
Highly Efficient Performance Portable Tracking of Evolving Surfaces

Wei Yu
Citadel Investment Group

Chicago, USA
Email: yuwei.emily@gmail.com

Franz Franchetti, James C. Hoe
ECE, Carnegie Mellon University

Pittsburgh, USA
Email: {franzf, jhoe}@ece.cmu.edu

Tsuhan Chen
ECE, Cornell University

Ithaca, USA
Email: tsuhan@ece.cornell.edu

Abstract—In this paper we present a framework to obtain
highly efficient implementations for the narrow band level
set method on commercial off-the-shelf (COTS) multicore
CPU systems with a cache-based memory hierarchy such
as Intel Xeon and Atom processors. The narrow-band level
set algorithm tracks wave-fronts in discretized volumes (for
instance, explosion shock waves), and is computationally very
demanding. At the core of our optimization framework is a
novel projection-based approach to enhance data locality and
enable reuse for sparse surfaces in dense discretized volumes.
The method reduces stencil operations on sparse and changing
sets of pixels belonging to an evolving surface into dense stencil
operations on meta-pixels in a lower-dimensional projection
of the pixel space. These meta-pixels are then amenable to
standard techniques like time tiling. However, the complexity
introduced by ever-changing meta-pixels requires us to revisit
and adapt all other necessary optimizations. We apply adapted
versions of SIMDization, multi-threading, DAG scheduling
for basic tiles, and specialization through code generation to
extract maximum performance. The system is implemented as
highly parameterized code skeleton that is auto-tuned and uses
program generation.
We evaluated our framework on a dual-socket 2.8 GHz Xeon

5560 and a 1.6 GHz Atom N270. Our single-core performance
reaches 26%–35% of the machine peak on the Xeon, and 12%–
20% on the Atom across a range of image sizes. We see up to
6.5x speedup on 8 cores of the dual-socket Xeon. For cache-
resident sizes our code outperforms the best available third-
party code (C pre-compiled into a DLL) by about 10x and for
the largest out-of-cache sizes the speedup approaches around
200x. Experiments fully explain the high speedup numbers.

I. INTRODUCTION

Tracking the continuous evolution of surfaces such as
shock wavefront or flame disturbance in the wind (so-
called interfaces) has a wide range of applications in im-
age processing, computer graphics, computational geometry,
computational fluid mechanics, and many other fields. It
is further used in image segmentation of noisy data (e.g.,
computed tomography), and in automatic target recognition.
The level set algorithm is a widely used tool for tracking
evolving interfaces, especially when the interface undergoes
extreme topological changes like merging or splitting.
The level set method embeds the interface into a higher

dimensional function defined on a regular grid discretizing
the volume. It then evolves the level set function under
a partial differential equation (PDE). The zero level set

of a fix-point function under the PDE then corresponds
to an interface while the time-dependent evolution of the
function captures the movement of the interface. The core
computational operation is applying a stencil at all grid
points to iteratively solve the PDE: in each iteration the level
set function gets updated on every grid point based on the
values of the level set function on neighboring points in the
previous iteration. The narrow band level set algorithm [1]
restricts the computation to points in the neighborhood of
the interface (the zero level set), which form a lower-
dimensional (and thus sparse) subset of grid points. Since
the function evolves, the zero level set evolves, and thus
the narrow band around the zero level set must be updated
frequently. In summary, the grid points to be computed upon
change from iteration to iteration. The (narrow band) level
set method is known to produce highly accurate results,
but its major limitation in real applications is the slow
processing speed [2]. Developing a framework to obtain
highly optimized implementations that can fully utilize cur-
rent multicore CPUs is an major step for applications that
require robust and highly accurate real-time processing.

dense & regular data

structure

sparse data with dense

substructure

Narrow Band Level Set Stencil

sparse & irregular data

structure

SparseMV

r iter N iter

O(1) O(N)

Memory bound compute bound

Figure 1. Arithmetic intensity of narrow band level set algorithm is in
between sparse linear algebra and iterative stencil computation (view in
color).

The main difficulty in obtaining highly efficient narrow
band level set implementations comes from irregular data
structures tracking the evolving region of interest. This
irregularity prevents the direct application of well-known
standard optimization techniques both by human program-

mers and by optimizing compilers. However, the algorithm
has the potential for reuse and features data parallelism.
Its arithmetic intensity lies halfway between sparse matrix-
vector product and dense stencil computation, as depicted
in Fig 1. Thus there is a chance to obtain better solutions
than applying standard sparse linear algebra techniques.
Unlocking this performance potential requires aggressive
optimization and complicated code transformations. Further,
the narrow-band level set method has a wide range of al-
gorithmic options and application-specific formulations and
tweaks that make it a sizable and important algorithm class
that constitute a code pattern. In this paper we pick image
segmentation as target application, however, our framework
is designed to in principle support the whole class of narrow
band level set applications, since the major difference across
applications is the actual stencil operation.
Contributions. The main contribution of the paper is a

framework to obtain highly efficient implementations of the
narrow-band level set code pattern on commercial off the
shelf (COTS) multicore CPU based systems.
The first and core contribution of our framework is a

novel time skewing technique for surfaces embedded in
discretized volumes which we call projective time skewing.
With projective time skewing we achieve locality and reuse
for an evolving sparse but contiguous set of grid points
that describes a surface which evolves every time step. The
method relies on the contiguousness of the surface and
enables better performance than achievable with methods
addressing stencil operations for general sparse grid point
clouds.
The second contribution is the design of a parameterized

code skeleton for the narrow band level set algorithm. To
fully utilize modern multicore CPUs for this application,
many optimization techniques need to be combined: approx-
imation of transcendental functions, SIMDization, multi-
threading, and low-level code optimization methods like in-
struction reordering (DAG scheduling) and unrolling. While
all these techniques are well-known, their actual application
in this particular algorithm is a hard problem. Since the
evolving band introduces irregularity and unpredictability,
traditionally orthogonal methods become dependent or in-
applicable.
The third contribution is an autotuning system that pro-

vides performance portability for the narrow-band level set
based image segmentation and achieves high performance
on modern multicore CPU based systems. Our single-core
performance reaches 26%–35% of the machine peak on a
single core of an Intel Xeon and up to 6.5x speedup on
8 cores of a full dual-socket Quad-core Xeon system. For
cache-resident sizes, our code outperforms the best available
third-party code (C pre-compiled into a DLL) by about 10x
and for the largest out-of-cache sizes the speedup approaches
around 200x.

