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Abstract

The chip maker’s response to the approaching end of CPU
frequency scaling are multicore systems, which offer the
same programming paradigm as traditional shared mem-
ory platforms but have different performance characteris-
tics. This situation considerably increases the burden on li-
brary developers and strengthens the case for automatic per-
formance tuning frameworks like Spiral, a program genera-
tor and optimizer for linear transforms such as the discrete
Fourier transform (DFT). We present a shared memory ex-
tension of Spiral. The extension within Spiral consists of
a rewriting system that manipulates the structure of trans-
form algorithms to achieve load balancing and avoids false
sharing, and of a backend to generate multithreaded code.
Application to the DFT produces a novel class of algorithms
suitable for multicore systems as validated by experimental
results: we demonstrate a parallelization speed-up already
for sizes that fit into L1 cache and compare favorably to other
DFT libraries across all small and midsize DFTs and consid-
ered platforms.

CR Categories: F.2.1 [Analysis of algorithms and prob-
lem complexity]: Numerical algorithms and problems—Fast
Fourier transform; D.1.3 [Programming techniques]: Con-
current programming—Shared memory; D.1.2 [Program-
ming techniques]: Automatic programming—Program gen-
erators

Keywords: Fast Fourier transform, shared memory, multi-
core, chip multiprocessor, automatic parallelization

1 Introduction

After years of exponential growth, the CPU frequencies
of recent generations of microprocessors have practically
stalled, a consequence of the physical limits imposed by their
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power density. To keep Moore’s Law on track, chip makers
have started to follow a different route: multicore systems,
also called chip multiprocessors (CMPs), that integrate mul-
tiple processor cores onto one chip. Dual core systems are
currently sold by Intel, IBM, and AMD. IBM’s Cell proces-
sor has eight special-purpose cores on one chip. In the fu-
ture, concurrency will become mainstream and pose a major
burden on compiler developers and programmers.

A mature body of work on parallelizing compilers exists, but
targets mainly large applications for which moderate over-
head is acceptable when they are mapped to a large num-
ber of processors. CMPs, on the other hand, offer a much
better ratio of communication to computation speed, a prop-
erty that changes the game, and, for example, should enable
parallelization for much smaller problem sizes. In a sense
this parallels the situation from a few years ago when SIMD
vector instructions were introduced. Their underlying math-
ematical paradigm matched early vector processors, but dif-
ferent optimization techniques were necessary.

Programmers in charge of developing high performance li-
braries are already confronted with the difficult task of opti-
mizing for deep memory hierarchies and extracting the fine-
grain parallelism for vector instruction sets. Now, this chal-
lenge is compounded with multithreaded programming for
a platform with new performance characteristics. This sce-
nario strengthens the case for recent efforts on automatic per-
formance tuning, program generation, and adaptive library
frameworks that can offer high performance with greatly re-
duced development time. Examples include ATLAS [Wha-
ley et al. 2001], Bebop/Sparsity [Im et al. 2004; Demmel
et al. 2005], and FLAME [Gunnels et al. 2001; Bientinesi
et al. 2005] for linear algebra, FFTW [Frigo and Johnson
2005] for the discrete Fourier transform (DFT), and Spiral
[Püschel et al. 2005] for general linear transforms.

Contribution. In this paper we formally derive fast Fourier
transform algorithms (FFTs) suitable for shared memory
and, in particular, multicore platforms. The benefit of the
formal approach is twofold. First, it enables us to reason
about desirable properties; in particular, we can prove that
the algorithms offer perfect load-balancing and avoid false
sharing. Second, we implemented the framework in the
form of a rewriting system as part of the Spiral program
generator [P̈uschel et al. 2005] compatible with Spiral’s for-



mal loop optimization [Franchetti et al. 2005], vectorization
[Franchetti et al. 2006], and automatic tuning framework.

We evaluated the approach by generating FFT programs au-
tomatically tuned for a variety of shared memory platforms
including classical SMPs and recent CMPs. The results show
superior performance across a range of sizes compared to
FFTW and the Intel vendor library. Further, on a CMP we
demonstrate a speed-up through parallelization for a prob-
lem size as small as28, which fits completely into L1 cache
and runs at less than 10,000 cycles. In contrast, FFTW only
takes advantage of the second processor for sizes larger than
213, running at more than 500,000 cycles.

Organization. In Section 2 we present the necessary back-
ground and related work for this paper. First, we discuss
shared memory platforms and associated work on compil-
ers. Then we explain the DFT, the Cooley-Tukey FFT, and
its parallel versions derived previously. Finally, we overview
the Spiral program generator. In Section 3 we formally de-
rive parallel FFTs suitable for multicore systems and reason
about their structure. Then, we explain the integration of the
framework into Spiral. Section 4 presents experimental re-
sults and benchmarks with Spiral-generated FFTs for a vari-
ety of symmetric multiprocessor platforms. Finally, we offer
conclusions in Section 5.

2 Background and Related Work

We provide background and discuss related work on shared
memory platforms and programming, the DFT and the FFT
algorithm for single and multiple processors, and the Spiral
program generator.

2.1 Shared Memory Machines

Symmetric multiprocessing. In the late 1980’s and early
1990’s highly parallel shared-memory machines entered the
scene. Smaller machines were symmetric multi processors
(SMP) while larger machines used distributed shared mem-
ory (DSM), i.e., the memory was physically distributed but
shared between all processors to allow programming without
data transfer management. Today, some vendors still pro-
duce large shared memory machines; however, most highly
parallel platforms are now clusters of SMPs with up to 4
processors per cluster node and explicit message passing be-
tween nodes.

