
A SIMD Vectorizing Compiler for
Digital Signal Processing Algorithms�

Franz Franchetti
Applied and Numerical Mathematics

Technical University of Vienna, Austria
franz.franchetti@tuwien.ac.at

Markus Püschel
Electrical and Computer Engineering

Carnegie Mellon University
pueschel@ece.cmu.edu

Abstract

Short vector SIMD instructions on recent micropro-
cessors, such as SSE on Pentium III and 4, speed up
code but are a major challenge to software develop-
ers. We present a compiler that automatically gener-
ates C code enhanced with short vector instructions for
digital signal processing (DSP) transforms, such as the
fast Fourier transform (FFT). The input to our com-
piler is a concise mathematical description of a DSP
algorithm in the language SPL. SPL is used in the SPI-
RAL system (http://www.ece.cmu.edu/�spiral) to gener-
ate highly optimized architecture adapted implementa-
tions of DSP transforms. Interfacing our compiler with
SPIRAL yields speed-ups of more than a factor of 2 in
several important cases including the FFT and the dis-
crete cosine transform (DCT) used in the JPEG com-
pression standard. For the FFT our automatically gen-
erated code is competitive with the hand-coded Intel
Math Kernel Library.

1. Introduction

Most major vendors of general purpose microproces-
sors have included short vector SIMD (single instruc-
tion multiple data) extensions into their instruction set
architecture (ISA) to improve the performance of multi-
media applications. Examples of SIMD extensions sup-
porting both integer operations and floating-point op-
erations include the Intel Streaming SIMD Extensions
(SSE and SSE2), AMD 3DNow! (plus extensions) and
the Motorola AltiVec extension. Each of these ISA ex-
tensions is based on the packing of large registers (64-
bits or 128-bits) with smaller data types and providing
instructions for the parallel operation on these subwords
within one register.

�This work was supported by the Special Research Program SFB
F011 “AURORA” of the Austrian Science Fund FWF and by DARPA
through research grant DABT63-98-1-0004 administered by the Army
Directorate of Contracting.

SIMD extensions have the potential to speed up im-
plementations in application areas where performance
is crucial and the algorithms used exhibit the fine-grain
parallelism necessary for using SIMD instructions. One
example of such an application area is digital signal pro-
cessing (DSP), which is at the heart of modern telecom-
munication. The computationally most intensive parts in
DSP are performed by DSP transforms, such as the dis-
crete Fourier transform (DFT), and require their efficient
implementations.

A very efficient implementation of the DFT is pro-
vided by FFTW [2]. A first SIMD version of FFTW
has been presented in [1] showing a substantial improve-
ment in performance.

The implementation of arbitrary DSP transforms, in-
cluding the DFT, is the target of SPIRAL [3]. SPIRAL
is a generator for libraries of DSP transforms. The code
produced is highly optimized, and, furthermore, adapted
to the given computing platform. SPIRAL uses a high-
level mathematical framework that represents fast algo-
rithms for DSP transforms as formulas in a symbolic
mathematical language called SPL (signal processing
language). These formulas are 1) automatically gen-
erated from a transform specification [4]; and 2) auto-
matically translated into optimized code in a high-level
language like C or Fortran using the SPL compiler [7].
Platform adaptation is achieved by intelligently search-
ing, for a given transform, the large space of possible
algorithms, i.e., formulas, for the fastest one [5]. The
code produced by SPIRAL is very competitive [7].

In this paper we present a SIMD vectorizing ver-
sion of the SPL compiler that is portable across different
SIMD architectures. We show that certain mathemat-
ical constructs used in the formula representation of a
DSP algorithm can be naturally mapped to vectorized
code. These constructs are generalized versions of one
base case and occur in virtually every DSP algorithm.
Furthermore, in several important cases, including the
DFT, the Walsh-Hadamard transform (WHT), and arbi-

1



trary two-dimensional transforms, the formulas are built
exclusively from these constructs, and thus can be com-
pletely vectorized.

