Computer Generation of Platform-Adapted Physical Layer Software

Yevgen Voronenko (SpiralGen, Pittsburgh, PA, USA; yevgsp@lgen.com);
Volodymyr Arbatov (Carnegie Mellon University, PittsburdPA, USA; arbatov@cmu.edu)
Christian R. Berger (Carnegie Mellon University, Pittsburgh, BSA; crberger@ece.cmu.edu)
Ronghui Peng (SpiralGen, Pittsburgh, PA, USA; jonatharg@espiralgen.com);
Markus Rischel (Carnegie Mellon University, Pittsburgh, PA, USAepchel@ece.cmu.edu)
Franz Franchetti (Carnegie Mellon University, Pittsbuiigh, USA; franzf@ece.cmu.edti)

Abstract performance with a single modern multi-core GPP, (e.gelInt
Core [1]), or a single multi-core DSP (e.g., the Sandblaster
In this paper, we describe a program generator for physigg@p [2, 3], Tilera). However, developing the code for the
layer (PHY) baseband processing in a software-defined ragi@formance-critical PHY layer on these processors is an ex
implementation. The input of the generator is a very higfremely difficult task due to the very complex microarchitec
level platform-independent description of the transmiéted tures, diverse cache hierarchies and memory subsysterhs, an
receiver PHY functionality, represented in a domain-siiecidifferent forms of on-chip parallelism, such as multiplepr
declarative language called Operator Language (OL). The asessor cores, multiple threads per core, single-insouoatiultiple-
put is performance-optimized and platform-tuned C codé wijata (SIMD) instructions, and instruction-level paradied. Ex-
single-instruction multiple-data (SIMD) vector intrigsiand acerbating the problem, these optimizations have to beneedo
threading directives. The generator performs these opdimiwith every major update of the platform.
tions by restructuring the algorithms for the individuahgao- Contribution of this paper. In this paper, we propose to
nents at the OL level before mapping to code. This way knowercome these problems using a program generator for PHYs.
compiler limitation are overcome. Further platform tunisg The generator is based on Spiral [4—6] and automates the pro-
achieved by a feedback-directed search that determinesdti€tion and optimization of PHY source code. The input to
fastest solution among a space of candidates. We demanstt@ generator is a very high-level description of the rezedr
the approach and the excellent performance of the generatgflsmitter PHY functionality, described in a domain-sfiec
code on on the IEEE 802.11a (WiFi) receiver and transmiti@athematical declarative language called Operator Laygyua
for all transmission modes. (OL). It proceeds with automatically generating various al
gorithms for the individual components (such as the discret
Fourier transform or the Viterbi decoder), representedlin O
These are then automatically restructured using a platform

A major challenge in implementing true software-defined rC(_)gnizant OL rewrite system with the goal to match the algo-
J 9 P 9 fthm’s structure to platform features such as multi-tkieg

dios (SPRS). IS meetlng. the real-time demands of the SI9 Id SIMD vector instructions. The obtained OL representa-
processing in the physical layer (PHY). In most cases t

requires carefully choosing the orober algorithms andjhartlllgn is then compiled into optimized C code including SIMD
q y 9 prop 9 ' trinsics and threading directives. Further platformitign

optimizing and hand-tuning the implementation in assemtfgyachieved by feedback-directed search that determirees th
fgstest solution among a space of candidates.

for the chosen platform.
Until recently, most common SDR platforms used a hybri We demonstrate the viability of the approach on both the
nsmitter and receiver of IEEE 802.11a (WiFi). The gen-

architecture consisting of one or more field-programmahte Y%a
arrays (FPGAs), a digital signal processor (DSP) and a 9&Mted code achieves real-time WiFi transmission spedids (a
a rates up to 54 Mbps) on an off-the-shelf Intel Core based

eral purpose processor (GPP). The PHY functionality was thdjat
partitioned across these devices. The partitioning an«ﬂ-hagystem Further, we show that the computer-generated code
outperforms the best hand-optimized code.

optimization process is usually extremely time-consumixg
’ ingly conflicting goals of producing highest performancdeo
*This work was supported by ONR through the STTR contract N@00 While considerably reducing the production time and hehee t
09-M-0332, by NSF through awards 0325687, 0702386, by DARPAUgh time it takes to port PHY's to new, more capable platforms.
the DOI grant NBCH1050009 Our work shows that the PHY functionality can be ex-