A recent important change occurred when IBM, AMD, and
Intel started producing shared memory chip-multiprocessors
(CMPs): multiple CPU cores on the same piece of sili-
con. The integration ranges from two processors sharing
no caches, such as Intel Pentium D processors, to two cores

sharing a cache like Intel Core Duo and IBM Power 5 proces-
sors. AMD Opteron dualcore processors are in some sense a
compromise using a fast on-chip cache coherency protocol.
The first generation of multicore processors targeted servers
while the latest generation targets consumer desktop and lap-
top computers, making multicore a mainstream technology.

Parallelizing compilers. Today’s parallelizing compilers
grew out of a vast body of research that started with the first
shared memory machines in the late 1980’s [Banerjee et al.
1993; Hiranandani et al. 1992; Wolfe 1996; Zima and Chap-
man 1990]. The resulting compilers are quite successful and
provide good performance scaling for relative simple pro-
grams running on tightly coupled systems with more than 2
or 4 CPUs. However, they cannot achieve parallel speed-up
for complicated programs targeting a small number of CPUs
and small problem sizes. In particular, this applies to the
DFT considered in this paper.

Generally, successful parallelization first requires optimiza-
tion for the memory hierarchy, since accessing shared data
is more expensive than accessing private data. Thus, the
work on loop tiling, loop exchange, and loop interleaving
are highly relevant to automatic parallelization and auto-
matic performance tuning as these methods are fundamen-
tal program transformations to improve data locality in array
computations. However, these transformations typically re-
quire expensive analysis [McKellar and E. G. Coffman 1969;
Gatlin and Carter 1999; Wolf and Lam 1991].

Explicit programming of shared memory machines.
Writing fast parallel programs is considerably more chal-
lenging than writing fast sequential programs. For prob-
lems that are data parallel (but not embarrassingly paral-
lel) the programmer has to address the following issues:
1) Load balancing: All processors should have an equal
amount of work assigned. In particular, sequential parts
should be avoided since they limit the achievable speed-up
due to Amdahl’s law. 2)Synchronization Overhead:Syn-
chronization should involve as little overhead as possible
and threads should not wait unnecessarily at synchronization
points. 3)Avoiding false sharing:Private data of different
processors should not be in the same cache line, since this
leads to cache thrashing and thus severe performance degra-
dation. In addition, the programmer has to optimize single
thread performance, and try to avoid excessive locking of
shared variables, deadlocks, race conditions, and cache in-
terference of multiple threads, among other things.

Historically, programming parallel machines was a very
machine-dependent, painful, and non-portable process. In
order to allow for portable multithreaded applications, thread
libraries and parallel languages (or language extensions)
were developed. These provide the means to start and syn-
chronize threads, to protect shared variables, and to allocate
and manage thread local data. Examples include the pthreads
library and the OpenMP language extension [Chandra et al.



2000]. OpenMP extends C (or Fortran) by directives inlined
into the source code as pragmas (C) or comments (Fortran)
to pass parallelization information to the compiler and also
includes a supporting runtime library.

Despite all efforts, however, producing portable, fast, stable,
high-quality parallel software for shared memory machines
is still a major challenge.

2.2 Discrete Fourier Transform

The discrete Fourier transform (DFT) of an input vectorx of
lengthn is defined as the matrix-vector product

y = DFTn x, DFTn = [ωk`
n ]0≤k,`<n, ωn = e−2πi/n.

Fast algorithms compute the DFT inO(n log n) operations
and are referred to as fast Fourier transforms (FFTs). They
can be described as recursive factorizations of the matrix
DFTn into structured sparse matrices using the Kronecker
product formalism [Van Loan 1992]. In particular, the well-
known Cooley-Tukey FFT can be written as (we write→
instead of= since later in Spiral we view these decomposi-
tions as rules)

DFTmn → (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (1)

In (1), Ik is thek × k identity matrix andDm,n a diagonal
“twiddle factors” matrix. Particularly important is the tensor
(or Kronecker) product of matrices,

A⊗B = [ai,jB]i,j with A = [ai,j ]i,j .

For example,

In ⊗A =




A
A

.. .
A


 .

The iterative direct sum

n−1⊕

i=0

Ai with Ai ∈ Cm×m

generalizesIn⊗A to matricesAi that depend on the iteration
but are all of the same sizem ×m. The stride permutation
matrixLmn

m permutes an input vectorx of lengthmn as

in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

If x is viewed as ann×m matrix, stored in row-major order,
thenLmn

m performs a transposition of this matrix.

Actual DFT algorithms are obtained by applying the FFT
(1) recursively to the subproblemsDFTm andDFTn until
the base caseDFT2 is reached. For instance one can factor
8 → 2×4 → 2× (2×2) using two recursive applications of

SPL construct code

y = (AnBn)x t[0:1:n-1] = B(x[0:1:n-1]);

y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗An)x for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] =

A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x for (i=0;i<m;i++)

y[i:n:i+m-1] =

A(x[i:n:i+m-1]);

y =
(⊕m−1

i=0 Ai
n

)
x

for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] =

A(i, x[i*n:1:i*n+n-1]);

y = Dm,nx
for (i=0;i<m*n;i++)

y[i] = Dmn[i]*x[i];

y = Lmn
m x

for (i=0;i<m;i++)

for (j=0;j<n;j++)

y[i+m*j]=x[n*i+j];

Table 1: Translating SPL constructs to code.x denotes the
input andy the output vector. The subscript ofA and B
specifies the size of the (square) matrix. We use Matlab-like
notation:x[b:s:e] denotes the subvector ofx starting at
b, ending ate and extracted at strides .