We included our compiler into SPIRAL and au-
tomatically generated—on a Pentium III with SSE—
vectorized DSP code that is highly competitive and sub-
stantially speeds up the code generated by SPIRAL. We
obtained speed-up factors of more than 2 for DFTs,
WHTs, and 2-D DCTs. Experiments indicate that, un-
der the given conditions, this is near the practical limit
on this architecture.

The paper is organized as follows. Section 2 briefly
introduces short vector SIMD extensions available on
current processors and discusses the vectorization prob-
lem. Section 3 briefly describes SPIRAL. In Section 4
we present the mathematical foundation of our vectoriz-
ing compiler, which then is explained in Section 5. We
conclude with experimental results in Section 6.

2. Short Vector Extensions

Important floating-point short-vector SIMD exten-
sions currently available on general purpose micropro-
cessor architectures include Intel SSE (4-way single-
precision), Intel SSE2 (2-way double-precision), Mo-
torola AltiVec (4-way single-precision), and AMD and
Enhanced 3DNow! (2-way single-precision). Some of
these extensions add new SIMD registers and some ad-
ditionally introduced new execution units to the proces-
sor architecture. It is important to note that, because of
constraints in the processor architecture, the amount of
parallelism (i.e., 2-way or 4-way) can give only a rough
(and usually misleading) estimate for a possible perfor-
mance gain. These SIMD extensions share the following
characteristics:
� They provide �-way floating-point vector arithmetic.
� Memory access is efficient only for properly aligned

unit-stride data through vector loads/stores (on some
architectures unaligned access and subvector mem-
ory access are supported but cause very high compu-
tational cost).

� Some types of in-register permutations are supported.
� Proprietary C interfaces (APIs) are available (except

for AMD).
Because of hardware restrictions and the specific struc-
ture of DSP algorithms, their efficient vectorization and
implementation is a difficult problem. Main challenges
include:
� Non-unit stride access and complex data types pro-

duce data access patterns that prevent a straightfor-
ward vectorization.

� A general purpose vectorizing compiler does not
have access to the full structure of a DSP algorithm,
and thus cannot find a satisfactory vectorization.

�

�

�

Se
ar

ch
E

ng
in

e

Platform-Adapted Implementation
�

Performance
Evaluation

�

Formula
Translator

�

Formula
Generator

�
Signal Transform

Benchmarking
tools

Implementations
by domain specific

compiler

Algorithms in
uniform algebraic

notation

Figure 1. The architecture of SPIRAL.

� No standard API exists for different extensions across
architectures.

Our approach solves these problems by using a mathe-
matical description (a formula) of the DSP algorithm as
input to our compiler. This way, we have access to all
structural information and can use formal manipulations
to exhibit vectorizable parts. Furthermore, we have ex-
plicit access to all data access patterns, which allows us
to solve expensive load and store operations efficiently.
Finally, we achieve portability, by using our own API
(consisting of C macros) that is built only on commonly
available vector instructions.

3. SPIRAL

The objective behind SPIRAL [3] is to provide a code
generator that is capable of generating highly optimized
libraries for arbitrary DSP (digital signal processing)
transforms. Furthermore, the term “optimization” not
only includes standard techniques like loop unrolling or
common subexpression elimination, but also platform-
adaptation by choice of a fast algorithm with optimal
dataflow for the given architecture. The approach of
SPIRAL uses the following facts.

� For every DSP transform there is a very large number
of different fast algorithms. These algorithms differ
in dataflow but are essentially equal in the number of
arithmetic operations.

� A fast algorithm for a DSP transform can be repre-
sented as a formula in a natural concise mathematical
notation using a small number of mathematical con-
structs and primitives.

� It is possible to automatically generate the alternative
formulas, i.e., algorithms, for a given DSP transform.

� A formula representing a fast DSP algorithm can be
automatically translated into a program in a high-
level language like C or Fortran.

