tation is that in FPGA or ASIC design, the hardware is de-
signed to match the algorithm, naturally using fine grained par-
allelism and pipelining to achieve high performance. In con-
trast, on a DSP or GPP, software mostly executes in a serial
fashion, and although modern platforms include parallelism in
form of SIMD vectorization and multiple cores, these struc-
tures are still fixed and accordingly the algorithms have to be
fit to the available hardware.

First true software PHY implementations used a single DSP
that is programmed serially [7–9]. Although fully flexible,
these could not achieve real-time performance for computa-
tional intensive PHY standards like WiFi. Recent processors
possess multiple cores, each typically possessing furtherpar-
allelism in the form of SIMD vector extnensions [3, 10, 11].
While these platforms come close to the computational power
needed to run PHY standards like WiFi, it also becomes in-
creasingly challenging to implement PHY software that ex-
ploits the full computational potential.

Finally, a quite different kind of SDR platforms has sur-
faced, using simple radio front-end boards attached to com-
modity personal computers (PCs) [12–14]. These are mostly

of interest for academic test-beds as in [14,15] and run the full
functionality on a PC that commonly features an Intel or simi-
lar GPP. Hence the challenges to efficiently utilize the compu-
tational resources in terms of SIMD and multicore parallelism
are quite similar to the SDR platforms described above.

Our work on expressing the SDR PHYs in OL is similar
in flavor to the Waveform Description Language (WDL) [16].
However, WDL is much broader in scope than OL, and aims at
complete and formal specification of the communication pro-
tocol. OL, on the other hand, targets the specific domain of
computations with regular structure, and aims to automate the
work of expert programmers, by enabling the computer gener-
ation of very fast code.

3 Operator Language and PHYs

Operator Language (OL) [17] is a domain-specific declarat-
ive mathematical language used to represent certain classes
of numerical algorithms. OL is an extension or superset of
SPL [4,5,18] to cover non-linear multi-input and multi-output
operations. We first introduce SPL and then extend the discus-
sion to OL.

SPL. SPL is a language to describe fast algorithms for lin-
ear transforms, which are functions of the formx 7→ y = Mx
with a fixed matrixM also called transform. An example is
the discrete Fourier transform defined byM = DFTn =
[ωij

n]0≤i,j<n, whereωn = e−2π
√
−1/n. An SPL program, or

formula, is a fast algorithm for a transformM represented as
a factorization into a product of sparse matrices.

To do so, SPL contains basic matrices such as the identity
matrix In, diagonal matricesdiag0≤m<n(f(m)) with a scalar
functionf , or the stride permutation matrixLn

k , which trans-
poses ann/k × k matrix stored linearized in memory. More
complex SPL formulas are built from other SPL formulas us-
ing matrix operators, such as the matrix productA · B or the
Kronecker productA ⊗ B defined as

A ⊗ B = [aijB]i,j , for A = [ai,j]i,j .

All SPL constructs have natural interpretation in the code.For
example, the formulaA ·B, implies the two-step computation
t = Bx; y = At.

Using SPL, the well-known Cooley-Tukey fast Fourier trans-
form (FFT) is expressed as

DFTkm = (DFTk ⊗ Im) diag tkm
m (Ik ⊗DFTm) Lkm

k .
(1)

It shows thaty = DFTkm x can be computed in four steps
corresponding to the four factors in (1). Two of the steps in-
volve the recursive computations of smaller DFTs.

Further important building blocks of SPL, and later OL,
are the following matrices parameterized by index mappings.

An index mappingis a function on integer intervals. De-
noteen

i thei-th column basis vector of sizen, i.e., the column

2

Rate Modulation Bits/sc. Code Coded bits / Data bits /
Mbps m rater sym. sym.,NDBPS

6 BPSK 1 1/2 48 24
9 BPSK 1 3/4 48 36
12 QPSK 2 1/2 96 48
18 QPSK 2 3/4 96 72
24 16-QAM 4 1/2 192 96
36 16-QAM 4 3/4 192 144
48 64-QAM 6 2/3 288 192
54 64-QAM 6 3/4 288 216

Table 1: Data rates in IEEE 802.11a with corresponding mod-
ulation schemes and coding rates [19]. (sc. = subcarrier)

vector ofn elements, with a 1 ini-th position and 0s elsewhere.
Given an index mapping functionf , gather and scatter matri-
cesare defined as follows:

f : {0, . . . , n − 1} → {0, . . . m − 1},

G(f) =
[

em
f(0)| . . . |e

m
f(n−1)

]

,

S(f) = G(f)T =
[

em
f(0)| . . . |e

m
f(n−1)

]T

.