(1). The complete FFT algorithm for this factorization can
then be written as the followingformula:

DFT8 = (DFT2⊗I4)D8,4

(
I2 ⊗ (DFT2⊗I2)

D4,2(I2 ⊗DFT2)L4
2

)
L8

2. (2)

Programs implementingy = Ax for some recursive for-
mulasA are shown in Table 1. By applying these trans-
lation rules recursively to subexpressions ofA one can
translate complicated formula expressions like (2) into pro-
grams [Xiong et al. 2001]. This is the basic idea in Spiral
(explained below); the formula language is called SPL (sig-
nal processing language).

Observe in Table 1 that the multiplication of a vector by a
tensor product containing identity matrices can be computed
using loops. The working set for each of them iterations of
y = (Im⊗An)x is a contiguous block of sizen and the base
address is increased byn between iterations. In contrast, the
working sets of sizem of then iterations ofy = (Am⊗In)x
are interleaved, leading to striden within one iteration and
a unit stride base update across iterations. The iterations in
both loops have no loop carried dependencies and thus can
easily be parallelized on shared memory machines.

The SPL framework can be used to express a large class of
linear transforms and its algorithms [Püschel et al. 2005] in-
cluding multi-dimensional transforms, which are just tensor
products of their one-dimensional counterparts.



Shared memory FFT algorithms. Early work by [Johnson
et al. 1990] shows how to design parallel DFT algorithms for
various architecture constraints using the Kronecker product
formalism and is a major influence on our work. [Van Loan
1992] gives a good overview of sequential and parallel DFT
algorithms. The major problem with using the standard
Cooley-Tukey FFT algorithm (1) on shared memory ma-
chines is its memory access pattern: Large strides, and con-
secutive loop iterations touch the same cache lines, which
leads to false sharing.

The governing idea of many parallel algorithms [Norton and
Silberger 1987; Schwarztrauber 1987; Bailey 1990] is to re-
order the data in explicit steps to remove false sharing intro-
duced by strided memory access. For example, the six-step
algorithm,

DFTmn → Lmn
m (In ⊗DFTm)Lmn

n

Dm,n(Im ⊗DFTn)Lmn
m (3)

has embarrassingly parallel computation stages of the form
Ir⊗DFTs. The three stride permutations in (3) are executed
separately as explicit matrix transpositions, i.e., data per-
mutations. These transpositions are further optimized, e.g.,
through blocking [Al Na’mneh et al. 2005a], and partially
folded into the adjacent computation stages [Takahashi 2002;
Takahashi et al. 2003]. A different optimization approach re-
duces communication by increasing the computation by us-
ing O(n2) algorithms instead of fastO(n log n) algorithms
to remove dependencies on small subproblems [Al Na’mneh
et al. 2005b].

FFTW 3.1 [Frigo and Johnson 2005] offers a state-of-the-
art multithreading DFT implementation, supporting many
multithreaded programming interfaces across many operat-
ing systems. It parallelizes one- and multidimensional DFTs
by allowing its search mechanism to parallelize many differ-
ent loops that occur inside the algorithms. It uses advanced
loop optimization to avoid cache problems (tiling and loop
exchange) and it supports thread pooling to minimize the
startup cost of parallel computation. (Thread pooling is ex-
perimental and turned off by default.) However, the infras-
tructure required for portability across machines and support
for all problem sizes incurs considerable overhead. Because
of this overhead, the authors of FFTW maintain that it may
make sense to use multiple threads within FFTW only for
problem sizes beyond several thousand data points.

2.3 Spiral

Spiral [P̈uschel et al. 2005] is an automatic program genera-
tion and optimization system for linear digital signal process-
ing (DSP) transforms. Spiral’s internal structure is shown in
Figure 1. The user formally specifies a DSP transform to be
implemented as input to Spiral, e.g.,DFT210 . Spiral’s out-
put is a C program that computes the specified transform and
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Figure 1: SPIRAL’s architecture.

that is optimized to the platform Spiral is installed on. We
briefly describe the generation process next.

Algorithm level. In the formula generationSpiral applies
rules such as (1) to the given transform to generate one of
many possible formulas, such as (2), represented in SPL.
In the formula optimizationstage Spiral optimizes the struc-
ture of the generated formula using a high-level approach
to loop merging and index simplification [Franchetti et al.
2005]. It merges loops originating from tensor products with
loops originating from permutations and diagonal matrices,
reducing (1) to a sequence of two loops. Both formula gen-
eration and optimization are implemented through rewriting
systems [Dershowitz and Plaisted 2001].

On platforms with vector instructions, Spiral takes the vec-
tor length into account for formula generation and optimiza-
tion. The resulting formulas have a structure that maps
directly into efficient vector code [Franchetti and Püschel
2002; Franchetti and P̈uschel 2003; Franchetti et al. 2006].
In this paper, we extend this approach to produce efficient
formulas, and thus code, for shared memory platforms with
focus on SMPs and multicore systems.

Implementation level. In the implementationstage, Spiral
uses an extended version of Table 1 to translate the preop-
timized formula into C code. For vector code and parallel
code (this paper), the C programs include constructs like vec-
tor intrinsic functions or OpenMP parallel loops. In thecode
optimizationstage, the obtained code is further optimized us-
ing standard compiler techniques including strength reduc-
tion and constant folding [Xiong et al. 2001; Franchetti et al.
2005].

Evaluation level. The final program is compiled using a
standard C compiler in thecompilationstage and the actual
runtime is measured in theperformance evaluationstage.



Search/learning. Besides the deterministic optimizations
performed on the formula and the C code, Spiral opti-
mizes for the target platform (in particular its memory
hierarchy) through heuristic search in the formula space,
such as dynamic programming or an evolutionary algo-
rithm [Singer and Veloso 2001]. This search is controlled by
thesearch/learningblock based on the runtime of the previ-
ously generated implementations.