II. NARROW BAND LEVEL SET ALGORITHM
In this paper, we use 2-D image segmentation [3] as an

illustrative example to explain the level set and its narrow
band variation. However, our optimization framework is
by no means restricted to this specific application. Other
applications with a similar computational pattern but using
a different stencil computational kernel or computing on a
higher dimensional grid can be adapted to our framework.
Level set method. The level set is a function φ defined on

the 2-D image plane, whose zero level set corresponds to the
evolving interface. The zero level set is the intersection of
φ and the zero plane: {(y, x)|φ(y, x) = 0}. In this example,
the evolution of φ is driven by some force field such that at
convergence, the zero level set forms a smooth contour on
the object boundary. Fig 2 shows the evolution process of
the level set function φ. The lower row shows the evolution
of φ,and the upper row shows the corresponding zero level
set.
The force field that derives the evolution of φ is derived

from minimizing the following energy function:∫
Ω

(
λ

2
(|∇φ| − 1)2) + gδ(φ)|∇φ| + gH(−φ)

)
dxdy (1)

The terms in the energy definition attract the zero level set
contour to be close to pixels of large gradient, regularizes
the smoothness of the contour and regularizes φ to guarantee
numerical stability. Here we are not going to detail the
physical meaning of each term above. Interested readers may
refer to [3] for more details.
Taking the derivative of Eq (1) gives the evolution func-

tion of the level set function φ.

∂φ

∂t
= μ

(
Δφ− div

(
∇φ

|∇φ|

))

+ λδ(φ)div
(

g
∇φ

|∇φ|

)
+ νgδ(φ) (2)

In real implementation, all terms in Eq (2) are computed
using their numerical approximations. For example, first-
order derivatives are estimated using a simple three-point
estimation, like φx = (φ(x + 1, y)− φ(x − 1, y))/2.
From a computational perspective, updating the level

set evolution function following Eq (2) can be viewed as
nearest-neighbor stencil computation. In this example,

φ(t+1) = F(φt(x±Δx, y ±Δy)), Δx, Δy ∈ {0, 1, 2}

Narrow band level set. Essentially, the level set method
tracks a n-dimensional propagating interface (zero level set)
in (n + 1)-dimensional space. For example, in the image
segmentation case, we track a 1-D contour by evolving
φ defined on the 2-D image plane. The computational
complexity is O(Nn+1 ·T), assuming N is the length along
each dimension and T is the total number of iterations.
In the level set method, what we are interested in is

the evolution of the interface (zero level set) rather than

Figure 2. An example of level set evolution for image segmentation. First
row shows evolution of the zero level set; second row shows evolution of
the level set function.

the complete level set function. This leads to the lower
complexity narrow band level set method, in which the
computation is restricted to a narrow band around the zero
level set.
The narrow band level set algorithm shown in Fig 3 has

two basic components: 1) CompLS performs the stencil
computation for all points in the narrow band following Eq
(2), and 2) UpdateB rebuilds the band based on the current
level set function φ. Conceptually, we need to re-detect the
zero level set given the updated φ, and then construct a
neighborhood region around the updated zero level set as
the new band. More details of the computational model will
be given in Section III.

��

�����������	�
�

�����������
��������	

��
��

���������	
�
�������

�	
���������	�	���
������

Figure 3. The narrow band level set and its algorithm flow.

III. BASIC IMPLEMENTATION
In this section we describe a basic implementation of the

narrow band level set method and discuss implementation
choices like data structures, PDE discretization, and alge-
braic simplifications. As discussed in Section II, the narrow
band level set has two major components: stencil computa-
tion CompLS and band update UpdateB. The narrow band
is a set of sparse pixels in the image and can be represented
using a data structure similar to CSR (Compressed Sparse
Row) format in the sparse matrix solver.Following the sparse
matrix approach, we tile the band using tile size Th × Tw.
Tiles included in the band are called active tiles. Similar to
tiling in the sparse matrix solver, choosing the appropriate
tile size can lead to better instruction level parallelism (ILP),
register reuse, and save storage for the indices. Given that

band is represented in the tile granularity, the cost of both
CompLS and UpdateB is closely related to the tile size.

���		��������
�

Br

4

4

2 3 5 6 -

3 4 5 6 7 8 9 10 11 12

3 4 5 6 -

3 4 5 6 - -

Figure 4. Illustration of the band update process and data structures. Solid
and dashed lines are the old zero level set and the updated one. Band is
tiled using 2 × 2 tile size.

Level set evolution time-step. In CompLS, we perform
stencil computation on every pixel in the active tiles, follow-
ing Eq (2). To compute Eq (2) at position (y, x), we need
to first compute a normal vector N at its nearest neighbors
(y ± 1, x± 1). The normal vector is computed as

N = [Nx,Ny] =
[φx, φy]√
φ2

x + φ2
y

. (3)

Nx and Ny are x and y component of the normal vector
N. Computing the normal vector is expensive. To save
redundant computation, CompLS can be decomposed into
two steps:
1) CompN step computes normal vector N=[Nx,Ny] for all
pixels in the band following (3).

2) CompL step computes the updated level set function
following (2).

After decomposition, CompN at (y, x) depends on φ at (y±
1, x ± 1), and CompL at (y, x) depends on φ and normal
vector N at (y ±Δ, x ±Δ), where Δ ∈ {0, 1}. Evaluating
(2) is expensive and involves the evaluation of cos(x). The
whole stencil required to compute CompLS requires about
50 operations, including square root and cosine.
Update of the narrow band. In UpdateB, we need to

check every point in the current band if it is a crossing-point
using this condition:

φ(y− 1, x) ·φ(y +1, x) ≤ 0 or φ(y, x− 1) ·φ(y, x+1) ≤ 0

The set of crossing-points form the new zero level set.
Each crossing-point is expanded in four directions (up,
down, left, right) of Br pixels, whose union forms the
updated band. This process is shown in Fig 4. To guarantee
numerical stability, we need to do UpdateB once after
every Br iterations of stencil computation. This ensures

newly generated crossing-points will not overstep the current
band.
The data structure used for the band maintenance includes

three arrays: BI , Bptr and Blist. Assuming the image size
is h×w, BI is a 2D char array of size h×w

Th×Tw
, with each

element taking 0/1, indicating if the tile is in the updated
band. Bptr is a 1D int array of size h

Th
, and Blist is a

2D int array of size h×w
Th×Tw

. Tiles in the narrow band are
recorded using Bptr and Blist, in a way similar to the CSR
format. As shown in Fig 4, Blist[j][] records tile indices in
each row, Bptr tracks how many tiles there are in each row.
Unlike the exact CSR, we do not re-organize φ value on
the sparse band into a continuous array. This is because the
band is dynamically evolving, and the cost of re-organizing
data is too high compared to its benefit. Instead, φ, Nx and
Ny are stored in separate 2D float arrays of size h×w.
UpdateB is also decomposed into two steps:
1) scatter step checks all points in the band. If a point
is a crossing-point, then BI is updated accordingly,by
setting 1 for all tiles covered by the square neighbor-
hood around the point. Here a tile is covered if at least
one point in it is covered.