OL. OL is a superset of SPL. Where SPL can only describe
transforms, i.e., linear single-input and single-output opera-
tions, OL removes this restriction and considers more general
operators. An operator of arity(c, d) is a function that takesc
vectors as input and producesd vectors as output. For exam-
ple, ak × n matrix M , the simplest possible SPL formula, is
in OL viewed as the arity(1, 1) operator

Mk×n : C
n → C

k.

The matrix productAm×n ·Bn×k becomes in OL the operator
composition

Am×n ◦ Bn×k : C
k → C

m.

The tensor product of matrices generalizes to tensor product
of operators, but in this paper we only need one special case:

A : Cm → Cn

Ik ⊗A : Ckm → Ckn

x 7→ (A(x0, . . . , xm − 1), . . . , A(x(k−1)m, . . . xkm−1))

WiFi physical layer in OL. The 802.11a OFDM trans-
mitter (TX) and receiver (RX) map data bits into a complex
baseband signal and vice versa.

WiFiTX k,m,r : Z
48kmr−6
2 → C

80k, (6)

WiFiRX k,m,r : C
80k → Z

48kmr−6
2 . (7)

If a number, sayℓ, bits are to be transmitted at a transmis-
sion mode characterized by a modulation scheme withm ∈

{1, 2, 4, 6} bits per subcarrier and coding rater ∈ {1/2, 3/4,
2/3}, they will take up

k = ⌈ℓ/NDBPS + 6⌉ = ⌈ℓ/(48mr) + 6⌉ (8)

OFDM symbols, whereNDBPS = 48mr is the number of data
bits per OFDM symbol. The data bits are appended with zero
bits to fill exactlyk ODFM symbols and we will always as-
sume the TX and RX operate on this extended bit sequence.

An important difference of physical layer computations
from other types of numerical codes is the diversity of used
data types, which is also evident above. The transmitter maps
bits to complex (floating point) values, and the receiver vice
versa. The actual implementation will use one or more ter-
tiary data types during the course of computation. This makes
domain and range specifications of blocks, as in (6)–(7) very
important.

We can directly transcribe the entire computation data flow
of receiver and transmitter PHY, as it is explained in [19] into
OL using the blocks from Table 2 and this is shown in Fig. 1.

Table 2 defines all of the blocks in the receiver and trans-
mitter. Most of the blocks are linear, and perform the matrix
vector product, the definition in OL can thus be interpreted
as a matrix. The non-linear blocks areMap, DeMap, PltIns,
VitDec, andScr.

All of the blocks, except the Viterbi decoderVitDec, can
be defined in terms of primitive OL constructs and matrices,
and most of the blocks are normally computed by definition.
The important exceptions are the DFT, and the Viterbi decoder,
for which several alternative fast algorithms exist.

PltIns, PltRm, Int , DeInt, Punc andDePuncare all ba-
sically data reordering and/or padding operations and thuscan
be expressed as a gather or scatter with the corresponding in-
dex mapping function (plt, int, andd correspondingly for pilot
removal/insertion, (de)interleaver, and (de)puncturing), whose
precise form is not relevant here. We do show the matrix
structure of (de)interleaver and (de)puncturer, but in translat-
ing these to code, these structures are not used.

The modulator and demodulator are defined by the scalar
functionsM andM−1 that mapm hard bits to a complex num-
ber, and vice versa a complex number tom soft bits, in the
latter soft bit estimates.