3 Parallel FFTs Through Formula
Rewriting

Our goal is to extend Spiral (Section 2.3) to generate efficient
transform code, in particular DFT code, for shared mem-
ory platforms including multicore systems. The approach
is similar to the approach we took to generate vector code
[Franchetti and P̈uschel 2002; Franchetti et al. 2006]. It is
based on the observation that the formulas produced by Spi-
ral have a direct interpretation in terms of parallel code. For
example, the tensor products in (1) are essentially loops with
fully independent iterations (no loop-carried dependencies)
and known memory access patterns. Permutations express
readdressing that Spiral will fuse into an adjacent computa-
tion loop in the formula optimization stage [Franchetti et al.
2005].

The basic idea is now to automatically rewrite a generated
formula within Spiral to obtain a structure suitable for map-
ping into efficient multi-threaded code. This is possible,
since a formula fully determines the memory access of the
final program as functions of the loop variables. Therefore,
using rewriting, we can statically schedule the loop iterations
acrossp processors to ensure load balancing and minimize
false sharing. For general programs, proving the indepen-
dence of loop iterations and determining such a schedule is
a hard problem that requires expensive analysis [Banerjee
et al. 1993]. However, formula constructs like stride permu-
tations and tensor products express very specific and regu-
lar memory access patterns and dependencies. Thus, as we
show, we can find such a desired schedule very efficiently us-
ing the formula rewriting framework. Furthermore, we can
prove that the solutions obtained this way do not incur false
sharing.

We first explain this extension of the rewriting system in Spi-
ral. Then we show the application to the DFT, effectively de-
riving a novel variant of the Cooley-Tukey FFT (1) different
from (3) and suited for multicore systems.

3.1 Extending Spiral for Shared Memory

The extension of Spiral to support shared memory paral-
lelism requires four steps:

• We identify relevant hardware parameters and include
them asshared memory tagsinto the rewriting system.

• We identifyparallel formula constructs, i.e., those sub-
formulas that can be perfectly mapped to shared mem-
ory platforms.

• We identify and includerewriting rulesinto the rewrit-
ing system that transform general formulas into parallel
formulas, i.e., formulas suitable for mapping to multi-
threaded code.

• We extend the implementation level of Spiral to map
parallel formulas into C code including the C exten-
sions required for multithreading to actuallygenerate
multithreaded code.

Shared memory tags.The two most important parameters
of modern shared memory machines (SMPs and CMPs) with
memory hierarchies are the number of processorsp, and the
cache line lengthµ of the most important cache level. In this
paper,µ is measured in complex numbers. For instance, for
a cache line length of 64 bytes and data type double (64 bit),
µ=4.

We denote a formula constructA that should be rewritten
into parallel formula constructs for ap-way shared memory
machine with cache parameterµ by

A︸︷︷︸
smp(p,µ)

and introducesmp(p, µ) as tag to Spiral’s rewriting system.
We also assume that all shared data vectors are aligned at
cache line boundaries in the final program.

Parallel formula constructs. For arbitrary matricesA and
Ai the expressions

y =
(
Ip ⊗A

)
x with A ∈ Cmµ×mµ

and

y =

(
p−1⊕

i=0

Ai

)
x with Ai ∈ Cmµ×mµ

express embarrassingly parallel computation onp processors
as they express block diagonal matrices withp blocks [John-
son et al. 1990]. We assume the matrix dimensions to be
multiples of µ; this ensures that during computation each
cacheline is owned by exactly one processor. Under the
assumption that allAi have the same computational cost,
programs implementing these constructs become embarrass-
ingly parallel, load balanced, and free of false sharing.

Data shuffling of the form

y =
(
P ⊗ Iµ

)
x, with P a permutation matrix,

reorders blocks ofµ consecutive elements and thus whole
cache lines are reordered. On shared memory machines



this means that if in a computation stage each processor
has the unique ownership of a cache line, then a subse-
quent data access as determined byP ⊗ Iµ preserves this
property, i.e., only the ownership of entire cachelines is ex-
changed (if at all). Thus, false sharing is avoided. Note, that
in Spiral-generated programs permutations are usually not
performed explicitly, but folded with adjacent computation
blocks [Franchetti et al. 2005].

We introduce tagged versions of the tensor product and direct
sum operators in Spiral:

Ip ⊗‖ A,

p−1⊕

i=0

‖Ai, P ⊗̄Iµ, with A, Ai ∈ Cmµ×mµ.

(4)
These are the same matrix operators as their untagged coun-
terparts, but declare that a construct is fully optimized for
shared memory machines and does not require further rewrit-
ing. By fully optimized we mean that the formula is load-
balanced forp processors (provided theAi have equal com-
putational cost) and avoids false sharing. This property is
preserved for products of these constructs.

Definition 1 We say that a formula isload-balanced(avoids
false sharing) if it is of the form (4) or of the form

Im ⊗A or AB, (5)

whereA andB are load-balanced formulas (formulas that
avoid false sharing). A formula is fully optimized (for shared
memory) if it is load-balanced and avoids false sharing.

The goal of the rewriting system (explained next) is to trans-
form formulas into fully optimized formulas.

Rewriting rules. Table 2 summarizes the rewriting rules suf-
ficient for parallelizing the FFT (1). Identifying these rules is
a major contribution of the paper. Spiral’s rewriting system
matches the left side of a rule against a given formula and re-
places the matched expression by the right-hand side of the
rule. All matrix parameters in the rules are integers; thus, an
expressionn/p on the right-hand side of a rule implies that
the preconditionp|n must hold for the rule to be applicable.