2) gather step rebuilds the new band by scanning BI

for entry of 1s, and updates Blist and Bptr accordingly.
Algorithmic trade-off. There is a fundamental algorith-

mic tradeoff in the narrow band level set: the cost for
CompLS and UpdateB. The tradeoff is controlled by band
radius Br and tile size Th×Tw. Increasing Br leads to fewer
band update passes because the band update is performed
every Br iterations, but higher computational cost because
more pixels are computed. A similar relationship exists for
the tile size: increasing the tile size reduces the cost of
band updates because fewer tiles are needed to track the
band, but the number of pixels in the band is increased. The
best choice of Br, Th, and Tw depends on the optimization
level of CompLS and UpdateB and is best determined
experimentally, e.g., through autotuning. The complete com-
putation and band update process is summarized in the
pseudo code in Fig. 5.

IV. IN-CORE OPTIMIZATION

In this section we discuss the in-core optimization of
the function evolution (CompLS) and band update step
(UpdateB). The result of this section is highly efficient
code for cache resident sizes, and we use the resulting code
as kernels within memory optimization in Section V and
multi-threading in Section VI.

A. In-core Stencil Optimizations
Achieving high in-core performance for narrow-band level

set stencil operation requires register tiling and SIMDization,
approximation of a transcendental function, and instruction
ordering in the basic tile.

//Computation part (CompLS)
for (int iter=0; iter<Br; iter++)
for (int j=0; j<h/Th; j++)
for (int k=0; k<B_ptr[j]; k++)
{do CompN for tile at (j, B_list[j][k]).}

for (int iter=0; iter<Br; iter++)
for (int j=0; j<h/Th; j++)
for (int k=0; k<B_ptr[j]; k++)
{do CompL for tile at (j, B_list[j][k]).}

//Band update part (UpdateB)
//scatter
for (int j=0; j<h/Th; j++)
for (int k=0; k<B_ptr[j]; k++){
int i = B_list[j][k];
int y0 = j*Th, x0 = i*Tw;
for (int y=y0; y<y0+Th; y++)
for (int x=x0; x<x0+Tw; x++){
//check crossing-point
if(phi[y][x-1]*phi[y][x+1]<=0 ||

phi[y-1][x]*phi[y+1][x]<=0){
int y_l = (y-Br)/Th, y_u = (y+Br)/Th;
int x_l = (x-Br)/Tw, x_u = (x+Br)/Tw;
for (int ys=y_l; ys<=y_u; ys++)
for (int xs=x_l; xs<=x_u; xs++)
B_I[ys][xs]=1;

}}}

//gather
for (int j=0; j<h/Th; j++){
int k=0;
for (int i=0; i<w/Tw; i++){
if (B_I[j][i]) B_list[j][k++] = i; }

B_ptr[j] = k;
}

Figure 5. Pseudo code for the narrow band level set algorithm.

Register tiling and SIMDization.We use a small register
tile of size th × tw in which we completely unroll the code
and all further in-core optimizations are performed on the
register tiles. Multiple register tiles may be constituting a
band tile of size size Th × Tw used for tiling the band, i.e.,
tw divides Tw and th divides Th. SSE instructions are 4-
way SIMD vector instructions and naturally imply a basic
tile size that is a multiple of 1×4. Register tiles must contain
multiple SIMD tiles, thus 4 must divide tw. Since the register
tile is built from multiple of the basic SIMD register tiles,
we trivially obtain SSE code for the stencil computation
part by taking the scalar stencil code and replacing all
operations with the corresponding SSE instructions for every
basic SIMD register tile. When computation depends on the
data not aligned to the 4-pixel boundary (for example, when
computing the first-order derivatives), we use SIMD shuffle
instructions.
Approximate transcendental functions. In CompL, no-

tice there is a δ(φ) in Eq (2), which is the smoothed dirichlet
function defined as

δε(φ) =

{
0 |φ| > ε

1
2ε

[
1 + cos(πφ

ε
)
]
|φ| < ε

We approximate 1
2 [1 + cos(πx)] for x ∈ [−1, 1] by 1 − x2

and thus replace a transcendental function costing hundreds

of cycles by an addition and multiplication. In CompN, we
compute an approximation of 1/

√
(u2

x + u2
y) in Eq (3) using

the fast but low precision _mm_rsqrt_ps (we do not use
its result within the usual Newton Raphson iteration). Both
approximations together yield slightly less accurate results
per iteration (and thus more but cheaper iterations) but do
improve the overall runtime and yield the same segmentation
result.
Instruction ordering. The stencil that operates on every

pixel in a tile performs the exactly same operation, and thus
the same piece of code could be replicated for every pixel
in a tile. We unroll the entire register tile and thus have a
long basic block of tw × th many stencil code fragments
that are glued together. The whole block is implemented in
single static assignment (SSA) style, as Spiral and FFTW’s
program generators successfully do [4], [5].
Ideally the C compiler will optimize instruction schedul-

ing and register allocation of the basic block for the best
performance, regardless of the order of input instructions.
However, we observe a large variance on performance when
using different sequences of instructions that perform the
same computation. Our solution is to build a stencil tile code
generator that generates a set of C instruction sequences
implementing the basic block and empirically find the best
one, performing autotuning or super-optimization on the C
instruction sequence. We observed up to 70% performance
difference between the best and the worst input instruction
sequences.
Our tile instruction sequence generator is implemented in

Perl and takes the instruction sequence in the form of a
directed acyclic graph (DAG) of a single stencil operation
and the tile size as input parameter. It tries multiple DAG
schedules and two cross-pixel scheduling schemes. Fig 6
shows a simple example to illustrate these two schemes.
In the replicate scheme it picks a instruction sequence
and simply replicates it for every pixel. This saves register
spills, and varying the tile size produces different instruction
sequences. The second scheme is interleaving in which the
first instruction for each pixel is executed, followed by the
second instruction for every pixel and so forth. Each pixel
has its own instruction sequence to get better instruction
mix and instruction level parallelism (ILP). In both schemes
we perform common subexpression elimination in the code
generator. While this only covers a small subset of all
schedules for a full tile, it is sufficient to contain code for
which the C compiler can produce a good basic block.

B. Band Update Optimizations
The band update process has two distinct phases (scatter

and gather). Both phases perform only a few operations
per pixel and have very short loops with data-dependent
unpredictable control flow in the innermost loop. This is
the worst case scenario for out-of-order processors with
speculative execution as well as simple in-order processors.