Implementation degrees of freedom.Before the OL for-
mulas (3) and (5) can be mapped to code, all remaining un-
expanded blocks (in bold) must be expressed in primitive OL
constructs. There are multiple ways of doing so that corre-
spond to different computational algorithms and the internal
degrees of freedom within the algorithms. For example, Spiral
employs feedback driven search to make the best choices on a
given platform. We discuss these degrees of freedom next.

The outer tensor product itself is not a primitive construct.
Normally, it should become a loop over the right factor. But
alternatively, the associated loop can be parallelized, orvec-
torized [20]. An interesting twist in this case, is that the in-
ner subformula of the tensor product operates on different data

3

Operator Notation Domain → Range Definition

Cyclic prefix insertion CPIns64 C
64

→ C
80

"

I16

I64

#

=

"

G(h64,1)

G(h0,1)

#

Cyclic prefix removal CPRm64 C
80

→ C
64

h

064×16 I64

i

= G(h16,1)

Forward DFT DFT64 C
64

→ C
64 [ωij

64
]0≤i,j<64

Inverse DFT IDFT 64 C
64

→ C
64 [ω−ij

64
]0≤i,j<64

Pilot tone insertion PltIns64 C
48

→ C
64 (+P) ◦ S(plt

48
)

Pilot tone removal PltRm64 C
64

→ C
48 G(plt

48
)

Symbol mapping Map
48,m Z

48m
2 → C

48 I48 ⊗Mm,1

Symbol demapping DeMap
48,m C

48
→ Z

48m
28 I48 ⊗M−1

m,8

Bit interleaving Int 48m Z
48m
2 → Z

48m
2 G(int48m) =

(

L48m
3 , m≤2,

(I16 ⊗i(I6 ⊗Z
m/2

i)) L48m
3 , m>2.

Bit deinterleaving DeInt48m Z
48m
28 → Z

48m
28 S(int48m) = (Int 48m)T

Puncturing Puncr
48m Z

2·48mr
2 → Z

48m
2 G(dr

48m) = (I48m/6 ⊗ Sr)

Depuncturing DePuncr48km Z
48km
28 → Z

2·48kmr
28 S(dr

48km) = (I48km/6 ⊗ ST
r) = (Puncr

48km)T

Convolutional encoding CvEnc48m,r Z
48mr
2 → Z

2·48mr
2 L2mr

mr [C0 C1]
T

Viterbi decoding VitDeck,m,r Z
2·48kmr
28 → Z

48kmr−6

2

Channel equalization Eqh̃ C
64

→ C
64 diag h̃

(De)Scrambling Scrsℓ Z
ℓ
2 → Z

ℓ
2 Il ⊗i(+s)

S1/2 = I12, S2/3 = I3 ⊗
h

1 0 0 0

0 1 0 0

0 0 1 0

i

, S3/4 = I2 ⊗

»

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

–

, Zn
i =

h

Ii

In−i

i

.

hb,s : i 7→ b + is (strides index mapping), (+a) : X 7→ X + a (“add constant” operator)

Mm,1 : Z
m
2 → C is them-bit modulation operator, M−1

m,8 : C → Z
m
28 is the demodulation operator tom 8-bit estimates

h̃ is the inverted channel freq. response, 64-element vector, plt, int, d are index mapping functions, not shown here.

C0, C1 are the Toeplitz matrices formed from the degree-7 bit polynomials

Table 2: Definition of the block operators used in (2)– (4).

WiFiTX k,m,r =
[

Ik ⊗
(
CPIns64 ◦ IDFT 64 ◦ PltIns64 ◦ Map48,m ◦ Int 48m ◦ Puncr

48m ◦ CvEnc48m,r ◦ Scrsℓ
)]

(2)

=
[

Ik ⊗
(
[
G(h64,1)
G(h0,1)

]

◦ IDFT 64 ◦ S(plt48)

︸ ︷︷ ︸

◦(I48 ⊗M1,m) ◦ G(int48m) ◦ G(dr
48m) ◦ CvEnc48m,r

︸ ︷︷ ︸
◦(+s).