As an example, consider rule (7) that encodes a form of loop
tiling and scheduling. Namely, according to Table 1, the con-
struct

Am ⊗ In (12)

encodes a loop with unit stride between two iterations. Ap-
plication of (7) leads to

(
Lmp

m ⊗ In/p

)(
Ip ⊗ (Am ⊗ In/p)

)(
Lmp

p ⊗ In/p

)
. (13)

The constructIp ⊗ (Am ⊗ In/p) in (13) encodes a double
loop: the outer loop running from0 to p − 1 and the in-
ner loop running from0 to n/p − 1. Spiral’s loop merging
stage [Franchetti et al. 2005] regards this tensor product as

AB︸︷︷︸
smp(p,µ)

→ A︸︷︷︸
smp(p,µ)

B︸︷︷︸
smp(p,µ)

(6)

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→ (
Lmp

m ⊗ In/p

)(
Ip ⊗ (Am ⊗ In/p)

)(
Lmp

p ⊗ In/p

)
︸ ︷︷ ︸

smp(p,µ)

(7)

Lmn
m︸ ︷︷ ︸

smp(p,µ)

→





(
Ip ⊗ L

mn/p
m/p

)
︸ ︷︷ ︸

smp(p,µ)

(
Lpn

p ⊗ Im/p

)
︸ ︷︷ ︸

smp(p,µ)(
Lpm

m ⊗ In/p

)
︸ ︷︷ ︸

smp(p,µ)

(
Ip ⊗ L

mn/p
m

)
︸ ︷︷ ︸

smp(p,µ)

(8)

Im ⊗An︸ ︷︷ ︸
smp(p,µ)

→ Ip ⊗‖
(
Im/p ⊗An

)
(9)

(P ⊗ In)︸ ︷︷ ︸
smp(p,µ)

→ (
P ⊗ In/µ)⊗̄Iµ, (10)

D︸︷︷︸
smp(p,µ)

→
p−1⊕

i=0

‖Di, (11)

Table 2: Shared memory parallelization rules.P is any per-
mutation,D,Di are diagonal matrices.

theskeletonwhich fixes the loop order and loop bounds. The
decorationsLmp

m ⊗ In/p andLmp
p ⊗ In/p are not performed

explicitly, but merged with the skeleton loops. To produce
the final code, Spiral further applies rules (6) and (8)–(10)
and performs loop merging. The resulting code for (13) is
shown below.

parallel for (i=0; i<p; i++)
for (j=0; j<n/p; j++)

y[i*n/p+j:n:i*n/p+j+m-1] =
A(x[i*n/p+j:n:i*n/p+j+m-1]);

Inspection shows thatn/p consecutive iterations of the orig-
inal loop given by (12) are executed on the same processor
and touchm contiguous memory areas ofn/p complex num-
bers. Ifµ|m andp|n, each processor “owns”mn/pµ cache
lines.

Similarly, the other rules in Table 2 encode variants of loop
tiling, loop interchange, parallelization, or propagate the tags
smp(p, µ). Rule (6) expresses that in products of matrices
each factor will be rewritten separately. (7) and (9) handle
tensor products with identity matrices. Both rules distribute
the computational load evenly among thep processors and
execute as many consecutive iterations as possible on the
same processor (as shown above). Rule (8) breaks stride per-
mutations into two stages: one performs stride permutations
locally for each processor, the other permutes consecutive
chunks of data. (7) and (8) require the subsequent applica-
tion of (6), (9), and (10) to fully break down to parallel for-
mula constructs (4). Tensor products of a permutation and a
sufficiently large identity matrix are broken into cache line
resolution by (10). Rule (11) handles the twiddle factors by
breaking a diagonal matrix into a direct sum of diagonal ma-
trices.



implementation program fory = (Ip ⊗‖ An)x

pthreads // parallel on p threads

i = get_thread_id();

y[i*n:1:i*n+n-1] =

A(x[i*n:1:i*n+n-1]);

barrier();

OpenMP // one iteration per thread

#pragma omp parallel for \

schedule(static) shared(x, y)

for (i=0; i<p; i++)

y[i*n:1:i*n+n-1] =

A(x[i*n:1:i*n+n-1]);

Table 3: Implementation ofy = (Ip⊗‖An)x using pthreads
(SPMD) and OpenMP (loop parallelization). The parallel
iterative direct sum in (4) is handled analogously.

The rules in Table 2 are based on known formula identities
summarized in [Johnson et al. 1990; Franchetti and Püschel
2003; Franchetti et al. 2006]. They replace the usually ex-
pensive analysis required for the associated loop transforma-
tions by cheap pattern matching and also encode the actual
transformation.

Generating multithreaded code.Extending Spiral’s imple-
mentation level to support shared memory parallel code is
straightforward. The only thing we have to add is the trans-
lation of the constructs

Ip ⊗‖ A and
p−1⊕

i=0

‖Ai

into parallel code forp threads. We do not need to add sup-
port for P ⊗̄Iµ as these permutations encode memory ac-
cess with special indexing properties and are already han-
dled within the formula optimization level. Namely, they are
merged with the adjacent loops implementing tensor prod-
ucts [Franchetti et al. 2005].

All temporary variables used outside of these parallel con-
structs must be shared between the threads while all tem-
porary variables solely used inside the parallel constructs
must be thread local. We alternatively use two approaches:
1) the single program multiple data (SPMD) paradigm us-
ing pthreads (and a very fast barrier implemented using
busy waiting that requires about 15 x86 assembly instruc-
tions); and 2) the loop level parallelization paradigm using
OpenMP. Table 3 shows the actual parallel code.

3.2 Multicore Cooley-Tukey FFT

We apply the rewriting framework to derive a parallel ver-
sion of the Cooley-Tukey FFT (1) using the rules (6)–(11).
In Spiral these steps are performed automatically through

rewriting. The result is a version of the Cooley-Tukey FFT
that is fully optimized for shared memory in the sense of
Definition 1.

