
IEEE PROCEEDINGS SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND PLATFORM ADAPTATION 1

Efficient Utilization of SIMD Extensions
Franz Franchetti, Stefan Kral, Juergen Lorenz, Christoph W. Ueberhuber

(Invited Paper)

Abstract— This paper targets automatic performance tuning
of numerical kernels in the presence of multi-layered memory
hierarchies and SIMD parallelism. The studied SIMD instruc-
tion set extensions include Intel’s SSE family, AMD’s 3DNow!,
Motorola’s AltiVec, and IBM’s BlueGene/L SIMD instructions.

FFTW, ATLAS, and SPIRAL demonstrate that near-optimal
performance of numerical kernels across a variety of modern
computers featuring deep memory hierarchies can be achieved
only by means of automatic performance tuning. These software
packages generate and optimize ANSI C code and feed it into
the target machine’s general purpose C compiler to maintain
portability.

The scalar C code produced by performance tuning systems
poses a severe challenge for vectorizing compilers. The particular
code structure hampers automatic vectorization and thus inhibits
satisfactory performance on processors featuring short vector
extensions.

This paper describes special purpose compiler technology that
supports automatic performance tuning on machines with vector
instructions. The work described includes (i) symbolic vectoriza-
tion of DSP transforms, (ii) straight-line code vectorization for
numerical kernels, and (iii) compiler backends for straight-line
code with vector instructions.

Methods from all three areas were combined with FFTW,
SPIRAL, and ATLAS to optimize both for memory hierarchy
and vector instructions. Experiments show that the presented
methods lead to substantial speed-ups (up to 1.8 for two-way and
3.3 for four-way vector extensions) over the best scalar C codes
generated by the original systems as well as roughly matching
the performance of hand-tuned vendor libraries.

Index Terms— Short vector SIMD, automatic vectorization,
symbolic vectorization, digital signal processing, FFT.

I. INTRODUCTION

In order to turn Moore’s law (exponential growth of the
numbers of transistors per area unit) into actual performance
gain, modern microprocessor architectures include perfor-
mance boosting features like multi-level caches (resulting in a
deep memory hierarchy), data prefetching, multiple execution
units and superscalar processor cores, as well as special
instructions for compute-intensive applications.

One important goal in compiler research is to map high-level
language programs (written, for instance, in C or Fortran) to
machine code that efficiently utilizes all performance boosting
features of current processors. However, some of these features
are difficult to exploit without detailed knowledge of the
characteristics of the underlying algorithm. This is particularly
the case when conflicting optimization goals aim at different

Manuscript received November 15, 2003. This work was supported by the
Austrian Science Funds FWF.

All authors are with the Vienna University of Technology.

hardware features and only the algorithm’s structure provides
hints on how to resolve this issue.

A. Short Vector SIMD Extensions

Short vector instructions have been introduced to support
compute intensive multimedia applications on general pur-
pose processors. Originally, these instructions targeted integer
computation but later were also expanded to include single
and double precision floating-point computation, which makes
them useful in scientific computing.

The main idea of short vector SIMD instructions is to have
multiple floating-point units operating in parallel, however,
restricting them to work on newly introduced vector registers
only. All floating-point SIMD instruction set extensions feature
constrained vector memory access, in-register data shuffling,
and parallel computation. They are all based on packing two or
four floating-point numbers into their vector registers. Exam-
ples include Intel’s SSE family, AMD’s 3DNow!, Motorola’s
AltiVec, and the vector extensions implemented in IBM’s
BlueGene/L1 processors.

To utilize short vector SIMD extensions transparently within
C and Fortran programs, automatic vectorization is a must.
Vectorization is a well-studied topic: Loop vectorization orig-
inates from vector computers and the vectorization of basic
blocks is related to instruction-level parallelism. However,
when these well-established techniques are targeted at short
vector extensions, they introduce a considerable overhead in
the resulting codes. Only algorithms having very regular struc-
ture (e.g., algorithms in 3D graphics) can be mapped to short
vector instructions in this way without significant overhead; in
particular numerical kernels often give rise to a non-negligible
amount of overhead. It is therefore not surprising that only
modest speed-ups are gained by vectorizing compilers [44].

To bypass this performance bottleneck, most compilers
targeting short vector extensions provide proprietary program-
ming interfaces allowing the programmer to insert SIMD
instructions manually. This approach exposes architectural
features and requires programmers to deal with low-level
issues like data alignment, and to select appropriate vector
instructions. The use of such language extensions reduces
portability of source code (by the introduction of vector exten-
sion specific optimization), and requires considerably higher
programming expertise. Straightforward application of the new
instructions usually leads to disappointingly low speed-ups and
may even result in actual slowdowns.