���������� �������� ������ ��� ������� �! ������� !�� " ��#���

��
$%&% $%&"
'$"&%($%&)'$"&"(*����&
��+,�����

!��
%
��#��

����������
��������
������
���
�����

��+,����-
������
��
!��
"
��#���

$%&%-
$%&"-
$%&)-
$%&.-
$%&/-
$%&0-

��
�!
�������
!��
"
��#���

$"&)
�� �� ��

$%&. $%&/
%")./0 $"&%-
$"&"-
$"&)-
$"&.-
$"&/-
$"&0

�����������
��������
������
�1�
%".)/0
$"&. $"&/

��� �,� ��� �,�

$%&0
22

��+,�����
!��
"
��#���-
����������
����

$%&%-
$"&)-
$%&"-
$"&"-
$%&)-
$"&/-

$% . $" % $% / $" . $% 0 $" 0

)"/%.0

��� ���
$"&0

$%&.-
$"&%-
$%&/-
$"&.-
$%&0-
$"&0

Figure 6. Illustration of replicate and interleave ordering schemes for an
unrolled basic tile of 1×2 pixels. The two pixels use the same DAG (Pi.j

means the j-th instruction of pixel i). In the example, they share two inputs,
P1.2 = P2.1, P1.3 = P2.2. We generate a set of instruction sequences
for one pixel. The replicate scheme concatenates one sequence pixel by
pixel; the interleave scheme mix two randomly chosen sequences of two
pixels.

To remedy the problem we perform a specialized form of
unrolling by generating a jump table that branches into
automatically generated partially evaluated code snippets.
This converts a short loop into hundreds of lines of code
but substantially improves performance.

��������	
������������
�����������	
�
������� !"��#$� �%���&&'�

(((
�$�"�)�� *�����*

+�� %�*,%-��,���&

 � � �
�����&�

.$�/0�%�	10��1��,

.$�/0�%10��1��,.$�/0�%10����1��,

.$�/0�%�	10��1��,.$�/0�%�	10����1��,+�� %�*,%-��,���&
+��� ��*,�-��,%��&
�+� 2��3!"�� �%�%�����&&�'
+��� 4���,4-��,4��&
+�� 5���,5-��,5��&

% %
.�"$4,

�$�"�)�� (((&�
6

+�� 5� �,5-��,5��&
.$�/0 �%�%�4&���10 �����5&���1��,

6

Figure 7. Code generation for band update.

Scatter optimization. The Scatter process searches
for crossing-points of the level set function and updates BI

at the same time to mark up the neighborhood of crossing
points to belong to the band. First we SIMDizes the search
process and check a SIMD vector of pixels at a time. Using
SSE instructions, we load the superpixels (SIMD vectors of
pixels) up, down, left and right to the current pixel (m_t,
m_d, m_l, m_r). Next a vector comparison produces an
integer pattern in 0–15, where groups of 4 bits each
indicate if a pixel is a crossing-point or not, using the
following SSE instructions.

__m128 ud = _mm_xor_ps(m_u, m_d);
__m128 lr = _mm_xor_ps(m_l, m_r);
int pattern = _mm_movemask_ps(_mm_or_ps(lr, ud));

The next step is to update the membership indicator for
pixels being in the narrow band (stored in BI). A simple
implementation would just loop over all pixels, check if they
are a crossing point, and if so mark up all their neighbors

$���������
1����

	

	3%

	3"

���	
������

Figure 8. Time skewing for a three-point 1-D dense stencil.

in the band radius as being part of the narrow band (see
the code in Fig 7 left). This is highly inefficient. However,
there are 24 = 16 possible patterns of crossing points in a
4-way vector and each of those results in a distinct pattern
of updates that is known at compile time. We thus build a
switch statement that implements all 16 versions as straight
line code (unrolling all the small loops and pre-evaluating
the if statement), and a switch statement that selects the
correct code piece based on the vector result. An example
for one zero-crossing pattern is shown in Fig 7, right.
Gather optimization. The gather builds up the new

compact representation of the narrow band. It scans BI

for 1s, and collects the tile column indices into Blist.
Performing SIMDization, we load 4 chars (data type int)
or 16 chars (a SSE vector) each time, and build a big
switch statement for each possible case of zero/one pattern
the vector can hold (24 or 216 cases, respectively). This
is again a specialized form of unrolling requiring code
generation and reduces load and branching overhead.

V. PROJECTIVE TIME SKEWING

In this section we present our novel program transfor-
mation that provides reuse for stencil computation on a
lower-dimensional surface that is embedded in a higher-
dimensional regular grid. This is a special case of sparse
stencil computation, since the lower-dimensional surface is
a contiguous manifold. Further, the method is optimized for
evolving surfaces, i.e., the overhead of pixels being included
or dropping out of the surface is low. We first review 1D
time skewing, and then explain how we translate a stencil
computation on a 1D surface embedded in a 2D grid into a
1D meta-stencil operation. Higher-dimensional projections
can be done analogously. Finally, we discuss lower-level
memory optimizations that are required to achieve high
performance on a cache-based multicore CPU system.
1D time skewing. Time skewing is a general loop opti-

mization technique that can effectively remove the memory
bandwidth bottleneck or remove data dependency in the
inner-most loop for data parallelism [6], [7]. We show an
example 1D 3-point stencil in Fig 8. Every grid point at time
t+1 depends on itself and its both neighbors at time t. This
produces few operations per data element and if done naively
the whole data set is completely traversed at every time step.
The result is a high memory bandwidth requirement and low
arithmetic intensity, in particular if the whole data set does
not fit into the cache.

Time skewing time-tiles the iteration and performs for a
fixed set of grid points (4 in our example) multiple time
steps (2 in our example) before moving to the next tile. The
dependencies of the 3 point stencil (shown as arrows) require
the tile to be rhomboid-shaped, and require a triangular
initial tile. In this setup, no additional operations have to
be performed. Intermediate results at every time step at the
tile border need to be saved (blue grid points) so they can
be reused by the neighboring tile or the next tile in the time
direction. A tile is also called polytope and the generalization
of time tiling and other similar loop transformations is
formalized in the polyhedral framework [6], [7].

���

��������� ��

��� ��� ��� ������ ��� ��

��� ��� ��� ��� ��� ������

��� ��� ��� ������ ��� ��

��� ��� ���

	

"�
��1
�,�4��

	3%

	3"

	3)

Figure 9. Projective time skewing for 1D surface embedded in a 2D image.