1 Introduction

pressed mathematically at the very high-level in a way thattinterest for academic test-beds as in [14,15] and runuthe f

is amenable to mechanical manipulation by a computer. Qunctionality on a PC that commonly features an Intel or simi

representation is not merely a dataflow graph of a signal ptax GPP. Hence the challenges to efficiently utilize the comp

cessing pipeline, but actually exposes all low-level detai tational resources in terms of SIMD and multicore paradtali

the implementation as well, which enables the program gereme quite similar to the SDR platforms described above.

ator to expoit all levels of on-chip parallelism. Becaus¢hatt Our work on expressing the SDR PHYs in OL is similar

this “domain-specific compiler” is able to replace the humam flavor to the Waveform Description Language (WDL) [16].

expert. In addition, we show that the proper representatidowever, WDL is much broader in scope than OL, and aims at

enables further optimizations, namely block combining-optomplete and formal specification of the communication pro-

mizations, that are often beyond reach of human experts doeol. OL, on the other hand, targets the specific domain of

to the inherent complexity. computations with regular structure, and aims to autontete t
Organization. In Section 2 we overview prior work on im-work of expert programmers, by enabling the computer gener-

plementing baseband PHY processing. Section 3 containsdtien of very fast code.

core technical content of the paper: it introduces the dpera

language, and shows the description of PHY in OL. Section 4

briefly explains how PHY descriptions in OL can be compilgg Operator Language and PHYs

into optimized code. Finally, we show performance resuits o

the auto-generated code and conclude the paper in Sectiorf¥p€erator Language (OL) [17] is a domain-specific declarat-
ive mathematical language used to represent certain slasse

of numerical algorithms. OL is an extension or superset of
2 Background and Prior Work SPL [4,5,18] to cover non-linear multi-input and multi-put
operations. We first introduce SPL and then extend the discus
Early SDR platforms typically consisted of a combination afion to OL.
one or more FPGAs and a part that could run software, like SPL. SPL is a language to describe fast algorithms for lin-
a DSP or GPP. The computational intensive parts where tteam transforms, which are functions of the form- y = M«
mostly implemented on FPGASs, which acted as reconfigurablih a fixed matrix)/ also called transform. An example is
hardware accelerators. Although such a setup has some fliha- discrete Fourier transform defined by = DFT,, =
bility, as the platform can accomodate a variety of PHY fun@z#]o<; j<n, Wherew, = e~2mV=1/n_ An SPL program, or
tionality, the PHY implementation is still mostly done iniVe formula, is a fast algorithm for a transforii represented as
ilog matching a non-SDR implementation in application spa-factorization into a product of sparse matrices.
cific integrated circuits (ASIC), and the main challengenis i To do so, SPL contains basic matrices such as the identity
fitting the computational intensive parts onto the FPGAs. matrixI,,, diagonal matricediag,,,, (f(m)) with a scalar
The difference compared to a true software PHY implerfunction f, or the stride permutation matrix;’, which trans-
tation is that in FPGA or ASIC design, the hardware is dpeses am/k x k matrix stored linearized in memory. More
signed to match the algorithm, naturally using fine graired pcomplex SPL formulas are built from other SPL formulas us-
allelism and pipelining to achieve high performance. In-coing matrix operators, such as the matrix proddct B or the
trast, on a DSP or GPP, software mostly executes in a seikebnecker producd ® B defined as
fashion, and although modern platforms include parattelis
form of SIMD vectorization and multiple cores, these struc- A® B =lai;Bli;, forA=la;;l;;.

tures are still fixed and accordingly the algorithms havedo b . L
fit to the available hardware. All SPL constructs have natural interpretation in the cdeta.