)]

(3)

WiFiRX h̃
k,m,r = Scrsℓ ◦ VitDecℓ ◦ DePuncr48km ◦

[

Ik ⊗
(
DeInt48m ◦ DeMap48,m ◦ PltRm64 ◦ Eqh̃ ◦ DFT64 ◦ CPRm64

)]

(4)

= (+s) ◦ VitDecℓ ◦ S(dr
48km)

︸ ︷︷ ︸
◦
[

Ik ⊗
(
S(int48m) ◦ (I48 ⊗M−1

8,m) ◦ G(plt48)
︸ ︷︷ ︸

◦diag(h̃) ◦ DFT64 ◦ G(h0,1)
︸ ︷︷ ︸

)]

(5)

Figure 1: Plain OL definitions of WiFi transmitter / receiver((2) and (4)) and the definitions using OL constructs for simpler
blocks ((3) and (5)). Braces show grouping of operations.

types, each having different associated vector length, which
makes the vectorization more complex, and we did not imple-
ment this in the generator. In addition, an equivalent of loop
splitting can be applied:I⊗AB → (I⊗A)(I⊗B). In our ex-

periments, such “vertical” implementation always performed
better.

Next, theDFT and IDFT blocks have different vector-
ization possibilities [20], different choices of radices in the

4

Cooley-Tukey algorithm, and alternative algorithms.
For the Viterbi decoder, [21] gives the OL description of

the standard decoding algorithm. However, there exist other
algorithms, amenable to parallelization, e.g. [22], whichcould
provide scaling beyond 2 threads enabled by the pipelined par-
allelism. In our implementation, Viterbi decoder only has the
degree of unrolling (# of stages for the unrolled block) as the
degree of freedom.

The convolutional encoder can be grouped with the adja-
cent matrices, resulting in a single matrix-vector productwith
a less structured matrix. The matrix-vector product has thede-
grees of freedom in the different ways of blocking for locality,
and different vectorization methods (tiling into vector-sized di-
agonals, cyclic diagonals, or vertical stripes).

4 Optimized Code Generation

We have extended Spiral to be able to generate the optimized
code from the formulas in Fig. 1. This required extensions for
dealing with mixed data-type formulas, bit-level and byte-level
SIMD vectorization, and mixed vector-length vectorization.

Spiral performs the vectorization and parallelization by re-
writing at the OL formula level. We had to add additional
rewriting rules for the vectorization of the modulator, andgen-
eral bit-matrices. Spiral was able to vectorize the code, and
parallelize the transmitter. Parallelization of the receiver re-
quired a special breakdown rule to expose the pipeline paral-
lelism, to mimic the implementation in [24].

In Spiral, a special OL compiler generates code for OL for-
mulas. OL compiler, briefly explained in [17] is an extension
of the SPL compiler, described in detail in [4,23].

In order, to generate optimized code, the OL compiler, first
converts OL into

∑
-OL, a lower level representation, In this

stage constructs like⊗ into iterative sums with gather and scat-
ter matrices. Next, initial code is created by using code gener-
ation rules, as shown in the table below. (x andy denote the
input and output vectors,t is a temporary vector.)

Parametrized matrices(assumedomain(f) = n)

code(G(f), y, x) for(j=0..n-1) y[j] = x[f(j)];

code(S(f), y, x) for(j=0..n-1) y[f(j)] = x[j];

code(diag(f), y, x) for(j=0..n-1) y[j] = f(j)*x[j];

Operators (assumeA : C
n
→ C

m)

code(A ◦ B, y, x) code(B, t, x); code(A, y, t);

code(Ik ⊗A, y, x) for(j=0..k-1) code(A, y + mj, x + nj);

Finally, the compiler applies a set of standard compiler op-
timizations, such as loop unrolling, copy propagation, constant
folding, and strength reduction.

Many of the latter optimizations are enabled by completely
unrolling the inner loops with fixed bounds. For example, the

fastest implementation ofDFT64, is a fully unrolled “flat”
implementation with no control flow at all. The same, holds
for most other blocks in the PHYs.

In addition, complete loop unrolling eliminates temporary
array storage, which we call array scalarization, which in some
cases achieves the largest speedup. Array scalarization also
helps when multiple blocks are combined into a single piece
of code.