2



SPIRAL’s architecture is based on these facts and dis-
played in Figure 1. The user specifies a transform he
wants to implement, e.g., a DFT of size 1024. A for-
mula generator module expands the transform into one
(or several) out of many possible fast algorithms, given
as a formula in the SPIRAL proprietary language SPL.
The formula is translated by the SPL compiler into a
program in a high-level language like C or Fortran. The
runtime of this program is fed back to a search engine
that controls the generation of the next formula. Itera-
tion of this loop leads to an optimized, platform-adapted
implementation. In addition to algorithmic choices, the
search module also controls implementation details, as,
e.g., the degree of loop unrolling. Further information
on SPIRAL can be found in [4, 7, 5].

Since SPIRAL is based on a mathematical descrip-
tion of DSP algorithms, it can be easily extended to in-
clude new transforms. In this paper we extend SPIRAL
to generate SIMD vectorized code by replacing the SPL
compiler (i.e., formula translator in Figure 1) by our ex-
tended version that generates SIMD code. This way we
benefit from SPIRAL’s infrastructure, and, in particular,
the search engine, to automatically find very fast imple-
mentations.

4. Mathematical Framework

In this section we describe SPIRAL’s mathematical
framework, which is the foundation of our approach.
Crucial is the concept of formulas to represent fast DSP
transform algorithms. Formulas are a natural represen-
tation from a mathematical point of view but can also be
interpreted as a very high level programming language,
which can be compiled into a standard language like C
(as it is done in SPIRAL), but also into efficient SIMD
vector code, which is our contribution.

DSP Transforms and Algorithms. A (linear) DSP
transform is a multiplication of the sampled signal � �
� � by a transform matrix � of size �� �, � ��� � �.
A particularly important example is the discrete Fourier
transform (DFT), which, for size �, is given by the ma-
trix

���� � ��������� 	 �� � � �� � � � � �
 ��� 	 �
�
��

DSP transforms have fast algorithms that reduce the
arithmetic cost to 
	� 
��	�

 (compared to 
	��
 by
direct evaluation) and make them efficient for applica-
tions. An algorithm can be viewed as a factorization of
the transform matrix into a product of sparse matrices.
It is a specific property of DSP transforms—and key to
our approach—that these factorizations are highly struc-
tured and can be written in a very concise way using a
small number of mathematical operators.

As an example consider the sparse factorization, i.e.,

fast algorithm, of ����, which is then written using
mathematical notation.�

�
� � � �

� � � �

� � �� �

� � � ��

�
� �
�
�
� � � �

� � � �

� � � �

� � � �

�
��
�
�
� � � �

� �� � �

� � � �

� � � ��

�
� �
�
�
� � � �

� � � �

� � � �

� � � �

�
�

� 	����� ��
� ��
� �	�������
� ��� �

(1)
Symbols ��

� and ��� are used to represent the diagonal
matrix ����	�� �� �� 	
 and the permutation matrix (right-
most matrix), respectively, and �� denotes an identity
matrix of size �. Of particular importance is the tensor
or Kronecker product � and the direct sum 
 of matri-
ces, defined as (� � �����������������)

��
 �

�
�

���� � 
 � � � ���� � 

...

. . .
...

���� � 
 � � � ���� �


�
� � (2)

�

 �
�
�



�
� (3)

Two special cases are of particular importance, and we
give an intuitive interpretation in terms of a multiplica-
tion to a vector �: ���
 means “apply � times 
 to
consecutive segments of �”; and �� �� means “apply �
times � at stride � to consecutive segments of �.

Equation (1) is an instantiation of the celebrated
Cooley-Tukey algorithm (e.g., [6]), also referred to as
the fast Fourier transform (FFT). In its general form, the
Cooley-Tukey FFT is given, for � � � � �, as

���� � 	���	 � �

 ���

 �	�	����

 � ��

	 � (4)

The twiddle matrix �	


 is diagonal and the stride per-

mutation matrix �	

	 maps � �� �� mod �� 
 � for

� � �� � � � � �� 
 � and �� 
 � �� �� 
 � [6]. Intu-
itively, �	


	 reads an input vector at stride � and stores it
a stride 1.

