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Abstract—This paper presents an information-theoretic ap-
proach to address the phasor measurement unit (PMU) placement
problem in electric power systems. Different from the conventional
‘topological observability’ based approaches, this paper advocates
a much more refined, information-theoretic criterion, namely the
mutual information (MI) between PMU measurements and power
system states. The proposedMI criterion not only includes observ-
ability as a special case, but also rigorously models the uncertainty
reduction on power system states from PMUmeasurements. Thus,
it can generate highly informative PMU configurations. The MI
criterion can also facilitate robust PMU placement by explicitly
modeling probabilistic PMU outages. We propose a greedy PMU
placement algorithm, and show that it achieves an approximation
ratio of for any PMU placement budget. We further
show that the performance is the best that one can achieve, in
the sense that it is NP-hard to achieve any approximation ratio
beyond . Such performance guarantee makes the greedy
algorithm very attractive in the practical scenario of multi-stage
installations for utilities with limited budgets. Finally, simulation
results demonstrate near-optimal performance of the proposed
PMU placement algorithm.

Index Terms—Electric power systems, greedy algorithm, mutual
information, phasor measurement unit, submodular functions.

I. INTRODUCTION

S YNCHRONIZED MEASUREMENT TECHNOLOGY
(SMT) has been widely recognized as an enabler of the

emerging real-time wide area monitoring, protection and con-
trol (WAMPAC) systems [1], [2]. Phasor measurement unit
(PMU), being the most advanced and accurate instrument of
SMT, plays a critical role in achieving key WAMPAC function-
alities [3]. With better than one microsecond global positioning
system (GPS) synchronization accuracy, the PMUs can provide
highly synchronized, real-time, and direct measurements of
voltage phasors at the installed buses, as well as current phasors
of adjacent power branches. Such measurements are vital for
the efficient and reliable operations of the power systems by
improving the Situational Awareness (SA) of the grid operators,
and facilitating synchronized and just-in-time (JIT) automated
control actions [4], [5].
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Given the critical role of PMUs for the power system, it is im-
portant that these instruments are installed at carefully chosen
buses, so as to maximize the ‘information gain’ on the system
states. Currently, there is a significant performance gap between
the existing research and the desired ‘informative’ PMU con-
figuration [6], [7]. One particular reason is that most researches
center around the topological observability criterion, which es-
sentially specifies that power system states should be uniquely
estimated using minimum number of PMU measurements [8].
Based on such criterion, many solutions were proposed, such
as the ones based on mixed integer programming [9], [10], bi-
nary search [11], and metaheuristics [12], [13]. While it is true
that all PMU configurations canmonitor the power system states
with similar accuracy once the system becomes fully observ-
able, these PMU placement approaches can yield quite sub-
optimal results for the important and current situation, where
the number of installed PMUs is far from sufficient to achieve
full system observability. The reason is as follows. Firstly, the
‘observability’ criterion is very coarse, which specifies the in-
formation gain on system states as binary, i.e., either observ-
able or non-observable. Such crude approximation essentially
assumes that the states at different buses are completely inde-
pendent (with exceptions for buses with zero injection), in that
the knowledge of the state of a bus has zero information gain on
the state of any other bus, as long as that bus is not ‘observable’.
This is clearly not the case for power systems, where the system
states exhibit high correlations, due to the fundamental phys-
ical laws, such as KVL and KCL. Secondly, the observability
approaches neglect important parameters of the power system,
such as transmission line impedances, by focusing only on the
binary connectivity graph. In this sense, if zero injection are
not considered, the current researches is essentially the classic
‘dominating set’ problem [14], where a subset of buses in the
system are selected, so that every bus is either in the subset, or
a neighbor of the subset. Such over-simplification of the power
system is very likely to result in suboptimal design and signif-
icant performance loss. For example, it has been shown in [6],
[7] that PMU configurations can have large influence on the ac-
curacy of state estimation, even though the observability result
stays the same.
To overcome the performance limitation of current ap-