Derivation. We start by specifying that we want to compute
y = DFTN x onp processors with cache line sizeµ,

DFTN︸ ︷︷ ︸
smp(p,µ)

.

In the first step rule (1) chooses a factorization ofN = mn
and breaksDFTN into DFTm andDFTn. Next, rule (6)
propagates the parallelization tag to all factors:

DFTmn︸ ︷︷ ︸
smp(p,µ)

→ (
DFTm⊗In

)
Dm,n

(
Im ⊗DFTn

)
Lnm

m︸ ︷︷ ︸
smp(p,µ)

→ (
DFTm⊗In

)
︸ ︷︷ ︸

smp(p,µ)

Dm,n︸ ︷︷ ︸
smp(p,µ)

(
Im ⊗DFTn

)
︸ ︷︷ ︸

smp(p,µ)

Lnm
m︸︷︷︸

smp(p,µ)

. (14)

We now consider each of the four factors on the right-hand
side of (14) separately. The first factor is rewritten by apply-
ing (7) (requiringp|n),

DFTm⊗In︸ ︷︷ ︸
smp(p,µ)

→ (
Lmp

m ⊗ In/p

)
︸ ︷︷ ︸

smp(p,µ)(
Ip ⊗ (DFTm⊗In/p)

)
︸ ︷︷ ︸

smp(p,µ)

(
Lmp

p ⊗ In/p

)
︸ ︷︷ ︸

smp(p,µ)

,

followed by (6), (9), and (10) (requiringµ|n/p),

DFTm⊗In︸ ︷︷ ︸
smp(p,µ)

→ (
(Lmp

m ⊗ In/pµ)⊗̄Iµ

)

(
Ip ⊗‖ (DFTm⊗In/p)

)(
(Lmp

p ⊗ In/pµ)⊗̄Iµ

)
. (15)

The second factor in (14) is parallelized using (11) (requiring
p|mn) and the third factor using (9) (requiringp|m),

Dm,n︸ ︷︷ ︸
smp(p,µ)

→
p−1⊕

i=0

‖Di
m,n (16)

and
Im ⊗DFTn︸ ︷︷ ︸

smp(p,µ)

→ Ip ⊗‖
(
Im/p ⊗DFTn

)
. (17)

The remaining fourth factor in(14) is parallelized by the first
choice of rule (8) (requiringp|m) followed by (6), (9), and
(10) (requiringµ|m/p),

Lmn
m︸︷︷︸

smp(p,µ)

→ (
Ip ⊗ L

mn/p
m/p

)
︸ ︷︷ ︸

smp(p,µ)

(
Lpn

p ⊗ Im/p

)
︸ ︷︷ ︸

smp(p,µ)

→ (
Ip ⊗‖ L

mn/p
m/p

)(
(Lpn

p ⊗ Im/pµ)⊗̄Iµ

)
. (18)

Collecting (15)–(18) and the constraints required for apply-
ing the rules leads to the final expression output by our



DFTmn︸ ︷︷ ︸
smp(p,µ)

→ (
(Lmp

m ⊗ In/pµ)⊗̄Iµ

)(
Ip ⊗‖ (DFTm⊗In/p)

)(
(Lmp

p ⊗ In/pµ)⊗̄Iµ

)

(
p−1⊕

i=0

‖Di
m,n

) (
Ip ⊗‖ (Im/p ⊗DFTn)

)(
Ip ⊗‖ L

mn/p
m/p

)(
(Lpn

p ⊗ Im/pµ)⊗̄Iµ

)
(19)

Figure 2: Multicore Cooley-Tukey FFT forp processors and cache line lengthµ.

rewriting system, (19) displayed in Figure 2, with the re-
quirementpµ|m and pµ|n. Inspection shows that (19) is
fully optimized for shared memory in the sense of Defini-
tion 1. We call (19) themulticore Cooley-Tukey FFT.

// C99 OpenMP DFT_8
// call by a sequential function

#include <omp.h>

static _Complex double D[8] = {
1, 1, 1,
0.70710678118654+__I__*0.70710678118654,
1, 1, 1,
-0.70710678118654+__I__*0.70710678118654

};

void DFT_8(_Complex double *Y,
_Complex double *X) {

int i1, i3;
static _Complex double T[8];
#pragma omp parallel for \

schedule(static) shared(T, X, Y)
for(i1 = 0; i1 <= 1; i1++) {

_Complex double s1, s2;
int i2;
for(i2 = 0; i2 <= 1; i2++) {

s1 = X[2*i1 + i2];
s2 = X[4 + 2*i1 + i2];
T[4*i1 + 2*i2] = s1 + s2;
T[4*i1 + 2*i2 + 1] = s1 - s2;

}
}
#pragma omp parallel for \

schedule(static) shared(T, X, Y)
for(i3 = 0; i3 <= 1; i3++) {

_Complex double s3, s4, s5, s6,
s7, s8, s9, s10;

s10 = D[i3]*T[i3];
s9 = D[4 + i3]*T[4 + i3];
s8 = s10 + s9;
s4 = D[6 + i3]*T[6 + i3];
s7 = D[2 + i3]*T[2 + i3];
s6 = s7 + s4;
s5 = s10 - s9;
s3 = __I__*(s7 - s4);
Y[i3] = s8 + s6;
Y[4 + i3] = s8 - s6;
Y[2 + i3] = s5 + s3;
Y[6 + i3] = s5 - s3;

}
}

Figure 3: Multithreaded C99 OpenMP function computing
y = DFT8 x using 2 processors, called by a sequential pro-
gram.

As a small example, Figure 3 shows the C99 OpenMP pro-
gram generated by Spiral from (19) withm = 4, n = 2,
p = 2, andµ = 2. Note, that all permutations are fused
into the skeleton loops [Franchetti et al. 2005] and that the
smallerDFT2 andDFT4 are fully unrolled.