We call an equation like (4) a breakdown rule or sim-
ply rule. A rule is a sparse factorization of the transform
and breaks down the computation of the transform (here:
����) to transforms of smaller size (here: ���	 and
���
). The smaller transforms (which can be of a dif-
ferent type) can be further expanded using the same or
other rules. Eventually we obtain a mathematical for-
mula where all transforms are expanded into base cases.
This formula represents a fast algorithm for the trans-
form. As an example we give a formula for �����,
which is used as a case study throughout this paper:

����� � 	����� ��
 � ���
� �	�������
 � ���� � (5)

with ���� being expanded as in (1). For a computer
representations of formulas, SPIRAL uses the language
SPL. The SPL compiler translates the SPL description
into C or Fortran code [7].

By selecting different rules in the expansion process,
SPIRAL can generate, for one transform, a very large

3



number of different formulas, corresponding to different
fast algorithms. These algorithms have essentially the
same arithmetic cost, but different data flow, which leads
to very different runtime performances. SPIRAL solves
the resulting optimization problem by intelligent search
in the formula space [5].

It is important to note that the presented framework
is not restricted to the DFT but applies to all (linear)
DSP transforms. We give two further examples, the
Walsh-Hadamard transform (WHT) and arbitrary two-
dimensional transforms.

����� �

� times� �	 

����� � � ������� with rule

����� �

��
���

�
�
�
���� ����

�
�� � �

�
����



�

(6)

where � � �� � � � � � �� is a chosen partition, and we
use the short notation �� � �, and �� � �� � � � � � �� ,
� � �.

If � is an 	���
-transform, then the corresponding
two-dimensional transform is given by � �� . Using
a property of the tensor product we obtain the equation,
i.e., rule,

� �� � 	� � ��
 � 	����
� (7)

Formula Manipulation. A given formula for a
fast DSP transform algorithm can be manipulated us-
ing mathematical identities. Formula manipulation is
the first main step in our vectorizing compiler (see Sec-
tion 5). The goal is to normalize formulas and to exhibit
subexpressions that can be vectorized. We use the fol-
lowing identities; � and
 are of size ��� and ���,
respectively, � is a permutation matrix, ��� � are diag-
onal.

�� � ��� (8)

��
�� � ��
 
 �� (9)

��� � ��� �� (10)

��
 � 	�� ��
	���

 (11)

�
 �� � ��


 	�� �

 �

�

� (12)

	�����
� 
	�����

 
 � ���
 (13)

Complex Transforms. In SPIRAL, complex trans-
forms are realized in real arithmetic using the inter-
leaved complex format (alternating real and imaginary
part) for the input vector. This can be expressed for-
mally. We use the simple fact that the complex multipli-
cation 	�� 	�
 � 	� � 	�
 is equivalent to the real multi-
plication � � ��

� � � � � �� �. Thus, the complex matrix-vector
multiplication� �� � � � corresponds to � ��� � ��� ,
where � arises from� by replacing every entry �� 	�

by the corresponding 	�� �
-matrix above, and � � is in
interleaved complex format. The operator 	�
 allows us
to formally translate complex transforms and formulas

into real ones, which simplifies the code generation. As
in the previous paragraph, we need a suitable set of ma-
nipulation rules, which is given by

� �
 � � �
 (14)

� � �� ��� � real (15)

� � 	���
 ���

 
�
�

	���
 ���
� 
� � 	 � (16)

�� �
 � 	�����

 
	� � �

	�����
� 
 (17)

Here � and � are of size ���; the matrix�
�

has a cer-
tain block diagonal structure suitable for vectorization.