Projective time skewing. We now explain our projection
from the sparse stencil operation on a 1D surface embedded
in the 2D grid to a 1D dense meta-stencil operation. We
assume a reasonably smooth 1D surface (curve), and a thin
region of interest (the narrow band) around the curve is
embedded into a regular 2D grid. The time direction is a
third dimension, and in every time step on all points in the
region of interest, a 2D stencil is applied. Further, we tile the
2D space in a way that fully covers the region of interest.
This situation is depicted on the right side of Fig 9; the 2×2
tiles are depicted in grey and the curve/narrow band in red.
We observe that there usually are a small number of tiles

per row needed to cover the narrow band, given a typical
relatively smooth curve that is not exactly horizontal. We
collect all the tiles needed to cover the narrow band and
project them to the left. In our example this leads to 5
stacks (one per row) of 1, 2, 3, 3, and 2 tiles each, as
shown in the middle of Fig 9. We make each stack of tiles a
meta-grid point in 1D. Each meta-grid point collects all the
tiles needed to cover the narrow band in its respective row.
Thus, the meta-grid points are of varying size. Performing
all stencil operations in one row in the 2D space becomes a
single meta-pixel stencil operation in the projected 1D space,
depicted by the red arrows pointing a row up and down.
Abstracting the fact that we are facing meta-grid points

and a meta-stencil operation, we have reduced the special 2D
sparse case to a 1D dense case. This allows us to apply 1D
time skewing to the projected 1D dense stencil, as shown on
the left side of Fig 9. The meta-grid points labeled r0 to r6

are collecting multiple tiles for rows 0 to 6, respectively, and
thus are drawn with varying width. We depict the rhomboid

1D time tiles in grey again, and they mirror the standard 1D
case, except for the varying width of the meta-grid points.
A meta-pixel has many more operations than a standard 1D
stencil, and the level set stencil already has more operations
than a standard stencil, so a single tiling step, relatively small
tiles, and few time steps per tile are sufficient to make the
stencil on the region of interest compute bound. For instance
the central tile consists only of 2 rows per time step. The
first time step collects 3 2× 2 tiles from row 4 and 2 2× 2
tiles from row 5. The full tile includes 19 grid points in the
2D space.
Handling the evolving band. Now let us consider the

complication introduced by band evolution specific to the
narrow band level set method. The narrow band needs
to get updated every Br iterations, therefore we need to
incorporate band updates in the projective time skewing.
This is done by rebuilding the band as far as possible with
currently available information. With φ known for rows
j ∈ [js, je), we have enough information to update BI

for row j ∈ [js + 1, je − 1), and update Blist for rows
j ∈ [js + Δs, je −Δs), where Δs = �Br−1

Th
� + 2. This is

possible since a crossing-point in row j can only change BI

for rows j ∈ [j−�Br−1
Th

�− 1, j + �Br−1
Th

�+1]. The content
of sparse rows may change in the band update process,
but continuity of the band evolution process guarantees that
consecutive band positions have good overlap with each
other.
Implementation details. The implementation overhead of

the projective time skewing is low. All the index shifts in
the projective time skewing can be pre-computed and defined
as preprocessor macros. Below, Ph and Pw are the polytope
height and width, and Δp is the row index shifts between
polytopes and Δs is the band update index shift. Storage of
BI can be saved by using it in a cyclic way. Height of BI

can be reduced to Δp +Pw +2Δs, which is the upper bound
of the number of rows needed to be held at the same time.
With projective time skewing alone, we cannot completely

hide the memory access penalty. Using large memory page
size can almost completely remove the page miss penalty
responsible for extra overhead. For some (2-power) image
sizes appropriate padding is required. Projective time skew-
ing together with these lower-level optimizations provides
the ability to achieve near fully compute bound curve
evolution. We summarize pseudo code for computing one
polytope in the steady state in Fig 10.
Analysis. We now provide an analytical evidence that

our approach is effective and for large enough cache size
removes the memory bottleneck. We name all points in
consecutive Ph iterations as one polyhedral segment. There
are three segments: current segment, previous and next one.
We assume perfect LRU cache replacement policy, and
miss rate without polyhedral transform being M . There are
two conditions under which cache miss rate is reduced: (I)
when two consecutive polytopes can fit into cache, that is,

int Bcnt=Br;
for (int iter=0; iter<Ph; iter++){
for (int j=js; j<je; j++) {CompN for tiles in row j;}
js--; je--;
for (int j=js; j<je; j++) {CompL for tiles in row j;}
js--; je--;

Bcnt--;
if (Bcnt==0){
for (int j=js; j<je; j++) {
scatter: check crossing-point and update B_I.}
for (int j=js-Delta_s+1; j<je-Delta_s+1; j++) {
gather: rebuild band by updating B_ptr and B_list.}
Bcnt=Br; js = js-Delta_s+1; je = je-Delta_s+1;

}
}
//update js and je for the next polytope
js = je + Delta_p; je = js + Pw;

Figure 10. Band update for one polytope in steady state.

Δp + 2Pw rows can fit, cache misses happen only on the
polyhedral segment boundary, so total miss rate is roughly
M
Ph
; (II) when condition I is false and Pw rows can fit,

cache miss happens to nodes on polytope boundary. So total
miss rate is roughly M(1

Ph
+ 1

Pw
). Given fixed cache size

and parameters Br, Th, Tw, if condition (I) holds, miss rate
decreases as Ph increases. When condition (II) holds, a low
miss rate corresponds to relatively large Pw and Ph. When
both conditions do not hold, the miss rate is high as if there
is no time skewing, and the cache is too small. Further,
the degree of data reuse is roughly proportional to the cache
size, and therefore, when the cache size is big enough, cache
misses will no longer be the bottleneck. We observe both
effects in our experiments detailed in Section IX.

VI. MULTI-THREADING
To scale our single-core implementation to multiple

threads, we employ the idea of [8] given its low commu-
nication cost, and tailor the original method to the narrow
band setting. Our tailored variant provides load balancing
and is robust to non-uniform memory (NUMA) found in
multi-socket multicore systems and scales well to the 8 cores
of our dual quad-core Xeon system.
Software pipeline. Our method schedules time tiles

across multiple processors (note that this are tiles in the
projected space), breaks every tile into prologue, steady
state, and epilogue, and implements a software pipeline. This
is shown in Fig 11. For two cores, the dependency between
tiles is between the tile prologue on processor 2 and the
epilogue of the neighboring tile on processor 1. Given a big
enough steady state and an execution begin of both tiles
roughly at the same time, the prologue on processor 2 is
guaranteed to be finished before the epilogue on processor 1
needs its data. This scheme needs very little synchronization
and scales well to many cores.
Implementation details. In our level set code, each core

has a private BI array as in the single-threaded case, and an
additional buffer B′

I for processing the epilogue. When core

Prologue

Steady state

Epilogue

Data transfer between cores
requires a memory fence

Core 1 Core 2

Figure 11. Parallelization on multicores Tiles are executed in a software
pipeline that hides the latency of cross-core data transfer. Active computa-
tion is depicted in pink (core 1) and blue (core 2). The union of all pink
shapes is core 1’s tile, and all blue shapes constitute core 2’s tile.

n + 1 finishes its prologue, it will copy BI information of
shared rows to B′

I of core n. After this copying core n + 1
signal its ready state to core n and then core n executes its
epilogue. This scheme is repeated on all cores. To balance
the workload among the cores during the evolution process,
after each band update we adjust the partition to guarantee
the number of active tiles assigned to each core is roughly
the same.