proaches, we advocate a much more refined, information-the-
oretic criterion to generate highly informative PMU placement
configurations. Specifically, we rigorously model the ‘informa-
tion gain’ achieved by the PMUs states as the Shannon mutual
information (MI) [15] between the PMU measurements and
the power system states. The MI criterion is very popular in
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statistics and machine learning literature [16], [17], which has
been widely used in sensor placement problems. For power
systems, we will show that maximizing the MI is equivalent
to the minimizing the state estimation error covariance matrix,
so that the MI formulation can directly contributes to improve
state estimation results. Further, the MI metric includes the
‘topological observability’ in current research as a special case.
Finally, the MI criterion can also model probabilistic PMU
failures, to facilitate robust PMU placement configurations.
As a second contribution of this paper, we present a greedy

PMU placement algorithm, and show that it can achieve
of the optimal information gain for any PMU budget .

We further prove that the approximation ratio is the best that
one can achieve in practice, by showing that it is NP-hard to
approximate with any factor larger than . Compared
to existing approaches, the greedy algorithm not only achieves
the best performance guarantee, but also can be easily extended
to large-scale power systems. Further, the greedy PMU place-
ment is very attractive in the practical scenario of multi-stage
PMU installation, where utility companies prefer to install the
PMUs over a horizon of multiple periods, due to limited budgets
[18]. In such cases, utilities can simply adopt the greedy place-
ment strategy, as the approximation ratio holds for
any . On the other hand, existing multi-stage methods [18],
[19] may incur significant performance loss if the multi-period
budget changes unexpectedly.
Related work in power systems literature includes the entropy

based approach [20], and the fuzzy clustering based approaches
[21], [22]. In these approaches, the PMU buses were cleverly se-
lected, so that either the ‘information content’ [20] of the contin-
gency PMU response signals is maximized, or certain measure
of ‘dissimilarity’ [21], [22] between PMU bus and non-PMU
bus contingency response signals is minimized. Compared to
these methods, theMI criterion and greedy placement method in
this paper directly address the information-theoretic uncertain-
ties in the power system states using the analytical DC model
of the power system. Finally, the MI formulation and greedy
method proposed in this paper are very general, which can be
extended to many other complex real-world problems, such as
sensor placement and feature selection [23], to generate good
results with low computational complexity. Thus, we believe
the approach proposed in this paper is of general interest to re-
searchers in both power system and computational intelligence
areas.
The remaining of this paper is organized as follows. Section II

describes the power system and measurement models, and
Section III formulates the optimal PMU placement problem.
Section IV proposes the greedy PMU placement algorithm
and analyzes its performance, and Section V demonstrates the
numerical results. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we formulate a GaussianMarkov random field
(GMRF) model [24] for the system states, and describe the mea-
surement models.

Fig. 1. The one line diagram of a power system with 5 buses. The square node
represents the measurement of active power flow from bus 1 to 2. Two PMUs
are installed at bus 1 and 4.

Fig. 2. The probabilistic graphical model for the non-reference bus angles in
the power system in Fig. 1. The shaded region illustrates the GMRF for system
states. The power injections are assumed to be independent.

A. GMRF Model for Phasor Angles

A DC power flow model [25] is assumed in this paper, where
the power injection at bus can be expressed as follows:

(1)

In above, is the set of neighboring buses of is imagi-
nary part of the nodal admittance matrix , and is the voltage
phasor angle at bus . The uncertainties in the power injection
vector can often be approximated as Gaussian by existing
stochastic power flow methods [26]. In this paper, we assume
that is distributed as . Denote bus 0 as the
slack bus. We are only interested in the states at non-reference
buses, as the angle of the slack bus can be uniquely specified
by the non-reference bus angles, due to the law of power con-
servation. Write the non-reference bus angles in vector form as

. Note that the system states are highly
correlated statistically, due to the DCmodel in (1). Formally, the
dependency of these variables are described by the following
theorem:
Theorem 1: Assume the power system is fully connected.