5. Vectorization of SPL Formulas

In this section we present an extended version of the
SPL compiler that generates C code enhanced with ma-
chine independent SIMD macros, using a formula, given
in SPL, and the SIMD vector length � (i.e., number of
floats contained) as its sole input. This new version is
a replacement for the standard SPL compiler within the
SPIRAL system and provides the generation of vector-
ized code. The machine independent SIMD macros can
be implemented on all current short vector SIMD archi-
tectures using native short vector instructions and consti-
tute an hardware abstraction layer. Compiler support is
required to utilize these instructions within source code
leaving all lower-level optimizations including register
allocation and instruction scheduling to the C compiler.

Vectorizable Formulas. The key problem to solve is
to identify the SPL constructs that can be vectorized and
to find an efficient implementation of the required build-
ing blocks. Our approach is based on the vectorization
of the basic construct

�� �
 � � � vector length� (18)

and � is an arbitrary formula. This construct can be nat-
urally implemented by replacing in a scalar implemen-
tation of � all scalar operations by the corresponding
vector operations.

Extending from this base case, the normalized most
general construct that we vectorize (i. e., that can be im-
plemented using exclusively our architecture indepen-
dent SIMD macros) is the formula

��
���

����	�� � �

����� (19)

with arbitrary matrices ��, permutation matrices ��� ��,
and matrices ��� �� that are either diagonal or have a
certain block diagonal structure (arising from complex
formulas transformed into corresponding real formulas).
For example, all DFT and WHT algorithms arising from
Rules (4) and (6), respectively, and two-dimensional
transforms (7), can be normalized to formulas match-

4



ing (19) and can thus be completely vectorized with our
approach.

Our compiler vectorizes a given formula in two
steps:
� The symbolic vectorization normalizes a formula, us-

ing manipulation rules, to exhibit maximal subformu-
las that match (19).

� The code generation phase translates vectorizable
subformulas into vectorized code built from portable
SIMD macros; the rest of the formula is imple-
mented in C. In addition, several optimizations are
performed.
Efficient utilization of short vector extensions (and

straightforward vectorization) requires unit-stride data
access, but other access patterns are inherent in the struc-
ture of DSP algorithms. An important example are sub-
formulas of the form ����. A similar problem arises
from the interleaved data format used by complex trans-
forms. We solve this problem by formula manipulations
that formally substitute these expressions to make them
match (19) by introducing permutations � �� ��.

Concerning the performance of the generated code,
finding an efficient implementation of the permutations
�� and ��, using vector instructions, is the most impor-
tant problem to solve. The efficiency of the implemen-
tation depends on the type of permutation and also on
the underlying SIMD architecture. A permutation can
be negligible concerning runtime, but it may also slow
down the whole DSP algorithm dramatically. We iden-
tify a class of permutation that can be realized efficiently
and includes the permutations occurring in the consid-
ered transforms.

We want to emphasize that our approach uses high-
level structural information of the DSP algorithm. This
information is available in the formula representation,
but not in a C code representation of the algorithm. For
this reason, a general purpose vectorizing compiler fails,
e.g., to vectorize the construct �
 ��, even though it is
completely vectorized with our methods.

We detail the compilation process in the following,
using Formula (5) as illustrative example.

Symbolic Vectorization. In this step we apply to
a given formula � the manipulation rules (8)–(13) and
(14)–(17) to obtain an expression of the form

� �

��
���

	�� 
 ��
��
��� � 	 size of �� (20)

where ��� ��� �� are arbitrary formulas and the symbols
�� are defined as in (19) by

�� � ����	�� � �

����� (21)

We reserve the symbols �� for vectorizable parts of the
formula, while��� ��� �� will be translated into standard
C code. For example, a formula that has no vectorizable

parts degenerates to � � ��, while in a completely vec-
torizable formula ��� �� vanish, �� is the identity, and
thus � matches (19). Note that the normalization is not
unique. Important subformulas that become symbols � �

in this step include �� 
, � � ��, �� ��, �� ��, and
����, as can be seen from the manipulation rules.