First true software PHY implementations used a single DSMPle, the formulal - B, implies the two-step computation

that is programmed serially [7-9]. Although fully flexible! = Baiy = At. _
these could not achieve real-time performance for computa- YSind SPL, the well-known Cooley-Tukey fast Fourier trans-

tional intensive PHY standards like WiFi. Recent processdP™ (FFT) is expressed as
possess multiple cores, each typically possessing fupiuer . . km km
allelism in the form of SIMD vector extnensions [3, 10, 11]. DF Ty = (DFT, © 1) diagt,," (Iy © DETyn) L™

X . Q)
While these platforms come close to the computational POWEL, s thaty — DFT,, = can be computed in four steps
needgd to run PHY. standgrds like Wi, it also becomes I(g]orresponding to the four factors in (1). Two of the steps in-
creasingly challenging to implement PHY software that X Ive the recursive computations of smaller DFTs
ploits the full computational potential. |

Finally, a quite different kind of SDR platforms has sur- Further important building blocks of SPL, and later OL,

faced, using simple radio front-end boards attached to come thelfollowmg ma tr.|ces para.meterlz.ed by mdex mappings
An index mappings a function on integer intervals. De-

modity personal computers (PCs) [12-14]. These are mosntg/tee? thei-th column basis vector of size i.e., the column

Rate Modulation Bits/sc. Code Codedbits/ Databits/ {1,2,4,6} bits per subcarrier and coding rate= {1/2, 3/4,

Mbps m rater sym. sym.Nogps 2/3}, they will take up
6 BPSK 1 1/2 48 24
9 BPSK 1 3/4 48 36 k = [¢/Nppps + 6] = [£/(48mr) + 6] (8)
12 8§§§ ; ;ﬁ gg ‘712 OFDM symbols, wheré&Vpgps = 48mr is the number of data
2 16-QAM 4 12 192 96 bits per OFDM symbol. The data bits are appended with zero
36 16-QAM 4 3/4 192 144 bits to fill exactly k ODFM symbols and we will always as-
48 64-QAM 6 213 288 192 sume the TX and RX operate on this extended bit sequence.
54 64-QAM 6 3/4 288 216 An important difference of physical layer computations

from other types of numerical codes is the diversity of used
Table 1: Data rates in IEEE 802.11a with corresponding maghta types, which is also evident above. The transmittesmap
ulation schemes and coding rates [19]. (sc. = subcarrier) hijts to complex (floating point) values, and the receiveevic

versa. The actual implementation will use one or more ter-

vector ofn elements, with a 1 ifrth position and Os eIsewhereFIary data types during the course of computation. This make

Given an index mapping functiofy gather and scatter matri- domain and range specifications of blocks, as in (6)(7) very

cesare defined as follows: Important.
' We can directly transcribe the entire computation data flow
F:{0,...on—1} = {0,...m—1}, of recgiver and transmitter PHY, as it is gx_plained in_ [1Qq>in
OL using the blocks from Table 2 and this is shown in Fig. 1.
G(f) = [6?“(0)| .. |e%1_1)} , Table 2 defines all of the blocks in the receiver and trans-
T mitter. Most of the blocks are linear, and perform the matrix
S(f)=G(HT = [e’]?(o)| . |6?(n—1)} . vector product, the definition in OL can thus be interpreted

as a matrix. The non-linear blocks aviap, DeMap, Pltins,
OL. OL is a superset of SPL. Where SPL can only describ@Dec, andScr.
transforms, i.e., linear single-input and single-outppéra- All of the blocks, except the Viterbi decod¥itDec, can
tions, OL removes this restriction and considers more géndye defined in terms of primitive OL constructs and matrices,
operators An operator of arity(c, d) is a function that takes and most of the blocks are normally computed by definition.
vectors as input and producésectors as output. For exam-The important exceptions are the DFT, and the Viterbi degode
ple, ak x n matrix M, the simplest possible SPL formula, i$or which several alternative fast algorithms exist.

in OL viewed as the arity1, 1) operator Pltins, PItRm, Int, Delnt, Punc andDePuncare all ba-
/ . sically data reordering and/or padding operations and¢hos
Mixn : C* — CF. be expressed as a gather or scatter with the corresponding in

. . dex mapping functionglt, int, andd correspondingly for pilot
The matrix productl,, < - B) becomes in OL the operatof.emqyayjinsertion, (de)interleaver, and (de)punctyringiose
composition precise form is not relevant here. We do show the matrix
structure of (de)interleaver and (de)puncturer, but ingtat-
ing these to code, these structures are not used.