1The 360 Tflop/s supercomputer BlueGene/L features 65,536 CPUs and
supersedes the Earth Simulator by an order of magnitude.
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In performance optimization it is often required to trade
operation counts for structure, i.e., do suboptimal computation
to allow for better vectorization and globally change the
algorithm’s structure. A second trade-off is a satisfactory
utilization of SIMD instructions versus vectorization overhead.
Therefore, speed-up values close to their theoretical upper
bound are often realized only by expert programmers dealing
with very simple algorithms.

B. Automatic Performance Tuning

An important optimization target is the memory hierarchy
of the computer used. Optimization for data locality is a
must to achieve satisfactory performance on today’s computer
systems. Most production quality C or Fortran compilers
include memory hierarchy optimization, typically by applying
aggressive loop reorganization. These compilers also use pro-
filing data gathered by running the actual program for further
optimization. A vast amount of literature exists on the topic
of loop optimization and feedback directed compilation (see,
for instance, [47]).

However, due to the complexity of modern architectures,
even the most sophisticated compiler techniques aiming at the
memory hierarchy are incapable of achieving performance on
a level close to that of automatic performance tuning systems
like FFTW [22]–[24], SPIRAL [39], [43], [53], PHIPAC [9], and
ATLAS [13], [51]. These systems use an empirical approach
to automatically adapt numerical kernels to a given computer
system. They search in the space of possible implementations
and optimizations of their algorithm base and use actual
runtimes of the generated programs as the cost function in
the optimization process.

In terms of the performance of numerical kernels, an im-
portant question is how automatic performance tuning systems
can be adapted to support short vector SIMD extensions. For
portability reasons, these systems automatically generate and
optimize C or Fortran code. The obvious solution is to let a
vectorizing compiler take care of the SIMD extensions while
the automatic performance tuning system is responsible for the
optimization with respect to the memory hierarchy. However,
this approach turns out to be too simple-minded. Two reasons
for this include:

(i) Optimization dealing with loop vectorization conflicts
with optimizations related to the memory hierarchy. Efficient
vectorization of loops requires long vector lengths while data
locality calls for a minimization of vector lengths.

(ii) Automatic performance tuning systems carry out loop
unrolling and algebraic simplification, which results in large
basic blocks with complicated structure. Such basic blocks
are the worst case for extracting instruction-level parallelism.
As a result, vectorizing compilers in tandem with automatic
performance tuning systems often produce poorly performing
code.

C. Contributions of this Paper

This paper introduces methods that enable state-of-the-art
automatic performance tuning systems to utilize floating-point

short vector SIMD extensions efficiently. Support is provided
at three different levels:

1) Code Generator Level. This paper introduces and de-
scribes SIMD-aware vectorization algorithms for DSP
transforms designed to fit the needs of automatic per-
formance tuning systems.

2) Vectorization of Automatically Generated Code. The Vi-
enna MAP vectorizer utilizes the known structure of
computational kernels generated by self-tuning numerical
software to translate these kernels into efficient vector
code.

3) Replacement of C Compiler. The Vienna MAP backend
translates vectorized code into high-performance vector
assembly code.

The results from all three levels are connected to, and partly
included, in the state-of-the-art automatic performance tun-
ing systems SPIRAL, FFTW, and ATLAS. Moreover, FFTW-
GEL [31], a specialized FFTW version including the Vienna
MAP vectorizer and backend, is provided.

The main results of this paper can be summarized as
follows: Our methods for utilizing SIMD extensions achieve
the same level of performance as hand-tuned vendor li-
braries while providing performance portability. Combined
with leading-edge self-tuning numerical software—FFTW,
SPIRAL, and ATLAS—we have therefore produced:

(i) the fastest real and complex FFTs running on x86
machines (Pentium III, Pentium 4, and AMD processors) for
certain vector lengths; (ii) the only FFT routines supporting
IBM’s Power PC 440 FP2 double FPU used in BlueGene/L
machines; (iii) the only automatically tuned vectorized im-
plementations of important DSP algorithms (including discrete
sine and cosine transforms, Walsh-Hadamard transforms, and
multidimensional transforms); (iv) the only fully automatically
vectorized ATLAS kernels.

By comparing industry-standard non-adaptive implementa-
tions with the SIMD-aware automatic performance tuning that
we provide in tandem with our partners’ software, an overall
speed-up of an order of magnitude has been achieved (this is
comparable to five years of advance in hardware development).