Furthermore, products ������ of adjacent permuta-
tions are entirely or partially canceled out. In particular,
in the real realization of a complex formula using (17),
the simplification (13) can be often applied.

After the normalization, the symbols � � are extracted
and treated as independent formulas for which code is
generated.

We illustrate this step with Formula (5) and vector
length � � �. We obtain the following completely vec-
torizable expression, which matches (19):

����� �
�
	������
	���� � ��
�

���

�

�

�
�
	������
	�

��
� � ��
	������


	���� � ��
	������

� (22)

The vectorizable subformulas are replaced by symbols
leading to ����� � �� � �� with the definition of the
symbols �� and �� and the non-trivial parameters (i. e.,
all parameters not equal to �	�) �� � 	������
, �� �

����, �� � �
���

� , �� � 	������
	�
��
� � ��
	������
,

�� � ����, and �� � 	������
. This factorization is
implemented efficiently using exclusively our machine
independent SIMD macros as outlined in the following
section.

Code Generation. In this step, the normalized for-
mula � is translated into C code including a set of
portable SIMD macros. The method relies on a C com-
piler that features a language extension (intrinsic func-
tions mapped to the short vector instructions and vector
data types) for a short vector SIMD extension ISA, i. e.,
the SIMD hardware can be accessed explicitly within a
C program without the usage of inline assembly. E. g.,
the Microsoft Visual Studio (requiring the installation
of the Processor Pack) or the Intel C++ Compiler (for
both Windows and Linux) can be used for SSE and
SSE2, while some vendors (including GNU) support
Motorola’s AltiVec interface. To overcome the prob-
lem of platform-specific instruction set architectures and
APIs, our generated code is built on top of a set of C
macros as unifying interface to the short vector exten-
sions. All required operations within the vectorized code
are defined as C macros utilizing only basic SIMD in-
structions including 1) vector memory access, 2) hard-
ware supported in-register permutations, 3) vector arith-
metics. The required functionality can be implemented
on all current SIMD extensions.1

1For example, the implementation of the permutation �� ���
�

5



For all symbols �� in (20) vectorized code is gener-
ated while for the remaining non-vectorized part of the
formula (��, ��, and ��) standard C code is generated.
The remainder of this section describes the implementa-
tion of the symbols.

Implementation of Symbols. Each symbol (21) is
implemented as a C function consisting of vectorized
code and consists of the following logical parts:
� Load phase: �� � ���� � �.
� Computation phase: � � � 	�� �

 � ��.
� Store phase: � � ���� � ��.

The SIMD code for � � � 	���

��� is readily gener-
ated by replacing all scalar floating-point operations of
the code for � � � � � (generated by the original SPL
compiler’s core routines) with vector operation macros
(e.g., c=a+b is replaced by SIMD ADD(c,a,b)) lead-
ing to vector code for � � � 	�� �

 � ��.

The operations of � � ���� � �� and �� � ���� � �
are—in general—handled by memory access macros
that carry out these permutations transparently and in-
clude the operations imposed by ��� �� (avoiding ex-
plicit arrays �� and �� whenever possible). For one spe-
cific class of permutations, however, the implementa-
tion can be done using only vector memory access and
in-register permutations (if subvector memory access is
available or the code is completely unrolled, this class if
even more general). This class is given by permutations
of the form

	� � �

	�� �� 
	 � �

� � 	 size of �� (23)

where ��  � and � are permutation matrices. (If
� is a 	� � �
-matrix, we refer here to � as the
size of � .) We focus on this class, since it in-
cludes all permutations needed for a vectorized imple-
mentation of the DFTs, WHTs, and two-dimensional
transforms. In our example, �� � ������, �� �
������, and �� � 	������
	�

��
� � ��
	������
 �

	���� ��
	������� 
	���� ��
.
The operation �� � ���� � �, where �� matches (23)

is implemented using the following facts:
�  � �
 matches (18) and is implemented using vector

loads from the input array �.
� ���� is a permutation that operates on blocks of !�

elements and thus is implemented using in-register
permutations using ! short vector registers.