The tensor product of matrices generalizes to tensor ptoduc 1 1€ modulator and demodulator are defined by the scalar

. 71 .
of operators, but in this paper we only need one special caddnctionsM andM™" that mapm hard bits to a complex num-
ber, and vice versa a complex numberntosoft bits, in the

A:C,,—C, latter soft bit estimates.
I ®A : Cm, — Cpy, Implementation degrees of freedomBefore the OL for-
mulas (3) and (5) can be mapped to code, all remaining un-
@ (Alzo, -y m = 1), AT —1yms - - Thm—1)) expanded blocks (in bold) must be expressed in primitive OL
WiFi physical layer in OL. The 802.11a OFDM trans_constructs. There are multiple ways of doing so that corre-

mitter (TX) and receiver (RX) map data bits into a complezpond to different cor_np.utatlonal al_gorlthms and the '“"”F‘
. : egrees of freedom within the algorithms. For example,&bpir
baseband signal and vice versa.

employs feedback driven search to make the best choices on a

.k
Amxn o Bpxk : C* —Cm.

WIFITX 4, . : ZA3kmr=6 _, ¢80k (6) given platform. We discuss these degrees of freedom next.
. e 2% 48kmr*6’ The outer tensor product itself is not a primitive construct
WIFIRX b, 2 CF — Zy :) Normally, it should become a loop over the right factor. But

. . . alternatively, the associated loop can be parallelizediecr
If & number, say, bits are to be transmitted at a ransmise ;e [20]. An interesting twist in this case, is that the i

sion mode characterized by a modulation scheme watle ner subformula of the tensor product operates on differata d

Operator Notation Domain — Range Definition

Cyclic prefix insertion CPInse4 C% — c®° { ho | _ G(hm’l)}
T4 G(ho,1)

Cyclic prefix removal ~ CPRmgy4 C8 — & [064X16 164} = G(hi61)

Forward DFT DFTe4 co* —c* [wehlosi,j<ea

Inverse DFT IDFT ¢4 Cco — % [wer?lo<i,j<64

Pilot tone insertion Pltinsea Cc*® — % (+P) o S(plt,g)

Pilot tone removal PltRmg4 co — C*® G(pltyg)

Symbol mapping Map 45 .., 7438 — 8 Lis @ Mim 1

Symbol demapping DeMap,s ,,, C*® —7z58™ Lis @M, '

i i 48m, 48m . L3*™, m<2,
Bit interleaving Int 48m, Z3°™ — Ly G(intagm) = {(116 il @ Z?L/Q)) LIS s,
Bit deinterleaving Delntag,, 738 — 7a8™ S(intagm) = (INtgm)™
Puncturing Punc;g,, Z2A48mr _, 748m G(digm) = (Iusmye ®Sr)

Depuncturing DePundgy,, Zydh™ — Z2¥F ™ S(dgkm) = (Luskmys @ St) = (PUNClgg,,)”
Convolutional encoding CVENCigm, - Z58mT s 72 a8mr L2m7 [Co Ci]"

Viterbi decoding VitDeCy,m,» ~ Z28Fmr — go8kmr=6

Channel equalization Eq, ot — o diag h

(De)Scrambling Scrs 75 — 75 I @i(+s

)

1000 5ooo

Sl/221127 52/3:I3® |:0100:|7 83/4:I2® 0010
0010 0000

0 L
T
01
hy,s :i+— b+ is (stridesindex mapping) (+a):X — X + a (“add constant” operator)
Mm,1 : Z3" — C is them-bit modulation operatar M;lfg : C — Zjs is the demodulation operator t@ 8-bit estimates
h is the inverted channel freq. response, 64-element vectptt, int, d are index mapping functions, not shown here

Co, C; are the Toeplitz matrices formed from the degree-7 bit polynomials

Table 2: Definition of the block operators used in (2)— (4).