Under the DC model, forms a GMRF with mean and
covariance matrix .

Proof: Since the power system is fully connected, the ma-
trix is invertible [27]. Thus, the states can be calculated as

, from which the theorem follows.
Fig. 1 illustrates a 5-bus power system, with its GRMFmodel

shown as the shaded region in Fig. 2. In this case, the GRMF
is formed by connecting two-hop neighbors of the buses in the
original power system, as the power injections are assumed to be
independent. We next describe the PMU measurement model.

B. Measurement Model

1) Conventional Measurements: As the DC model is as-
sumed in this paper, the conventional measurements only
include the real power injection and real power flow
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. Under the DC model, these measurements can be
described as follows:

(2)

(3)

where and are measurement noises, which are dis-
tributed as and , respectively.
2) PMUMeasurements: A PMU placed at bus can measure

both the voltage at bus and the currents of selected incident
branches. This implies that the phasor angles of corresponding
adjacent buses can also be directly calculated. Thus, we assume
the following equivalent PMU measurement model. We asso-
ciate a PMU placed at bus with a vector , such that

(4)

(5)

where and are measurement noises with distribu-
tion and , respectively. is a
subset of neighbors of bus . This is because of the PMU channel
limits, which imply that only a subset of adjacent branches can
be monitored. The variances and depend on var-
ious sources of uncertainties, such as the GPS synchronization,
instrument transformers, A/D converters and cable parameters,
which can be estimated appropriately [28]. Further, PMU fail-
ures can be modeled by assuming that each current measure-
ment outputs a failure message with probability

, and similarly, each voltage measurement fails with prob-
ability , where and are the availability
of the current and voltage measurements, respectively.
As an illustration, Fig. 2 represents the probabilistic graph

model for the measurement configuration in Fig. 1, where the
gray nodes represents the measurement variables. From the
figure, it is clear that the information gain of PMU measure-
ments depends heavily on the placement buses. This will be
formalized in the next section by the optimal PMU placement
problem.

III. OPTIMAL PMU PLACEMENT: THEORETICAL FORMULATION

The placement configuration of PMUs should be highly
‘informative’ to effectively monitor power system states. In
this paper, we advocate an information-theoretic criterion to
assess the ‘information gain’ that can be obtained from the
PMU measurements. Specifically, we model the uncertainties
in the system states as the Shannon entropy [15]:

(6)

where is the probability mass function (pmf) of . In this
paper, we assume that the entropies of all variables are calcu-
lated after quantization with a sufficiently small step size .
This is motivated by finite accuracy of the meters in power sys-
tems. Notice that even though the is defined from discrete

distribution, it can be efficiently assessed numerically using the
following well-known approximation:

(7)

(8)

where is the standard Shannon differential entropy [15] for
the continuous version of random variable . is because of
the approximation in [15], pp. 247–248, Theorem 8.3.1, and
is because of the GMRF model in Theorem 1 and the standard
result of differential entropy for Gaussian variables in [15], pp.
249–150, Theorem 8.4.1. Denote as the set of PMU config-
urations, where each element in corresponds to
a candidate PMU configuration in (4) and (5). We remind the
reader that is the set of neighboring buses of bus , such that

implies that measurement (5) is taken for the branch
. Note that our model is very general, which can be used to

model PMU channel limits. The information gain of the PMU
configuration can be assessed by the entropy reduction due to
PMU measurements :

(9)

where is the Shannon mutual information (MI)
between PMU measurements and power system states, and

is the conditional entropy. Finally, when
conventional measurements are considered, the uncertainty
reduction corresponds to the conditional MI:

(10)