� � � �
 matches (18) and is implemented by vector
stores to the temporary array ��.

� �� is implemented as generalized scaling operation
utilizing vector memory access and vector arith-
metics.
The array �� is substituted by a set of temporary vari-

via the macro LOAD STRIDE 8 2(src1,src2,dst1,dst2) re-
quires the intrinsic mm shuffle ps() on Intel SSE and the intrin-
sics vec mergel() and vec mergeh() on Motorola AltiVec.

ables whenever the algorithm structure allows to save
stack cells and in this case the store operations of �� �

are realized by variable renaming. For a given symbol
��, data can only be loaded and scaled at chunks of ! vec-
tors because of the size of � . The permutations � � and
�� are not carried out in one step, but are broken into
pieces of size !�. Technically, a load macro and a scale
macro is issued previous to the first usage of a vector
element ���	� in the computation phase. These macros
have 3 sets of parameters: ! source vectors ��	�, ! des-
tination vectors ����� and the permutation � . Different
macros exist for different types of � to support an effi-
cient implementation. To load ! vectors into the destina-
tion locations ����� according to the permutation��, the
first ! vector elements ��	� are loaded into ! vector regis-
ters. This step handles a part of  � �
 . A segment of
!� floating-point numbers is then permuted according to
� using in-register permutations. In the next step, the
vector registers are stored into the the destination vectors
����� according to � � �
 .

After this step, a scaling macro carries out the oper-
ations to compute the generalized scaling introduced by
��. In the case that �� is a diagonal matrix, the general-
ized scaling is a standard scaling (a pointwise multipli-
cation of the vector ��	� or the respective temporary vari-
able by a vector of � constants). In the case that � � orig-
inates from a complex transform, its structure is more
complicated, but handled analogously by an appropriate
macro. We omit the details due to space limitations. The
load macro and the scaling macro lead to properly pre-
pared (i.e, in vector format) input variables � ��	� for the
computation phase. Different types of constants require
a set of complex scaling macros for an efficient imple-
mentation. In the store phase the operation � � � ��� ���
is carried out analogously.

The use of temporary variables instead of the arrays
�� and �� is the most crucial issue despite vector mem-
ory access, because it dramatically cuts the number of
required stack cells. For small SIMD symbol sizes and
inner loops, the generated code is unrolled. As a con-
sequence all constants and permutations are inlined and
special optimized macros for constant handling and per-
mutation handling are used. For larger SIMD symbol
sizes, loop code is generated. If loops and permutations
are not compatible, permutation tables are required lead-
ing to indirect memory access. The structure of nested
loops is analyzed to avoid permutation tables whenever
possible to prevent performance degeneration.

Using our machine independent macros, the factor-
ization of ����� obtained by symbolic vectorization is
implemented utilizing only vector memory access, in-
register permutations and vector arithmetics leading to a
very efficient library function for � � ����� ��.

6



ru
nt

im
e/

��
��
�
��
��

[n
s]

ru
nt

im
e/

��
�

��
�
��
��

[n
s]

ru
nt

im
e/

��
��
�
��
��

[n
s]

������ ��	

������ ��
�

���������������




�

�

�

	

�

������ ��	

������ ��
�

�� � ���� � ���� � ���� � ���� � ��

	


	�

	�

�

�




�

�

���� �����

�	
�� 
�� ���

������ ���

������ ��
�

������������

��

��

��

�

�

Figure 2. From left to right (� � �
�): normalized runtimes for a real WHT of size � � �

�
� � � � � �

��,
a real 2-D DCT of size �� �, � � �

�
� � � � � �

�, and a complex DFT of size � � �
�
� � � � � �

��.