WIFITX e = [Ik ®(CPInsG4 o IDFT ¢4 o Pltinsgy 0 Map g ,, © It 4g,, © PUNCyg,,, © CVENCyg,y, - © Sch)} (2)
G(h . r
= |:Ik ®(l:G((h604,11)):| oIDFT g4 0 S(plt48) 0(148 (9 Ml,m) o G(lnt4gm) o G(d48m) o CVEnC48m)T O(+S)):|
3)
WIFiRX [, . = Scr; o VitDec, o DePundigy,, o [Ik ©(Delntys,, o DeMapy ,,, o PItRmg4 o Eqj, o DFTgy 0 CPRm64)}
(4)
= (+s) o VitDecy o S(d)jgi,m) © [Ik @ (S(intagm) o (s ® Mg,ln) o G(plt,g) o diag(h) o DFTg4 0 G(ho 1))}
(5)

Figure 1: Plain OL definitions of WiFi transmitter / receiM¢?) and (4)) and the definitions using OL constructs for $enp
blocks ((3) and (5)). Braces show grouping of operations.

types, each having different associated vector lengthchvhperiments, such “vertical” implementation always perfedtn
makes the vectorization more complex, and we did not impleetter.

ment this in the generator. In addition, an equivalent oploo Next, theDFT and IDFT blocks have different vector-
splitting can be appliedt ® AB — (I®A)(I®B). In our ex- ization possibilities [20], different choices of radices the

Cooley-Tukey algorithm, and alternative algorithms. fastest implementation dDFTgy, is a fully unrolled “flat”

For the Viterbi decoder, [21] gives the OL description dimplementation with no control flow at all. The same, holds
the standard decoding algorithm. However, there existrotlier most other blocks in the PHYs.
algorithms, amenable to parallelization, e.g. [22], wigohld In addition, complete loop unrolling eliminates temporary
provide scaling beyond 2 threads enabled by the pipelined garay storage, which we call array scalarization, whiclroime
allelism. In our implementation, Viterbi decoder only hhe t cases achieves the largest speedup. Array scalarizason al
degree of unrolling (# of stages for the unrolled block) as thelps when multiple blocks are combined into a single piece
degree of freedom. of code.

The convolutional encoder can be grouped with the adja-
cent matrices, resulting in a single matrix-vector produith
a less structured matrix. The matrix-vector product haslthe 5 Performance Results
grees of freedom in the different ways of blocking for lotali
and different vectorization methods (tiling into vectares di-
agonals, cyclic diagonals, or vertical stripes).

We benchmarked the generated code on three platforms listed
below (TDP indicates the thermal design power of the proces-
sor):
e Intel Core i7-975, 3.33 Ghz, TDP 130W, 4 cores;
4 Optimized Code Generation o Intel Core 2 Quad Q6700, 2.66 Ghz, TDP 95W, 4 cores;
o Intel Atom N270, 1.6 Ghz, TDP 2.5W, 1 core.

We have extended Spiral to be able to generate the optimizedThe performance results are given in Fig. 2. The Viterbi
code from the formulas in Fig. 1. This required extensioms fdecoding is the most time consuming block, and takes the
dealing with mixed data-type formulas, bit-level and blgeel larger proportion of runtime as data rate increases. At 5gsMb
SIMD vectorization, and mixed vector-length vectorizatio it is 88% of runtime on the Core platforms and 82% on the

Spiral performs the vectorization and parallelization &y rAtom; at 6 Mbps, it is 63-64% on both Cores, and 54% on
writing at the OL formula level. We had to add additiondhe Atom. The other blocks are still important, the aggressi
rewriting rules for the vectorization of the modulator, ayah- optimizations and block combining are needed to reduce the
eral bit-matrices. Spiral was able to vectorize the codd, amintime to the current level.

parallelize the transmitter. Parallelization of the reeeire- The second set of plots compares the achievable data rates.
guired a special breakdown rule to expose the pipeline partihe generated code outperforms both of the hand-coded im-
lelism, to mimic the implementation in [24]. plementations [24] and [14] we compare against. Two biggest

In Spiral, a special OL compiler generates code for OL fognabling factors are the ability to generate multiple &tgor
mulas. OL compiler, briefly explained in [17] is an extensiomic code alternatives and search within the available d=gre
of the SPL compiler, described in detail in [4, 23]. of freedom, and the ability to combine multiple blocks.