VII. AUTOTUNING AND CODE GENERATION
We developed a fully parameterized code framework

that implements and combines all the optimization methods
described so far. The remaining problem is to identify good
parameter values that lead to high performance on a given
machine. Some of these parameters need code generation to
obtain specialized code fragments based on the parameters.

Autotuning. Using an autotuning approach allows us to
find good parameters automatically and provides perfor-
mance portability, i.e., good performance across a range of
machines. Good parameterizations depend on both algorith-
mic choices and the target architectures. The search space of
our parameters is summarized in Table I. The primary tuning
parameters are Br, Th, Tw, Ph and Pw. Further options have
only a Enable/Disable parameter or multiple choices (0, 1,
and 2). Usually choosing Enable will not result in worse
performance, however the parameters are handy to evaluate
the impact of optimizations in isolation.
Since the search space is too big for exhaustive search,

we use multiple iterations of the line search method. This
standard search method in one step searches for the optimal
choice of one parameter while fixing all other parameters,
and within one iteration optimizes all parameters one at a
time. Multiple iterations overcome the interdependence of

Table I
SUMMARY OF OPTIMIZATIONS AND TUNING PARAMETERS

Category Optimization Tunable parameter

Fundamental
Tradeoff

opt. tradeoff between
CompLS and UpdateB

Br ∈ (1..8), Th ∈

(1..8), Tw ∈ (4, 8, 16)

In-core
SIMD Enable/Disable

approx complex arith-
metic

Enable/Disable

instr. ordering Enable/Disable

Memory
polyhedral transform Enable/Disable, Ph ∈

Phs, Pw ∈ Pws

padding Enable/Disable

large page Enable/Disable

Band Update

optimized scatter 0 (naı̈ve)
1 (vec search)
2 (scatter by pattern)

optimized gather 0 (naı̈ve)
1 (load 4 chars per time)
2 (load 16 chars per
time)

note:Phs = (2, 4, 8, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192), Pws =
(2, 4, 8, 12, 16, 32)

parameters and in our case we converge to good solutions
usually after 2 to 3 iterations. We did not get stuck in local
minima and thus did not investigate more powerful search
methods.
Code generation. The autotuning requires the availabil-

ity of code snippets for various parameter combinations,
and these snippets need to be generated automatically as
discussed in Section IV. Some parameters can be handled
simple C preprocessor macros definition: for example, tile
size Th × Tw, band radius Br, polytope size Ph, Pw, and
index displacements in the projective time skewing.
However, other parameters involve more complicated code

variants, for which we developed code generators using
the Perl scripting language to automatically generate these
code parts. Beyond code specialization, our code generators
implement simple compiler optimization techniques like
common subexpression elimination and are used to generate
instruction sequences in the long basic block in the in-core
optimization, and to enumerate all possible cases in the big
jump table in the band update optimization. Only a code
generator provides the flexibility to handle combinations and
many values of parameters as summarized in Table I. It
would be very time consuming to provide a sufficient set
of code blocks covering enough parameter combinations to
perform reasonable autotuning.
Extension to other level set applications. Our code

framework can be generalized for other surface tracking ap-
plications beyond image segmentation. The main difference
is that they use different stencil kernels or work on higher
dimensional data. Replacing a stencil kernel only requires
extending or replacing the stencil scheduling code generator,

which is a localized change and easy to accomplish. Our
system can be extended to higher dimensional data, however,
this requires additional effort in the projective time skewing
part of the framework which is currently specialized to two
dimensions.

VIII. RELATED WORK

This work targets an algorithm that is conceptually be-
tween sparse linear algebra and dense stencil computation. It
takes inspiration from approaches in these two domains, and
further adds ideas from autotuning and program generation
into one integrated framework that is taking advantage of
the specifics of the narrow band level set method. The
unique properties of the targeted algorithm requires novel
instantiations and adaptations of known concepts since the
added complexity from the evolving band does not allow
direct application of the well-known methods discussed
below.
Stencils. Dense stencil computation on multicores and

time skewing is investigated [9], [10]. Polyhedral compilers
targeting imperfectly nested loops are discussed in [6], [7],
and improve locality for dense stencils [8]. Dense methods
are not directly applicable for the sparse narrow band in
level set.
Sparse linear algebra. Optimizations for sparse linear

algebra usually focused on maximizing bandwidth utilization
due to the low data reuse [11], [12]. Sparse tiling [13], [14]
and cache blocking [15] are techniques to improve locality
for unstructured grid. In both methods, they assume a large
number of iterations is performed on a stationary irregular
mesh graph. This assumption does not hold for the evolving
narrow band in the level set method.
Autotuning and program generation. Library generators

such as ATLAS [16], FFTW [5], OSKI [12], Spiral [4]
have proven extraordinarily effective at generating code
that matches the performance of hand-written code. These
systems employ both autotuning concepts and utilize various
levels of program generation and domain-specific compilers
but do not support the level set method.

IX. PERFORMANCE EVALUATION AND ANALYSIS

We examine the performance delivered by our framework
on two Intel x86 multicore CPUs: a Intel dual-socket 2.8
GHz Xeon 5560 and a 1.6 GHz Atom N270. The two
platforms represent two extremes on the power efficiency
spectrum. They have a significant difference in the core
microarchitecture, cache hierarchy, the number of hardware
threads, peak flop rate and DRAM bandwidth, as summa-
rized in Table II. All experiments are performed using the
Intel C++ compiler 11.0 with best optimization flags.
Baseline code. Our baseline code for speedup is a

straight-forward implementation of the pseudo code de-
scribed in Section III. It is scalar single-threaded C code,

Table II
SUMMARY OF HARDWARE PLATFORM FEATURES.

Processor Intel Xeon 5560 Intel Atom N270

Microarchitecture Nehalem Atom
Type superscalar OoO in-order
Threads/core 2 2
Clock 2.8 GHz 1.6 GHz
Peak single precision 22.4 Gflop/s 6.4 Gflop/s
L1 D-cache 32 kB 32 kB
L2 (private) 256 kB 512 kB
L3 (shared) 8 MB –

System Dell T410 Atom N270

Cores/socket 4 1
Sockets 2 1
Peak single precision 179.2 Gflop/s 6.4 Gflop/s
DRAM size 12GB 1 GB
DRAM BW 63.98 GB/s 4.26 GB/s

with tile size 1 × 1 and Br = 1. We turn on all com-
piler auto-optimizations including high level optimization,
SIMDization and auto-parallelization when measuring our
base line.
Comparison to third-party code. The best publicly

available code for comparison is the C code provided by
Li. et at [3] in the form of a pre-compiled C program
available as dynamic link library (DLL). Their code is close
to a straight forward C implementation of the algorithm.
While it is implemented in C the program is called through
a Matlab interface. For the problem sizes we are considering,
the invocation overhead of a C kernel from within Matlab
should be negligible. Due to portability issues of the library
file, we could only run their code on a Core 2 Extreme
machine with 64-bit Windows Vista. We compared our C
base line to their implementation on the same machine and
measured a speedup of our scalar C code baseline over their
code of about 1.3–2.0x when compiled using MS Visual
Studio compiler 32-bit, and 2.0–3.0x when compiled with
Intel C on 64-bit. This indicates that both their code and
our base line code are of similar optimization grade, and
our base line is comparable to the best available third-party
code, both in implementation approaches and performance.