A numerical example on the evaluation of the MI function
is included later in Section V.B. Notice that the MI criterion is
widely adopted in the machine learning literature to generate
highly informative sensor placement configurations [16]. For
the PMU placement problem in power systems research, the MI
criterion is intimately related to the power system observability
and state estimation accuracy, which we elaborate as follows:
1) Observability: The MI criterion can include the popular

observability criterion as a special case. To see this, assume
there is no PMU failure and zero PMU measurement noise. We
claim that themaximum information gain is achieved if and only
if the power system is completely observable from PMU mea-
surements. This can be clearly observed from (9), where the MI
function is maximized if and only if , in
which case the system states are deterministic given the PMU
measurements .
2) State Estimation: The MI function is directly related to

the power system state estimation error. In fact, the conditional
entropy can be expressed as follows:
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where is the Minimum Mean Square Error (MMSE) estima-
tion of given the PMU measurements . Since the en-
tropy is fixed, the maximization of MI is equivalent to
minimization of the state estimation error, which is represented
by the quantity in the above equation. In-
tuitively, specifies how ‘peaked’ the distri-
bution of power system state estimation error behaves. In the
statistics literature, such criterion is referred to as the ‘D-opti-
mality’ [16].
We are now ready to formulate the optimal PMU placement

problem.Assume that there are a total of PMUs to be installed
in the power system. The goal is to choose a subset of PMU
configurations from a set of candidate PMU configurations,
such that

(11)

The objective functions are illustrated as follows:
3) PMU Measurements Only: In this case, the objective

function associated with a PMU placement set is

(12)

where the dependence on time index is because the power
system states may have time-dependent distribution

. Thus, the objective func-
tion in (12) describes the ‘time averaged information gain’
about the power system state over a time period of interest.
4) With Conventional Measurements: When conventional

measurements are considered, the objective function should be
similarly formulated by the conditional MI function, as follows:

(13)

Note that it is possible that the time scales can be different in
both cases, as the conventional measurements can have much
slower sampling rate (on the order of minutes) than PMU
measurements. Having formulated the optimal PMU placement
problem, we will discuss the solutions in the next section.

IV. GREEDY PMU PLACEMENT METHOD

It is highly desired that the PMUs are optimally placed in the
power system. However, the optimal solution is very hard to
obtain, as the optimal PMU placement problem is NP-complete
[29]. In this section, we propose a greedy PMU placement al-
gorithm, and show that it can achieve the optimal performance
guarantee among the class of polynomial time algorithms.

A. Hardness Result

Before presenting the greedy algorithm, we first demonstrate
the hardness result. We extend the hardness result in [29], by
showing that the optimal PMU placement problem is not only
NP-hard to solve, but also NP-hard to approximate beyond the
approximation ratio of :

Theorem 2: Unless , there is no polynomial time
algorithm for the optimal PMU placement problem in (11) with
better approximation ratio than .

Proof: See in Appendix A. We next
propose a greedy PMU placement algorithm, which can achieve
the approximation ratio.

B. Greedy PMU Placement

The greedy PMU placement algorithm is shown in Algorithm
1. Compared to the optimal placement, the greedy algorithm has
low complexity, and is easy to implement in large-scale systems.
In each step, the algorithm chooses the next candidate PMU
configuration that can achieve the largest ‘marginal information
gain’, where the objective function can be chosen as either
or , depending on whether conventional measurements are

included.

Algorithm 1 Greedy PMU Placement

1: Initialize: ;
2: for to do
3: , where solves the following:

(14)

4: end for
5: return

The next theorem shows that the greedy algorithm can
achieve the largest approximation ratio of .
Theorem 3: The greedy PMU placement in (1) can achieve

an approximation ratio of for both objective functions
and .

Proof: The proof is obtained by identifying a key property,
submodularity, of the PMU placement problem. Detailed proof
is in Appendix B.
We have the following remarks:
1) Optimality: Based on Theorem 2 and 3, we claim that the

greedy algorithm can achieve the best performance guarantee
that is possible. Further, compared to methods such as mixed in-
teger programming [9], [10], binary search [11], or metaheuris-
tics [12], [13], the greedy algorithm is not only the best in per-
formance guarantees, but also can be easily implemented in
large-scale systems, due to the low computation complexity.
2) Multi-Stage Installation: The greedy algorithm is very at-