In order, to generate optimized code, the OL compiler, first
converts OL intoy_-OL, a lower level representation, In thisR
stage constructs like into iterative sums with gather and scat* eferences

ter matrices. Next, initial code is created by using codeegen [1] G.Blake, R. G. Dreslinski, and T. Mudge, A survey of matire pro-

at'on I‘U|eS, as ShOWﬂ n the table be|0w E(de denOte the Cessors"iEEE S|gna| Processing Magazu’mi 26’ no. 2’ pp. 26_37’
input and output vectorg,is a temporary vector.) Dec. 2009.
[2] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, andzlossner,
Parametrized matrices(assumelomain(f) = n) “Software implementation of 802.11a blocks on SandBlasteP D&
Proc. SDR’06 Technical Conference and Product Exposi2006.
code(G(f),y,z) for(j=0..n-1) y[jl = x[f(j)]; [3] D. lancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossie Surd-
))) ucan, V. Kotlyar, A. lancu, G. Nacer, and J. Takala, “Sofevenple-
code(5(f),y,z) for(j=0..n-1) y[f(i)] = x[il]; mentation of WIMAX on the Sandbridge SandBlaster platforErm-
. _) . bedded Computer Systems: Architectures, Modeling, and|&ian,
code(diag(f),y,) for(j=0..n-1) yli] = f()=xlil; vol. LNCS 4017, pp. 435-446, 2006.
Operators (assumed : C* — C™) [4] M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. @&, Y. Voronenko, K. Chen, R. W.
code(A o B,y,x) code(B,t,z); code(4,y,t); Johnson, and N. Rizzolo, “SPIRAL: Code generation for D$Rgr

forms,” Proc. of the IEEEvol. 93, no. 2, pp. 232-275, 2005.

Y. Voronenko, “Library generation for linear transforfhBh.D. disser-
tation, Dept. of Electrical and Computer Eng., Carnegie dtelUni-
Finally, the compiler applies a set of standard compiler op- versity, 2008.

timizations, such as |00p unrolling, copy propagation,stant 6] F. Fran?hgtti, M. Bsch_el, Y. Voronenko, S. _Chellappa, _and J. M. F.

foldina. and strenath reduction Moura, “Discrete Fourier transform on multicoréEEE Signal Pro-
9. g R cessing Magazinevol. 26, no. 2, pp. 90-102, Dec. 2009.

Many of the latter optimizations are enabled by completely7] M. J. Meeuwsen, O. Sattari, and B. Baas, “A full-rate ®aite imple-

unrolling the inner loops with fixed bounds. For example, the mentation of an IEEE 802.11a compliant digital baseband tnétes,”
in Proc. IEEE Workshop Signal Processing Systems (SIBP&) 2004.

code(Ix ®A,y, x) for(j=0..k-1) code(A,y+ mj,x + nj); [5]

WiFi Receiver per Symbol Core i7 (3.3 GHz)

Run time [micro sec] vs. Data rate [Mbit/s]

3.00

2.50

1.50

0.00

Run time [micro sec] vs. Data rate [Mbit/s]
5.00

FFT/equ.
4.00
i de-mapp./

real-time = 4 us

real-time = 4 us

de-interl.

Viterbi
fwd. pass 2.00

Viterbi
traceback

@

12 18 24 36 48 54

8 b N

18 24

WiFi Receiver per Symbol Core 2 (2.6 GHz)

36

WiFi Receiver per Symbol Atom (1.6 GHz)

Run time [micro sec] vs. Data rate [Mbit/s]
FFT /equ. 16.00
FFT/equ.
de-mapp./ 14.00
de-mapp./
de-interl.
[Viterbi

de-interl.
fwd. pass

0

12.00

10.00

Viterbi

fwd. pass 8.00

6.00
real-time = 4 us

4.00
6 9 12

Viterbi
traceback

Viterbi
traceback

2.00

i

48 54

|

48

0.00

18 24 36 54

WiFi Transmitter Spiral Code Across Platforms
Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

WiFi Receiver Spiral Code Across Platforms
Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

WiFi Receiver Code Comparison on Core 2
Achievable data rate [Mbit/s] vs. Nominal data rate [Mbit/s]