A. In-core Performance.
Here evaluate the performance of our in-core optimiza-

tions as described in Section IV. We use a square image of
a size that is cache resident for the last level cache on the
respective machine.
Stencil. In CompN, a superpixel of 1× 4 pixels performs

4 vector ADD and 4 vector MUL, so theoretical peak is 1
cycle/pixel on Xeon, and 2 cycle/pixel on Atom. In CompL,
a superpixel of 1 × 4 pixels performs 14 vector ADD and
13 vector MUL, so theoretical peak is 3.5 cycle/pixel on
Xeon, and 6.75 cycle/pixel on Atom. Using the best tile
size, the CompLS kernel code runs at 50% of 22.4 Gflop/s
machine peak on Xeon and 25% of 6.5 Gflop/s machine

0

2

4

6

8

64 128 256 512 1024 2048 4096
image size

Computational Rate (UpdateLS) on Atom
SP Performance [Gflop/s] vs image size

In-core kernel
upper bound

Full program

Peak performance (single core)

C base line 7x 13x

0

5

10

15

20

25

64 128 256 512 1024 2048 4096 8192
image size

Computational Rate (UpdateLS) on Xeon
SP Performance [Gflop/s] vs image size

In-core kernel
upper bound

Full program

Peak performance (single core)

C base line

8x
36x

Figure 12. Computational rate of fully auto-tuned program on Atom and
Xeon. Also show machine peak performance, stencil kernel performance,
and baseline for comparison.

peak on Atom, which is good for such complicated stencil
kernels. A higher fraction is delivered on Xeon because
of its aggressive out-of-order core and more physical and
architectural registers. This performance sets the upper limit
for larger image sizes that do not fit into the cache.
Band update. It is difficult to characterize the code

efficiency for UpdateB, because the main bodies of both
scatter and gather consist of switch statements,
which are highly unpredictable depending on the exact
evolution pattern of the band. Here we report a lower bound
by counting the total number of switch statement entries
and memory writes, divided by CPU cycles. In scatter,
executing an average case in the switch statement costs
about 29 cycle, and writes to BI takes about 13 cycle/write.
In gather, the average case in the switch statement
costs about 30 cycle/entry, and writes to Blist take about 23
cycle/write. The performance is most likely limited by the
unpredictable control flow. On Atom, in scatter it takes
on average 50 cycle per case and writes to BI take about
10 cycle/write. In gather, it takes about 36 cycle/case,
and writes to Blist takes 28 cycle/write.

B. Memory Optimization
Next we evaluate our memory optimizations including

projective time skewing from Section V on a single core.

%

"

.

B

%0

0.
 %"B
 "/0
 /%"
 %D".
 "D.B
 .DE0

������	����

3�������
����������

3�������

3���F������
����
������

3�H
�����,����

3�*I�

3�����#J���-
��+��

�����1
4���
�,����

�������
�������������!�����"
���

%

"

.

B

%0

)"

0.

%"B
 "/0
 /%"
 %D".
 "D.B
 .DE0
 B%E"

������	����

3�������
����������

3�����
�����-
�������

3���F������
����
������

3�H
�����,����

3�*I�

3�����#J���-
��+��

�����1
4���
�,����

�������
�������������!�����#����

Figure 13. Speedup over scalar C code baseline on Atom and Xeon. Each
point in the figure shows the performance with all optimizations so far.
(Best view in color)

We use square image sizes varying from 64 to 8,192 (the
input data is generated by scaling the example image in
Fig 2) on both machines. 8,192 is a large out-of-cache size
that is too big to be held in memory addressable by the TLB
on the Xeon.
Levelset evolution performance. Fig 12 shows the com-

putational rate in Gflop/s measured for the computation part
(CompLS), which is about 26%–35% of the machine peak
on Xeon, and 12%–20% on Atom for varying input sizes. On
Xeon, the performance remains almost flat when image size
grows out of cache size. This means the application is close
to compute bound. On Atom, the performance degrades as
the input cannot be held in cache, indicating a considerable
penalty from cache misses. This is because the L2 (512K)
on Atom limits the search space of the polytope size, so that
the memory bottleneck can only be partially hidden. On both
machines, the gap between the kernel performance and the
real application performance for small image sizes is mainly
caused by the overhead of the indirect memory access using
the CSR format. We tested the kernel code using the CSR
format for the complete image, and got almost the same
performance as in the real application.
Full program speedup. Fig 13 shows speedup of the

best auto-tuned single-core code over our C base line. We
show the relative speedup over our baseline code by adding
the optimizations in the order of in-core, memory, and

4

8

16

32

64

128

256

0 2,000 4,000 6,000 8,000 10,000

No Skewing,
4K pages

No Skewing,
2M pages

Skewing, 4K
pages

Skewing, 2M
pages

Skewing, 2M,
padding

Performance of CompL on Xeon
Cycles/pixel vs. image size

Figure 14. Performance (cycles/pixel) of CompL on fixed narrow band.

band update optimizations. For small image sizes fitting into
the last level cache, in-core and band update optimizations
are most effective, and for large image size, the memory
level optimizations play an important role. We see a typical
speedup around 8 on the Atom and on the Xeon for smaller
sizes. Towards the larger sizes the memory optimizations
show their impact and push the compound single core
speedup to over 32 on the Xeon and around 14 on the Atom.
Projective time skewing. Fig 14 shows the result on Xeon

assuming a fixed band. Performance severely decays without
projective time skewing (“No Skewing”), and large pages
only help moderately (“No Skewing, 2M pages”). After pro-
jective time skewing still, performance slowly decays as the
image size grows, with a few bumps at certain image sizes
(“Skewing, 4K pages”). With large pages (“Skewing, 2M
pages”) and additional padding (“Skewing, 2M, padding”)
the cycles/pixel finally performance stays stable across all
image sizes, showing success.
Autotuning gain. To understand the benefits of autotun-

ing, we compare against a reasonably good choice of the
parameters: Th × Tw = 2 × 4, Br = 2, Ph = min(w

64 , 48),
with all other optimizations enabled or set to the highest
level wherever applicable. This is used as default across all
problem sizes and on both machines. We compare these pa-
rameters to the best found separately for every problem size
and machine. Autotuning on average improves performance
by 12% on Xeon and 17% on Atom. The maximum gain
is 25%on Xeon and 40% on the Atom. This shows that the
most impact (factors of speedup) is derived from the careful
development of the optimized code skeleton, and autotunig
can further improve the performance to gain an extra edge
(10s of % of speedup).