D. Synopsis

The paper begins with a survey of the state-of-the-art in
automatic performance tuning, compiler backends, and short
vector SIMD vectorization. Section II reviews compiler tech-
nology that plays an important role in the context of this paper.
The idea of automatic performance tuning is introduced in
this section and the automatic performance tuning systems
ATLAS, FFTW, and SPIRAL are reviewed. Section III provides
details of current short vector SIMD extensions, including
vectorization techniques and their problems when applied to
short vector SIMD extensions.

The remaining sections present the novel contributions of
this paper. Section IV introduces symbolic vectorization of
DSP transforms. Section V explains the vectorization tech-
niques applied in the Vienna MAP vectorizer. Section VI intro-
duces the Vienna MAP backend. All these novel technologies
are assessed experimentally in Section VII.
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II. COMPILER TECHNOLOGY AND AUTOMATIC

PERFORMANCE TUNING

This section introduces and evaluates compiler techniques
relevant to high-performance scientific computing. In addition,
the concept of automatic performance tuning is introduced.

A. High-Performance Compilers

Today’s production compilers for high-performance com-
puting feature sophisticated optimization techniques to cope
with the complexity of current computer systems. Optimiza-
tion targets the utilization of resources within the CPU as
well as memory locality, special instructions, and multiple
processors.

Standard loop optimization techniques targeting locality of
references and CPU resource utilization include loop pipelin-
ing, partial unrolling, exchanging, splitting, and fusing [40].
Other techniques to enhance CPU resource utilization include
register allocation [2], instruction scheduling, and strength
reduction [40]. Features like data prefetching, multiple CPUs,
and vector instructions are addressed by various algorithms.
Feedback directed compilation [47] utilizes the actual runtime
behavior of a program in the optimization process. An excel-
lent survey of compiler techniques may be found in [7].

Of these techniques, the quality of register allocation is par-
ticularly important for the compilation of numerical straight-
line code. [25] assesses the simple, yet effective farthest first
algorithm [47] in a compiler backend for MIPS processors.
Experiments demonstrate that this alternative spilling strategy
is superior to the standard techniques (which are based on
graph coloring [2]) when compiling numerical code.

B. Automatic Performance Tuning

For numerical kernels, which demand the highest possible
level of performance, traditional optimizing compilers are not
sufficient when used in isolation on portable source code.

Automatic performance tuning as a new software optimiza-
tion paradigm targets this problem. It is a problem specific
approach to performance optimization beyond general purpose
compiler optimization. Automatic performance tuning systems
systems feature code generators that utilize domain knowledge
to generate many alternative implementations for a given
algorithm, exploiting degrees of freedom in the problem to be
solved. Actual runtimes of these alternative implementations
drive a search process that automatically selects the best
performing algorithm for a given machine.

ATLAS. ATLAS [13], [50], [51] uses empirical techniques
to produce efficient performance portable implementations
of the BLAS (basic linear algebra subprograms). ATLAS

automatically generates various implementations of a given
BLAS operation and searches for optimal loop tiling, blocking,
software pipelining, register blocking, instruction scheduling,
etc. to find the best way of performing this operation on a
given computer.

FFTW. The first effort to automatically generate high-
performance FFT code was FFTW [23]. Typically, it produces
code that runs faster than publicly available FFT codes and

Fig. 1. Packed Operations. Intra-operand and parallel SIMD operations.

TABLE I

FLOATING-POINT SIMD INSTRUCTION SET EXTENSIONS. FOR EACH

EXTENSION LISTED, THE VECTOR LENGTH, THE CALCULATION

PRECISION, AND A LIST OF SUPPORTING SYSTEMS IS PROVIDED.

Name Type Processors
3DNow! 2x single AMD Athlon, Opteron

SSE 4x single Intel P III, P4, AMD Athlon XP, Opteron
SSE2 2x double Intel P4, AMD Opteron
SSE3 2x double Intel P4e

Altivec 4x single Motorola PPC G4, IBM PPC G5
Double FPU 2x double IBM PPC 440 FP2 (BlueGene/L)

compares well to vendor libraries. A dynamic programming
approach relying on a recursive implementation of the Cooley-
Tukey FFT algorithm [49] provides for the adaptation of the
FFT computation of a given size to a given target machine at
runtime. The actual computation is done within routines called
(twiddle and no-twiddle) codelets produced by a program gen-
erator named genfft [22]. The newly released FFTW 3 [24]
includes results of this paper.