1200

1000

800

600

400

200

120

Core i7, threaded Core i7, threaded

100

80
Core 2, threaded

60
Core i7, vectorized

Core 2, vectorized

Atom, threaded

Atom, vectorized ! ___2
0 0

[3

12 18 24 30 36 42 48 54 6 12 18 24 30

Core 2, threaded

——> /w/
40 20
Core 2, vectorized

36 42

60

Spiral, threaded

Berger et al., threaded
Sora, threaded

—
——0

50

Core i7, vectorized
40
Spiral, vectorized 4

Berger et al.,

30 vectorized

Sora, vectorized

20 Atom, threaded 10

it tr————1\

Atom, vectorized

real-time bound

48 54 6 12 18 24 30 36 42 48 54

Figure 2: Receiver runtime composition and achievable v@ninal throughput in the transmitter and receiver. The hand
written implementations are Berger [24] and Sora [14]. Eveugh Atom only achieves real-time at 9 Mbps, with its TDP of
2.5W, it provides the best performance per Watt.

(8]

&l

(10]

(11]

(12]
(23]

(14]

(18]

(16]

Y. Tang, L. Qian, and Y. Wang, “Optimized software implensitn
of a full-rate IEEE 802.11a compliant digital baseband tngitter on a
digital signal processor,” ifroc. GLOBECOMNov. 2005.

A. L. Cinquino and Y. R. Shayan, “A real-time software impientation
of an OFDM modem suitable for software defined radios, Pioc.
Canadian Conf. Electrical and Computer EngineeriiMay 2004.

Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. @krabarti,
and K. Flautner, “SODA: A high-performance DSP architectime

software-defined radioJEEE Micro, vol. 27, no. 1, pp. 114-123, Jan. [19]

2007.
A. T. Tran, D. N. Truong, and B. M. Baas, “A complete reahé¢

802.11a baseband receiver implemented on an array of progrdsmaf20]

processors,” iflProc. of Asilomar Conf. on Signals, Systems, and Com-
puters Nov. 2008.

GNU Radio. [Online]. Available: http://gnuradio.drg

Wireless Open-Access Research Platform (WARP). [i@jli Avail-
able: http://warp.rice.edu/

K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. ZhaHgWu,
W. Wang, and G. Voelke, “Sora: High performance softwareaard-
ing general purpose multi-core processorsPmc. 6th USENIX Sym-
posium on Networked Systems Design and Implement#tpmn2009.
M. L. Dickens, B. P. Dunn, and J. N. Laneman, “Design and&men-
tation of a portable software radidEEE Communications Magazine
vol. 46, no. 8, pp. 58-66, Aug. 2008.

E. D. Willink, “The waveform description language: Mag from im-
plementation to specification,” iRroc. MILCOM vol. 1, 2001, pp.
208-212.

(18]

(21]

(22]

(23]

(24]

[17] F. Franchetti, F. de Mesmay, D. McFarlin, and Misehel, “Opera-

tor language: A program generation framework for fast kesxheh
IFIP Working Conference on Domain Specific Languag®CsS 5658.
Springer, 2009, pp. 385-410.

J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolim#&mnethod-
ology for designing, modifying, and implementing Fourier sfomm
algorithms on various architecturelEE Trans. Circuits and Systems
vol. 9, pp. 449-500, 1990.

IEEE Computer Society, “IEEE Std 802.11-2007, Part 11lireligss
LAN medium access control (MAC) and physical layer (PHY) sfiec
cations, Revision of IEEE Std 802.11-1999,” June 2007.

F. Franchetti, Y. Voronenko, and MiiBchel, “A rewriting system for
the vectorization of signal transforms,” Rroc. High Perf. Computing
for Computational Science (VECPAR)YO06.

F. de Mesmay, S. Chellappa, F. Franchetti, and ¥&dpel, “Computer
generation of efficient software Viterbi decoders,High Performance
Embedded Architectures and Compilers (HIPEASS. Lecture Notes
in Computer Science, vol. 5952. Springer, 2010, pp. 353—-368.

G. Fettweis and H. Meyr, “High-speed parallel viterbéodding:
Algorithm and VLSI-architecture,IJEEE Communication Magazine
vol. 29, no. 5, pp. 46-55, May 1991.

F. Franchetti, Y. Voronenko, and MiiBchel, “Loop merging for signal
transforms,” inProc. PLDI, 2005, pp. 315-326.

C. R. Berger, V. Arbatov, Y. Voronenko, F. FranchettidaVl. Fischel,
“Real-time software implementation of an IEEE 802.11a basgban
receiver on Intel multicore,” submitted for publication.