C. Multicore Parallelization Result
Next we evaluate the scaling across multiple cores on our

multicore Xeon system. Fig 15 shows the speedup results;
image sizes too small for parallelization are omitted. For
very small image sizes, the synchronization overhead is
relatively high, because each core has little work in the
steady state. For medium image sizes, we observe close-

D

/D

%DD

%/D

"DD

"/D

%"B
 "/0
 /%"
 %D".
 "D.B
 .DE0
 B%E"

$����!��������!�������%�	������

%

"

.

B

%"B
 "/0
 /%"
 %D".
 "D.B
 .DE0 B%E"

'����������
���������!���

*�
�����	�

��
�����	�

��
�����	�

������	���� ������	����

Figure 15. Parallelization (using 2, 4 and 8 cores) and compound speedup
on Xeon.

���� ���� ���� ���� ���� ����

���	���
��
���

���� ���� ���� ���� ���� ����

����	����
��
����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

Figure 16. Sensitivity of tuning parameters to input images. The number
in the j-th row i-th column shows the relative slowdown of applying the
best tuning parameters of image i to image j compared to using the best
tuning parameters of image j.

to-linear speedup. Degradation happens when scaling from
4 cores (single-socket) to 8 cores (dual-socket) for large
image sizes. This is because all L2 misses go through
the main memory attached to the first socket, and this
doubles the memory pressure compared to the single socket
case. The compound speedup over our C baseline with all
optimizations and multithreading on Xeon is also shown in
Fig 15, ranging in 14–195x. The lower speedup numbers
are obtained for small images and mainly due to in-core
optimization, and the highest speedup numbers show the
benefit of the largest sizes from both threading and projective
time skewing on top of the in-core optimizations.

D. Sensitivity to Images
Level set based image segmentation is a highly data

dependent algorithm, and as last experiment we evaluate
the sensitivity of our tuning parameters to various images.
In Fig 16, we shows how sensitive the performance is to
six different images on both Xeon and Atom. For each
image, we perform the autotuning process to find out the
optimal parameter. Then we cross-test the optimal tuning
parameters found for one by using it for another image. Let
Tji be the runtime when applying the parameters of image
i to image j. The number in j-th row i-th column shows
Tji

Tjj
, which is the slowdown for image j when using the

(less than optimal) parameter from image i. We found that
the maximum slowdown is 1.49, and average slowdown is
1.03x across all scales and both machines. We see clear
evidence that in level set based image segmentation the

tuning parameters depend on the edge distribution of the
image. For images of similar edge distributions like the first
two images, the measured slowdown is within 13% on Xeon
and 7% on Atom for all scales. The results suggest that in
practice we can perform off-line tuning for a set of similar
images to obtain performance portability within an image
class.

X. CONCLUSION
Developing highly efficient computational code for mod-

ern multicore CPUs is a hard problem. Performance portable
implementations that deliver high machine utilization across
multiple machines usually require thorough exploration of
application-dependent code optimizations, in conjunction
with autotuning and program generation approaches. In this
paper, we present a framework that delivers a highly efficient
performance portable implementation of the narrow band
level set method, which is an important tool for tracking
evolving surfaces and in image segmentation.
To achieve high efficiency for this irregular algorithm

based sparse stencil computation on an evolving set of
pixels, we developed a projective time skewing technique
to extract reuse for dynamically evolving contiguous lower-
dimensional sub-sets of grid points of a regular dense grid.
We further adapted standard optimization techniques to this
dynamic use case and performed specialized in-core sten-
cil optimization, lower level memory optimizations, band
update optimization, and threading. We built an autotuning
framework to find good parameterizations for our optimiza-
tion techniques. For 2D image segmentation on a dual quad-
core Xeon system, our fully optimized code shows between
10x and 200x speed-up over our C base line implementation,
which has similar performance as the best third-party C
implementation. Our code reaches 25%–35% of the machine
peak performance across a wide range of problem sizes. This
shows the effectiveness of our approach.

ACKNOWLEDGMENT
This work was supported by ONR grant N000141110112,

NSF through award 0702386, Intel and the Industry Tech-
nology Research Institute Lab (ITRI) at Carnegie Mellon.

REFERENCES
[1] J. A. Sethian, Level Set Methods and Fast Marching Methods:

Evolving Interfaces in Computational Geometry and Fluid
Mechanics and Computer Vision and Material Science. Cam-
bridge University Press, 1999.

[2] C. Li, R. Huang, Z. Ding, C. Gatenby, D. N. Metaxas, and
J. C. Gore, “A level set method for image segmentation in
the presence of intensity inhomogeneities with application to
mri,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 2007–
2016, July 2011.

[3] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolu-
tion without re-initialization: A new variational formulation,”
Proc. of Computer Vision and Pattern Recognition (CVPR),
2005.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. W. Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 232–275, 2005, special issue on Program
Generation, Optimization, and Adaptation.

[5] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proc. of the IEEE, special issue on ”Program
Generation, Optimization, and Adaptation”, vol. 93, no. 2,
pp. 216–231, 2005.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan, “Pluto: A practical and fully automatic polyhedral
program optimization system,” Proc. ACM SIGPLAN 2008
Conference on Programming Language Design and Imple-
mentation (PLDI), 2008.

[7] C. Bastoul, “Code generation in the polyhedral model is easier
than you think,” Proc. of the 13th International Conference on
Parallel Architectures and Compilation Techniques (PACT),
2004.

[8] D. Wonnacott, “Using time skewing to eliminate idle time due
to memory bandwidth and network limitations,” International
Parallel and Distributed Processing Symposium(IPDPS),
2000.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures,” SuperComputing(SC), 2008.

[10] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick, “Optimization and performance modeling of stencil
computations on modern microprocessors,” SIAM Review,
vol. 51, no. 1, pp. 129–159, 2009.

[11] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization
framework for sparse matrix kernels,” International Journal
of High Performance Computing Applications, vol. 18, p.
2004, 2004.

[12] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A
library of automatically tuned sparse matrix kernels,” In Proc.
SciDAC, J. Physics, 2005.

[13] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, “Sparse
tiling for stationary iterative methods,” International Journal
of High Performance Computing Applications, vol. 18, pp.
95–113, 2004.

[14] M. M. Strout, L. Carter, J. Ferrante, J. Freeman, and
B. Kreaseck, “Combining performance aspects of irregular
gauss-seidel via sparse tiling,” in in 15th Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC, 2002.

[15] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, U. R. Ude,
and C. Wei, “Cache optimization for structured and unstruc-
tured grid multigrid,” Elect. Trans. Numer. Anal, vol. 10, pp.
21–40, 1999.

[16] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated
empirical optimization of software and the ATLAS project,”
Parallel Computing, vol. 27, no. 1–2, pp. 3–35, 2001.