tractive in the case of multi-stage installations, where the utili-
ties plan to install the PMUs over a horizon of multiple phases,
due to the limited (and possibly uncertain) budgets. In such sce-
narios, the greedy algorithm can always achieve an approxima-
tion ratio of for any given , whereas fixed multi-
stage planning algorithms may suffer from substantial perfor-
mance loss when the budget changes unexpectedly.
3) Other Practical Constraints: The greedy algorithm can

be easily adapted for real power systems by incorporating
other practical installation constraints, such as mandatory PMU
buses and heterogeneous installation costs. For mandatory
PMU buses, one can extend the MI functions in (9) and (10)
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to conditional MI functions, where certain PMUs have already
been installed at pre-specified buses. For heterogeneous instal-
lation costs, one can still implement the greedy algorithm with
an augmented budget limit (other than the cardinality limit ).
The implementation details in such cases will be addressed in
future research.
Having formulated the greedy PMU placement algorithm

and proved its optimality results, we will test it against other
methods in standard IEEE test systems in the next section.

V. NUMERICAL RESULTS

This section demonstrates the performance of the greedy
PMU placement algorithm, and compares it with results in the
literature.

A. System Description

In the simulation, real power injections are assumed to be nor-
mally distributed, and independent across different buses [26].
For each bus, the standard deviation of the real power injection
is assumed to be 10% of the mean value. The mean values are
obtained by properly scaling the case profile description of the
standard test system [30]. Thus, the MI functions at different
time slots are only different by a multiplicative factor. Each
PMUmeasurement is assumed to fail independently with proba-
bility 0.03 [19]. The standard error of each PMU measurements
is assumed to be 0.02 , whereas the standard error of each con-
ventional measurement is assumed to be 0.57 . For comparison
purpose, we consider the ‘topological observability’ based PMU
placement configurations in [31] to represent the typical perfor-
mance of observability based PMU configurations. The results
in [31] are obtained based on solving mixed integer program-
ming. All simulation results are obtained with MATLAB on an
Intel Xeon E5540 CPU with 8 GB RAM. The computation time
for all simulations are shown in Table I.

B. Numerical Calculation of Mutual Information

We next briefly demonstrate the numerical calculation pro-
cedure of the MI function in (9). After that, the functions
and in (12) and (13) can be straightforwardly evaluated. For
simplicity of demonstration, the following procedure assumes
no PMU failure. The calculation is as follows:
1) Calculate the covariance matrix of the phasor an-
gles according to Theorem 1.

2) Calculate the conditional covariance matrix
based on the measurement model in (4)

and (5).
3) The MI function can now be calculated as follows:

Notice that corresponds to the error
covariance matrix of the MMSE estimator with PMU mea-
surements . Thus, maximizing the MI function is
equivalent to minimizing the state estimation error. For con-
ventional measurements, the conditionalMI function in (10) can

be calculated by replacing the covariance matrices and
with the conditional covariance matrices

and , respectively.
Finally, when PMU measurement failures are considered, the
MI function can be obtained by taking expectation over the set
of successful PMU measurements. We next illustrate the above
calculation procedure with an example.
Example: Consider the five-bus power system in Fig. 2. As-

suming that the impedance of each branch is per unit, we
can write matrix as follows:

(15)

Further, we assume that the active power injection vector is
per unit, and that the power injections are

independent Gaussian variables with standard deviation of 0.1
per unit. According to Theorem 1, the covariance matrix of
can be calculated as follows:

(16)

(17)

Now we assume there is no PMU failure and consider the candi-
date PMU configuration . That is, a PMU is placed
at bus 4, which can measure the state at bus 4 and branch (4, 3).
According to the PMU measurement model in (4) and (5), the
cross-covariance matrix is

(18)

and the covariance matrix is

(19)

The conditional covariance matrix is calculated as in (20) and
(21). Therefore, the MI function is

(22)