5 Performance Results

We benchmarked the generated code on three platforms listed
below (TDP indicates the thermal design power of the proces-
sor):
• Intel Core i7-975, 3.33 Ghz, TDP 130W, 4 cores;
• Intel Core 2 Quad Q6700, 2.66 Ghz, TDP 95W, 4 cores;
• Intel Atom N270, 1.6 Ghz, TDP 2.5W, 1 core.

The performance results are given in Fig. 2. The Viterbi
decoding is the most time consuming block, and takes the
larger proportion of runtime as data rate increases. At 54 Mbps
it is 88% of runtime on the Core platforms and 82% on the
Atom; at 6 Mbps, it is 63-64% on both Cores, and 54% on
the Atom. The other blocks are still important, the aggressive
optimizations and block combining are needed to reduce the
runtime to the current level.

The second set of plots compares the achievable data rates.
The generated code outperforms both of the hand-coded im-
plementations [24] and [14] we compare against. Two biggest
enabling factors are the ability to generate multiple algorith-
mic code alternatives and search within the available degrees
of freedom, and the ability to combine multiple blocks.

References
[1] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore pro-

cessors,”IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 26–37,
Dec. 2009.

[2] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, and J. Glossner,
“Software implementation of 802.11a blocks on SandBlaster DSP,” in
Proc. SDR’06 Technical Conference and Product Exposition, 2006.

[3] D. Iancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossner, V. Surd-
ucan, V. Kotlyar, A. Iancu, G. Nacer, and J. Takala, “Software imple-
mentation of WiMAX on the Sandbridge SandBlaster platform,”Em-
bedded Computer Systems: Architectures, Modeling, and Simulation,
vol. LNCS 4017, pp. 435–446, 2006.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP trans-
forms,” Proc. of the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[5] Y. Voronenko, “Library generation for linear transforms,” Ph.D. disser-
tation, Dept. of Electrical and Computer Eng., Carnegie Mellon Uni-
versity, 2008.

[6] F. Franchetti, M. P̈uschel, Y. Voronenko, S. Chellappa, and J. M. F.
Moura, “Discrete Fourier transform on multicore,”IEEE Signal Pro-
cessing Magazine, vol. 26, no. 2, pp. 90–102, Dec. 2009.

[7] M. J. Meeuwsen, O. Sattari, and B. Baas, “A full-rate software imple-
mentation of an IEEE 802.11a compliant digital baseband transmitter,”
in Proc. IEEE Workshop Signal Processing Systems (SIPS), Oct. 2004.

5

0.00

0.50

1.00

1.50

2.00

2.50

3.00

6 9 12 18 24 36 48 54

WiFi Receiver per Symbol Core i7 (3.3 GHz)
Run !me [micro sec] vs. Data rate [Mbit/s]

FFT/equ.

de-mapp./

de-interl.

Viterbi

fwd. pass

Viterbi

traceback

real-�me = 4 μs

0.00

1.00

2.00

3.00

4.00

5.00

6 9 12 18 24 36 48 54

WiFi Receiver per Symbol Core 2 (2.6 GHz)
Run !me [micro sec] vs. Data rate [Mbit/s]

FFT /equ.

de-mapp./

de-interl.

Viterbi

fwd. pass

Viterbi

traceback

real-�me = 4 μs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

6 9 12 18 24 36 48 54

WiFi Receiver per Symbol Atom (1.6 GHz)
Run !me [micro sec] vs. Data rate [Mbit/s]

FFT/equ.

de-mapp./

de-interl.

Viterbi

fwd. pass

Viterbi

traceback

real-�me = 4 μs

0

200

400

600

800

1000

1200

6 12 18 24 30 36 42 48 54

WiFi Transmi�er Spiral Code Across Pla�orms
Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

Core i7, threaded

Core i7, vectorized

Core 2, threaded

Core 2, vectorized

Atom, threaded
Atom, vectorized

real-!me bound

0

20

40

60

80

100

120

6 12 18 24 30 36 42 48 54

Core i7, threaded

Core i7, vectorized

Core 2, threaded

Core 2, vectorized

Atom, threaded

Atom, vectorized

real-!me bound

WiFi Receiver Spiral Code Across Pla�orms

Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

0

10

20

30

40

50

60

6 12 18 24 30 36 42 48 54

Spiral, threaded

Spiral, vectorized

Berger et al., threaded

Berger et al.,

vectorized

Sora, vectorized

Sora, threaded

real-!me bound

WiFi Receiver Code Comparison on Core 2
Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