6. Experimental Results

We tested our vectorizing SPL compiler, included in
SPIRAL (later called SPIRAL SIMD), on a 650 MHz
Pentium III operating under Windows 2000 using the In-
tel C++ compiler 5.0. The runtimes are minimums over
several measurements. Per measurement a sufficiently
large number of iterations was performed, transforming
the null vector. The transforms considered are the DFT,
the WHT, and the 2-dimensional DCT used in JPEG. We
use single precision floats for the real WHT and DCT,
and two floats for the complex DFT. Within SPIRAL
we used dynamic programming as search method, run-
ning separate searches for SPIRAL SIMD and the orig-
inal SPIRAL 3.1. We only considered transform sizes
that fit in level 2 cache. For convenient display, we nor-
malized the runtime by the asymptotic complexity of the
transforms (� 
��	�
 for WHT and DFT, and �� 
��	�

for 2-D DCT).

For the WHT and the 2-D DCT, we achieved speed-
up factors of 2.04 and 2.31, respectively, comparing SPI-
RAL SIMD and SPIRAL 3.1 (Figure 2, left and middle).

For the DFT, we compared SPIRAL SIMD, SPI-
RAL 3.1, Intel MKL 5.1 (the newest vendor library
with highly optimized DFT codes), and FFTW 2.1.3.
For �� to �
 the SPIRAL SIMD DFT was the fastest
routine measured. We obtained speed-up factors (SPI-
RAL SIMD vs. SPIRAL 3.1 or FFTW) SIMD) of up
to 2.09 (Figure 2, right). These results also outperform
[1], where speed-up factors of up to 1.65 were achieved.
The main reason is the new method of handling com-
plex numbers presented and in this paper. For small size,
we are not aware of any faster DFT implementation for
the Pentium III; even the vendors hand coded Intel Math
Kernel library is clearly outperformed.

Finally, we want to note that the speed-ups we ob-
tained are near the practical limit on this architecture.

Conclusion. We summarize the key points. 1) In
contradistinction to other approaches, we are not imple-
menting (and vectorizing) a specific transform algorithm
(as, e.g., the DFT), but generate code for the mathemat-

ical constructs the algorithm is built from. This way,
every algorithm using these constructs is automatically
included. 2) Our generated code can not be produced by
a general purpose vectorizing compiler, since it misses
the high level information provided by the formula rep-
resentation. 3) Using SPIRAL, the code generation (in-
cluding verification) and algorithmic optimization is en-
tirely automatic from the transform specification.

We are currently finishing an extended version of the
compiler that includes Motorola’s AltiVec architecture.

Finally, we want to thank Prof. Überhuber (Technical
University of Vienna) and Prof. Moura (Carnegie Mel-
lon University) for initiating and supporting the authors
collaboration.

References

[1] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhu-
ber. Architecture Independent Short Vector FFTs. In
Proc. ICASSP, volume 2, pages 1109–1112, 2001.

[2] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In ICASSP 98, volume 3, pages
1381–1384, 1998. http://www.fftw.org.

[3] J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua,
V. Prasanna, M. Püschel, and M. M. Veloso. SPIRAL:
Portable Library of Optimized Signal Processing Algo-
rithms, 1998.
http://www.ece.cmu.edu/�spiral.

[4] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura.
Fast Automatic Generation of DSP Algorithms. In
Proc. ICCS 2001, pages 97–106. Springer, 2001.

[5] B. Singer and M. Veloso. Stochastic Search for Signal
Processing Algorithm Optimization. In Proc. Supercom-
puting, 2001.

[6] R. Tolimieri, M. An, and C. Lu. Algorithms for discrete
Fourier transforms and convolution. Springer, 2nd edi-
tion, 1997.

[7] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL:
A Language and Compiler for DSP Algorithms. In
Proc. PLDI, pages 298–308, 2001.

7