C. IEEE 14-Bus System

1) PMU Measurements Only: For this case, the optimal
PMU locations are calculated by an exhaustive search among
all possible configurations to find the one that can maximize the
MI objective functions. The PMU locations for both optimal
and greedy placement for are shown in Table II. From
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TABLE I
COMPUTATION TIME

Fig. 3. Standard deviation of voltage angles in the IEEE 14-bus system.

the table, one can observe that the optimal PMU configuration
can change significantly for different placement budget .
For example, when , the optimal placement is ,
whereas for , the optimal placement is . On the
other hand, the greedy placement configuration always
satisfy . Thus, the greedy placement
strategy is robust against the uncertainties in the placement
budget . To gain more insights on the placement results,
we plot the standard deviations of the phasor angles at all
non-reference buses in Fig. 3, which are obtained from the
diagonal entries of the covariance matrix in Theorem 1. From
the figure, one can observe that the state at bus 3 has the largest
variance. However, bus 3 is not chosen as the first PMU bus,
since, intuitively, it is connected to only two neighbors in the
system (see the topology in [30]). Instead, bus 4 is chosen,
since it has five neighbors.
Fig. 4(a) shows the normalized information gain for the

IEEE 14-bus system with only PMU measurements. In the
figure, the ‘Upper Bound’ curve is computed by the optimal
PMU configuration assuming no PMU failure. Thus, it over-
estimates the information gain on the system states. One can
easily observe the near optimal performance of the greedy
PMU placement strategy, in that the ‘Greedy’ curve is very
close to the ‘Upper Bound’. Further, the greedy algorithm has a

TABLE II
PMU LOCATIONS FOR IEEE 14-BUS SYSTEM

significant improvement on information gain compared to the
conventional ‘observability’ based approach. For example, for

, the improvement is around 20% as compared to the ob-
servability based placement [31]. This clearly demonstrates the
performance loss associated with the coarse observability based
criterion. Finally, one can observe from the ‘Upper Bound’
curve that the maximum information gain has a ‘diminishing
marginal return’ property, in that the marginal information gain
tends to decrease as the number of installed PMUs in the power
system grows. This also confirms the submodularity of the MI
objective function.
2) With Conventional Measurements: In this case, real

power flow measurements are obtained from the state estima-
tion package of MATPOWER [32]. The detailed configuration
is shown in Table III. The resulting PMU buses are shown in
Table II. From the table, one can conclude that the optimal
PMU placement is very vulnerable to the changes in the PMU
placement budget than the PMU only case, as the configura-
tions changes significantly as increases. On the other hand,
the greedy algorithm is robust, as for any

. The normalized information gain is shown in Fig. 4(b).
We use the same configuration for the ‘Observable’ curve as
the previous case. One can observe that the performance gain
is larger compared to the case with only PMU measurements.
This, again, confirms the conclusion that the pure topology
based observability criterion cannot efficiently model the un-
certainties in the power system states.

D. IEEE 30-Bus System

In order to further verify the near-optimal performance of the
greedy algorithm, we next simulate the PMU placement in the
IEEE 30-bus system. In this case, the size of the power system
still allows us to compare against the optimal placement con-
figuration. Due to space limitation, we only demonstrate the
case with PMU measurements only. The results with conven-
tional measurements are very similar. The PMU configuration
is shown in Table IV, and the normalized information gain is
shown in Fig. 5. From the figure, one can easily observe that the
greedy algorithm achieves almost the same performance as the
globally optimal configuration, and has significant gain over the

(20)

(21)
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Fig. 4. Normalized information gain of different PMU placement schemes in the IEEE 14-bus system. (a) with PMUmeasurements only and (b) with conventional
measurements.

TABLE III
CONFIGURATIONS OF CONVENTIONAL METERS

observability based PMU placement in [31]. This, again, ver-
ifies the near-optimal property of the greedy PMU placement
method.