Discussion. Traditional shared memory FFT algo-
rithms [Norton and Silberger 1987; Schwarztrauber 1987;
Bailey 1990] optimize for a large number of processors
with the actual number not known in advance. The cost of
memory access is assumed to be small compared to arith-
metic operations. Under this assumptions the six-step algo-
rithm (3) with the stride permutations implemented explicitly
is a good solution, in particular, when assuming NUMA ar-
chitectures. Adapting the explicit stride permutation to mod-
ern memory hierarchies makes blocking the stride permuta-
tion [Al Na’mneh et al. 2005a] and partially folding it into
the computation a good choice [Takahashi 2002].

Studying the source code of FFTW 3.1 [Frigo and John-
son 2005] reveals that it implements a parallel Cooley-Tukey
FFT obtained by parallelizing loops inside the algorithm and
scheduling these loops block-cyclically. It also includes ex-
perimental thread pooling. Their algorithm space overlaps
the space spanned by formula (19), albeitµ and the interplay
of p andµ is not explicitly used. Thus, more possible al-
gorithms are considered, only some of which are suited for
the particular parallel target architecture. Further, FFTW re-
quires a large infrastructure, which makes low-overhead par-
allelization difficult.

In contrast, the multicore Cooley-Tukey FFT (19) exists for
all DFTN with (pµ)2|N , independently of the further de-
composition ofDFTm andDFTn. It spans a set of shared
memory DFT algorithms that are load balanced and free of
false-sharing forp processors and cache line lengthµ. Fur-
ther, by automatically implementing instances of (19) for
fixedN , p, andµ, we can use low-latency minimal overhead
synchronization. In addition, the fact that (19) breaks down
to smaller DFTs with alignment guarantees for their input
and output vectors makes it possible to use (19) in tandem
with the efficient short vector Cooley-Tukey FFT [Franchetti
and P̈uschel 2003; Franchetti et al. 2006] on machines with
SIMD extensions.



CPU cache

processor p-way f [GHz] L1D L2 unified sync. line µ

traditional SMP Xeon MP 4 2.8 8kB / 32kB 512kB / 2MB bus 64B 4

transitional Pentium D 2 3.6 16kB / 32kB 2MB / 4MB bus 64B 4

multicore Opteron Dual-Core 4 (2× 2) 2.2 64kB / 256kB 1MB / 4MB fast 64B 4

Core Duo 2 2.0 32kB / 64kB 2MB / 2MB shared 64B 4

Table 4: SMP test platforms: traditional (1 CPU per chip), and chip multiprocessors (multicore and transitional, 2 CPUs per
chip). Cache sizes are given for 1 CPU / all CPUs.

cache capacity break even or first speed-up

CPU L1 L2 Spiral (1D) FFTW (1D) MKL (2D)

traditional SMP Xeon MP 27 / 29 213 / 215 211 / 117,000 214 / 1,320,000 27 × 27 / 3,110,000

transitional Pentium D 28 / 29 215 / 216 210 / 43,300 213 / 516,000 27 × 27 / 2,640,000

multicore Opteron Dual-Core 210 / 212 214 / 216 28 / 9,200 214 / 1,270,000 –

Core Duo 29 / 210 215 / 215 28 / 9,610 214 / 718,000 26 × 27 / 1,130,000

Table 5: Cache capacity (largest DFT size with memory footprint fitting into the cache level of one / all processors), and
smallest DFT sizes where parallel code is at least as fast as the sequential code / runtime of these DFTs in cycles.

4 Experimental Results

Experimental setup.We evaluated our approach on the fol-
lowing 4 SMP machines shown in Table 4.

• 2.0 GHz IntelCore Duo: dualcore CPU with shared L2
cache, laptop;

• 3.6 GHz IntelPentium D: two CPUs on one chip, syn-
chronization through bus, desktop;

• 2.2 GHz AMDOpteron Dual Core: four CPUs (two per
dualcore chip) with fast on-chip cache synchronization
but no shared cache, workstation; and

• 2.8 GHz IntelXeon MP: four processors communicat-
ing through the bus, rackmount server.

The Core Duo and the Opteron are “real” multicore CPUs
with fast on-chip communication while the Xeon MP is a
traditional SMP with interprocessor communication through
the bus. The Pentium D is a transition between traditional
SMP and multicore CPU (two CPUs on the same chip, but
bus communication). All machines run Linux (SMP kernel
2.6, SMP kernel 2.4 for the Xeon MP). We used the 32-bit
Intel C++ compiler 9.0 with options “-O3 -xWP -tpp7” on
all machines (“-xW” for the Xeon MP).

We compared Spiral-generated code to FFTW 3.1 and the
Intel MKL 8.0.

We built FFTW using the Intel C++ compiler. We used
FFTW’s benchmark utility, called bench, with the options
“-opatient -onthreads=<n>.” As experimental option to be
turned on by hand FFTW supports thread pooling using
semaphores and spin locks. We ran FFTW both with and

without experimental thread-pooling and took the better per-
formance. However, thread pooling only worked for two
threads using semaphores. Spin lock support did not com-
pile and for four threads thread pooling was hanging. We en-
abled FFTW’s SSE2 support for all experiments and used a
similar vectorization method within Spiral to produce SSE2
code. The performance comparison between FFTW and Spi-
ral is summarized in Figure 4. We measure performance in
pseudo Mflop/s, which is proportional to inverse runtime and
defined as5N log2 N/t, wheret is the runtime inµs.

The Intel MKL is parallelized using OpenMP. It does not
support one-dimensional parallel FFTs, so we compare to
two-dimensional FFTs (only in Table 5) of the same data
size (e.g.,DFT1024 vs. DFT32×32). This gives the MKL a
slight advantage (better structure and less arithmetic).