Figure 2: Receiver runtime composition and achievable vs. nominal throughput in the transmitter and receiver. The hand-
written implementations are Berger [24] and Sora [14]. Eventhough Atom only achieves real-time at 9 Mbps, with its TDP of
2.5W, it provides the best performance per Watt.

[8] Y. Tang, L. Qian, and Y. Wang, “Optimized software implementation
of a full-rate IEEE 802.11a compliant digital baseband transmitter on a
digital signal processor,” inProc. GLOBECOM, Nov. 2005.

[9] A. L. Cinquino and Y. R. Shayan, “A real-time software implementation
of an OFDM modem suitable for software defined radios,” inProc.
Canadian Conf. Electrical and Computer Engineering, May 2004.

[10] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “SODA: A high-performance DSP architecturefor
software-defined radio,”IEEE Micro, vol. 27, no. 1, pp. 114–123, Jan.
2007.

[11] A. T. Tran, D. N. Truong, and B. M. Baas, “A complete real-time
802.11a baseband receiver implemented on an array of programmable
processors,” inProc. of Asilomar Conf. on Signals, Systems, and Com-
puters, Nov. 2008.

[12] GNU Radio. [Online]. Available: http://gnuradio.org/
[13] Wireless Open-Access Research Platform (WARP). [Online]. Avail-

able: http://warp.rice.edu/
[14] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang,H. Wu,

W. Wang, and G. Voelke, “Sora: High performance software radio us-
ing general purpose multi-core processors,” inProc. 6th USENIX Sym-
posium on Networked Systems Design and Implementation, Apr. 2009.

[15] M. L. Dickens, B. P. Dunn, and J. N. Laneman, “Design and implemen-
tation of a portable software radio,”IEEE Communications Magazine,
vol. 46, no. 8, pp. 58–66, Aug. 2008.

[16] E. D. Willink, “The waveform description language: Moving from im-
plementation to specification,” inProc. MILCOM, vol. 1, 2001, pp.
208–212.

[17] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel, “Opera-
tor language: A program generation framework for fast kernels,” in
IFIP Working Conference on Domain Specific Languages, LNCS 5658.
Springer, 2009, pp. 385–410.

[18] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A method-
ology for designing, modifying, and implementing Fourier transform
algorithms on various architectures,”IEEE Trans. Circuits and Systems,
vol. 9, pp. 449–500, 1990.

[19] IEEE Computer Society, “IEEE Std 802.11-2007, Part 11: Wireless
LAN medium access control (MAC) and physical layer (PHY) specifi-
cations, Revision of IEEE Std 802.11-1999,” June 2007.

[20] F. Franchetti, Y. Voronenko, and M. Püschel, “A rewriting system for
the vectorization of signal transforms,” inProc. High Perf. Computing
for Computational Science (VECPAR), 2006.

[21] F. de Mesmay, S. Chellappa, F. Franchetti, and M. Püschel, “Computer
generation of efficient software Viterbi decoders,” inHigh Performance
Embedded Architectures and Compilers (HiPEAC), ser. Lecture Notes
in Computer Science, vol. 5952. Springer, 2010, pp. 353–368.

[22] G. Fettweis and H. Meyr, “High-speed parallel viterbi decoding:
Algorithm and VLSI-architecture,”IEEE Communication Magazine,
vol. 29, no. 5, pp. 46–55, May 1991.

[23] F. Franchetti, Y. Voronenko, and M. Püschel, “Loop merging for signal
transforms,” inProc. PLDI, 2005, pp. 315–326.

[24] C. R. Berger, V. Arbatov, Y. Voronenko, F. Franchetti, and M. P̈uschel,
“Real-time software implementation of an IEEE 802.11a baseband
receiver on Intel multicore,” submitted for publication.

6