E. IEEE 57-Bus System

1) PMU Measurements Only: For the IEEE 57-bus system,
it is computationally infeasible to obtain the optimal PMU con-
figuration for large . In such case, we only demonstrate the
performance of the greedy PMU placement, and compare it
against the observability based results in [31]. For the case with
only PMUmeasurements, the resulting PMU configurations are
shown in Table V, and the normalized information gain is shown
in Fig. 6(a). Similar to the IEEE 14-bus system, one can con-
clude that the greedy algorithm can achieve a significant infor-
mation gain compared to the observability based criteria. This
is because of the much more refined modeling of the MI func-
tion, which can effectively capture the remaining uncertainties
in the states of the power system. Further, the information gain
of the greedy placement curve also demonstrates the ‘dimin-
ishing marginal return’ property.
2) With ConventionalMeasurements: In this case, real power

flowmeasurements are assumed to be configured at the branches

Fig. 5. Normalized information gain of different PMU placement schemes in
the IEEE 30-bus system.

TABLE IV
PMU LOCATIONS FOR IEEE 30-BUS SYSTEM

and buses shown in Table III. The resulting greedy PMU config-
urations are shown in Table V. The normalized information gain
is shown in Fig. 6(b), where the greedy algorithm is compared
against the same configuration in the previous case, Similar to
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Fig. 6. Normalized information gain of different PMU placement schemes in the IEEE 57-bus system. (a) with PMUmeasurements only and (b) with conventional
measurements.

TABLE V
PMU LOCATIONS FOR 57-BUS SYSTEM BY GREEDY ALGORITHM

the case without conventional measurements, one can observe
the significant performance gain of the greedy algorithm.

F. RTS-96 System

We finally test the greedy algorithm in the RTS-96 system,
and compare the placement configuration with the results in
[21], which are obtained from fuzzy clustering based algo-
rithms. Due to space limitation, we focus on the case with
PMU measurements only. The placement configuration is
shown in Table VI, where the PMUs are listed in the order of
being selected by the greedy algorithm. Notice that in [21], the
resulting PMU locations (cluster centers) are 109, 209, 303 for
the case with three clusters, which are very similar to the first
three greedy placement results. Both algorithms choose one
bus in each area, which agrees with the symmetry in the test
system topology. The normalized information gain is shown
in 7. One can observe that the greedy algorithm achieves a
slightly higher MI gain than the configuration in [21], due to
the different PMU selection in area 3 (309 instead of 303).
We next compare the greedy result with the six cluster re-

sult in [21], which generates the following configuration: 310,
215, 109, 115, 210, 315. Compared with the greedy result with

in Table VI, one can observe that the result in [21]

TABLE VI
PMU LOCATIONS FOR RTS-96 SYSTEM BY GREEDY ALGORITHM

Fig. 7. Normalized information gain of different PMU placement schemes in
the RTS-96 system.

changes significantly from the case with . One reason
is that the greedy selection for is based on ,
whereas the fuzzy clustering algorithm in [21] computes
independently from . On the other hand, both algorithms
place two PMUs in each area, which, again, agrees with the sym-
metry in the network topology. The information gain is shown
in Fig. 7. Once gain, one can observe that the greedy algorithm
achieves higher MI gain than the clustering based result. Thus,
the greedy algorithm can achieve good performance with low
computation complexity, and is robust against the PMU place-
ment budget uncertainty.
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VI. CONCLUSION

This paper proposed an information-theoretic approach to
address the phasor measurement units (PMUs) placement for
power system. Different from the topological observability
based criterion in the literature, this paper proposed a much
more refined, information-theoretic criterion, namely the
mutual information (MI), as the PMU placement objective
function. The proposed MI criterion can not only include the
complete observability criterion as a special case, but also
can accurately model the uncertainties in the system states.
We further proposed a greedy PMU placement algorithm, and
showed that it achieves an approximation ratio of for
any PMU budget , which is the best guarantee among poly-
nomial-time algorithms. Such performance guarantee makes
the greedy algorithm attractive in the typical scenario of phased
installations, as the performance is robust to the changes in the
PMU budget. Finally, the performance of the proposed PMU
placement algorithm was demonstrated by simulation results.