General behavior. In Figure 4 we see the same general be-
havior across all machines.

Spiral-generated sequential code is within 10% of FFTW’s
performance.

FFTW’s benchmark utility cannot be forced to run with a
certain number of threads. One can only specify a maxi-
mum number of threads to be used and FFTW will pick the
number of threads that yield the highest performance. So for
parallel performance we always display the maximum per-
formance of 1, 2, and 4 threads (we run 4 threads only on
the 4-processor machines). This results in a branching of the
sequential and parallel line at the first problem size where
parallelization improves performance.

Spiral pthreads code consistently gets a parallelization
speed-up earlier than FFTW and gets higher top perfor-
mance for in-cache problem sizes. On the two-processor



machines (Core Duo and Pentium D) and for out-of-cache
sizes, Spiral-generated parallel code is running within 75%
of FFTW’s performance. The relative gain of FFTW is due
to extensive optimizations that specifically target large prob-
lem sizes [Frigo and Johnson 2005]. Spiral currently does
not support all of these optimizations. On the four-processor
machines and for out-of-cache sizes, Spiral-generated par-
allel code is equally fast (Xeon MP) and up to 25% faster
(Opteron) than FFTW. The breakdown of FFTW’s experi-
mental thread pooling on the four-processor machines may
contribute to Spiral’s higher relative performance for large
sizes on four processors as compared to two processors.
FFTW starts using all 4 processors atN = 220 compared
to N = 29 for Spiral.

Traditional SMP vs. multicore. Table 5 shows that mul-
ticore processors make it possible to gain performance by
parallelization for much smaller problem sizes than on tra-
ditional SMPs. In our experiments only Spiral generated
code could take advantage from the multicore processors’
faster communication, while FFTW’s and Intel MKL’s per-
formance characteristics was the same on both traditional
SMPs and multicore processors.

To see the difference between traditional SMPs and multi-
core CPUs, we need to analyze Table 5 carefully. We es-
timate the memory footprint of a double precision complex
out-of-placeDFTN as being between 32N and 64N bytes.
Now we compute the largest DFTs for which the working set
fits completely into the L1 cache of one processor and the
combined L1 cache of all processors. We do the same for
the L2 cache. The result is displayed in the columns “cache
capacity: L1, L2” of Table 5. Columns “break even or first
speed-up” of Table 5 shows the smallest problem size for
which parallel computation is at least as fast as sequential
computation. It also shows the runtime of these DFTs in cy-
cles.

The difference between SMP and multicore becomes clear
as we relate these break even points to the L1 cache size of
our target machines. It turns out that on multicore CPUs
Spiral code breaks even forN = 28, which runs in less than
10,000 cycles. Surprisingly, we see speed-up even though
the working set fits into the L1 cache ofone CPU, which
is due to the fast on-chip communication. In contrast, on
the Pentium D and the traditional SMP Xeon MP the break
point occurs atN = 210 and N = 211, respectively. It
requires 5 to 10 times longer running programs to account
for the higher overhead. The break even point occurs for the
smallest problem sizes where the working set does not fit into
the combined L1 cache of all CPUs any more. This shows
the much higher communication cost on traditional SMPs.

In contrast, FFTW and MKL break even on all machines
at aroundN = 213 or N = 214, running in the range
of 500,000 to 2,500,000 cycles. On multicore processors
FFTW and MKL have to run programs with more than 100

times longer runtime before parallelization pays off com-
pared to Spiral. On the traditional SMP this ratio is around
10 times. For all machines, the working set forN = 213

does not fit into the combined L1 cache of all processors but
fits into the L2 cache.

OpenMP vs. pthreads. Using Intel’s newest OpenMP li-
brary one can achieve good parallel performance on both
traditional SMPs and multicore CPUs. The Spiral OpenMP
performance is within 15% of our low-latency pthreads im-
plementation. The OpenMP overhead is low enough to
use it even for small problem sizes. However, to achieve
highest performance we need to resort to pthreads and our
custom low-latency synchronization. Our experiments also
show that it is absolute essential to use the newest available
OpenMP version. Older versions may not recognize the tar-
get processor correctly and can quickly deteriorate perfor-
mance.

Compiler parallelization. We experimented extensively
with the Intel C++ compiler’s automatic parallelization ca-
pabilities. However, the compiler failed to produce any
speed-up even though it sometimes did parallelize. This
behavior for DFT code is similar as for SIMD vectoriza-
tion [Franchetti and P̈uschel 2003] and compiler vectoriza-
tion and shows the importance of writing or generating ex-
plicit parallel and vector code.

5 Conclusion

As multicore CPUs become mainstream, programming for
performance may finally be pushed over the edge from gen-
eral computer science knowledge to specialized expert skill.
To facilitate code development and optimization, at least for
well understood library functionality, a new breed of tools is
necessary in the form of formal frameworks, program gen-
erators, or adaptive libraries. A few of these exist but more
work is needed. This paper aims to be a contribution in this
direction. The generation of fast FFTs for SMPs and multi-
core systems is useful, but we believe the ideas and concepts
presented (and underlying Spiral in general) are of equal
value: a high-level domain-specific framework that enables
us to reason about algorithms before they are implemented,
that enables optimizations unpractical at the program level,
and that completely automates the implementation task.
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(b) 2.2 GHz Opteron Dual-core (4 processors)
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(c) 3.6 GHz Pentium D (2 processors)
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Figure 4: Results forDFTN on four symmetric multiprocessing machines. The performance is given inpseudo Mflop/sdefined
as5N log N/runtime. Higher is better. Note that the scales in the plots differ.
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