APPENDIX A
PROOF OF THEOREM 2

Proof: We prove the hardness result by constructing
polynomial-time reduction of an arbitrary instance of the
max -cover problem [33] to a PMU placement problem.
Thus, the hardness result easily follows from the
inapproximability of the max -cover problem [33]. The
max -cover problem is as follows. We are given a set
of elements , and a collection of sets

, where each set is a subset of
. The task is to compute a subcollection of subsets

, such that the cardinality is max-
imized. Now, the reduction is as follows. Given a max -cover
problem instance, we construct a power system with
buses, so that two buses are connected by a transmission
line if and only if they both appear in a certain subset in .
Further, we associate each subset in with a PMU, which
is installed at a fixed (but can be arbitrarily chosen) bus in .
Assume that the covariance matrix of the power injections
is , where is a proper scalar that will be
discussed later. Thus, according to Theorem 1, the resulting
GMRF of has covariance matrix . Finally, choose so that
each discrete random variable has entropy 1. Assume there
is no PMU failure, and zero PMU measurement noise, we can
write the MI objective function as follows:

(23)

(24)

(25)

(26)

where (a) is because the phasor angles are independent, and
each has entropy 1, by construction. (b) is because given the
PMUmeasurements, the uncertainties only remain at the phasor
angles of the ‘unobservable buses’ . Denote as the
set of all possible PMU placement configurations. Thus, if we

can solve the optimal PMU placement problem by maximizing
subject to beyond in polyno-

mial time, we can also achieve the same performance guarantee
for the max -cover problem in polynomial time, from which
the theorem follows.

APPENDIX B
PROOF OF THEOREM 3

We now prove the performance guarantee of Algo-
rithm 1. The key lies in identifying the submodular property of
the PMU placement problem, which is a widely used concept in
combinatorial optimizations.

A. Introduction to Submodular Functions

A set function is called submodular [34] if

(27)

for any sets and such that . Essentially, this is
the ‘diminishing marginal return’ property, which, in the con-
text of PMU placement, specifies that the marginal ‘informa-
tion gain’ is decreasing as the number of installed PMU in-
creases. A set function is nondecreasing if implies
that , for all sets and . The importance of
submodularity can be seen by considering the following combi-
natorial optimization problem:

(28)

For nondecreasing submodular functions, the following guar-
antee always holds for the greedy algorithm [34]:
Lemma 1: Let a set function be submodular, nonde-

creasing and . For any , denote and
as the optimal solution to the problem (28) and the so-

lution obtained by Algorithm 1, respectively. Then,

(29)

always holds. Thus, Algorithm 1 can achieve at least an approx-
imation ratio of .

B. Proof of Theorem 3

Proof: We now prove the theorem by showing that the ob-
jective functions and for the optimal PMU place-
ment problem satisfy all assumptions in Lemma 1. We first fix
time index , and consider the case without conventional mea-
surements. It is easy to see that . We next
verify (27) as follows:

(30)

(31)

(32)

(33)
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In above, time index is omitted for notation simplicity.
follows from the chain rule of MI [15]. follows from
the definition of conditional MI. is because is
conditionally independent of given , due to the
measurement model in (4) and (5). This can also be clearly
observed from the probabilistic graphical model in Fig. 1(b),
where state variables serve as the parent nodes of the PMU
measurements in the ‘Bayesian part’ of the graph. Note that

in (33) is decreasing in , as con-
ditioning always reduces entropy [15]. Since the second term
in (33) is independent of , (27) follows easily. Finally, as
conditional MI is always nonnegative, one can deduce from
(31) that the MI function is also nondecreasing.
Now, the above analysis can be immediately extended to a

time period of length , where (27) holds for by sum-
ming up the inequalities corresponding to each time slot , and
then dividing both sides by . Thus, we conclude that the claim
holds for . Similarly, an identical analysis can be carried
out in the case with conventional measurements, where all func-
tions in (31)–(33) hold when conditioned on conventional mea-
surements.
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