SPIRAL. SPIRAL [39], [43] is a code generator for high
performance DSP transforms. For a given transform to be im-
plemented, the rule-based formula generator produces one out
of many possible fast algorithms, represented by mathematical
formulas in the signal processing language SPL. The formula
translator (SPL compiler) [53] translates these formulas into
C or Fortran code. Based on measured program runtimes,
the search engine generates alternative formulas and triggers
their implementation. Searching for good implementations by
iterating this process tries to bring the best out of a given
machine.

III. UTILIZING SHORT VECTOR SIMD EXTENSIONS

EFFICIENTLY

Modern processors from embedded computing to super-
computers feature short vector SIMD (single instruction, mul-
tiple data) extensions. These extensions operate on vectors
of basic integer and floating-point data types. The vectors
allow for fine-grained parallelism. To keep the complexity
of the microprocessor design low, only restricted sets of
operations are supported, including instructions for memory
access, arithmetic operations, and data shuffling. Although
initially targeting multi-media applications, short vector SIMD
technology became a major determinant in scientific comput-
ing by providing vector double-precision arithmetic.

SIMD ISA extensions supporting floating-point operations
include Intel’s streaming SIMD extensions (SSE, SSE 2, and
SSE 3), AMD’s 3DNow! and its extension called “enhanced
3DNow!”, Motorola’s AltiVec, and the SIMD extensions of
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TABLE II

MAXIMAL THEORETICAL NUMBER OF SINGLE (s) AND DOUBLE

PRECISION (d) OPERATIONS THAT CAN BE RETIRED PER CYCLE EITHER ON

THE STANDARD FLOATING-POINT UNIT (FPU) OR ON THE VECTOR

PROCESSING UNIT (VPU) OF GENERAL PURPOSE PROCESSORS.

Processor dFPU sFPU dVPU sVPU
AMD Athlon 2 2 n/a 4
AMD Opteron 2 2 2 4

Intel Pentium III 1 1 n/a 4
Intel Pentium 4 1 1 2 4

Motorola PowerPC G4 2 2 n/a 8
IBM PowerPC G5 4 4 n/a 8

IBM PowerPC 440 FP2 2 2 4 n/a

IBM’s double floating-point unit for BlueGene/L machines.
Table I gives an overview over the SIMD ISA extensions
supported by machines targeted in this paper. Fig.1 presents
typical examples of two-way and four-way SIMD operations.

A. Architectural Features of SIMD Extensions

Depending on the actual architecture and the precision used,
floating-point SIMD extensions may boost the potential peak
performance by up to a factor of four (see Table II). However,
speed-up by itself does not indicate absolute performance.
Implementations utilizing SIMD technology leading to good
speed-up and at the same time achieving a good absolute
performance are rare.

Although short vector SIMD technology is similar in con-
cept to the technology implemented in VLIW processors,
vector processors, or super scalar processors, SIMD extensions
have restrictions that distinguish them from these related
concepts. These restrictions include:

1) Restricted Parallelism. Short vector SIMD floating-point
instructions and data shuffling instructions are more gen-
eral than those found on vector processors, but the re-
spective vector length is much shorter, thus distinguishing
SIMD processors from vector computers. The usage of
vector registers makes SIMD technology more restrictive
than VLIW and superscalar designs.
An important issue is that an application’s data flow
may require many shuffle operations to allow for parallel
computation of arithmetic instructions. Complicated data
flow requires more shuffle instructions, which can lead to
actual performance degradation.

2) Memory Access Peculiarities. Memory access on proces-
sors with short vector SIMD extensions is dominated by
the memory hierarchy. Systems featuring such processors
behave like modern superscalar processors and thus re-
quire optimization for the memory hierarchy. This is in
contrast to the behavior of conventional vector computers
which do not feature a memory hierarchy.
Another major restriction is that only properly aligned
data can be loaded into vector registers efficiently. Un-
aligned or non-unit-stride memory access can therefore
lead to extremely poor performance.

Due to the inherent restrictions of SIMD extensions, only very
regular kernels may lead to satisfactory speed-up. Even when
SIMD optimizations in theory provide large speed-up (up to

a factor of 4 on Pentium 4), even highly-tuned applications
may see only a fraction of this. Nevertheless, not using SIMD
extensions is throwing away a good part of the performance
of your machine.

The techniques introduced in this paper overcome the
restrictions of SIMD extensions and lead to demonstrable
speed-up factors of up to 1.8 for two-way SIMD extensions
and 3.3 for four-way extensions as compared with the best-
performing scalar FFT codes. In addition, our codes are twice
as fast as the fastest codes obtained with vectorizing compilers.
This impressive performance improvement has been obtained
despite the fact that the structure of FFT computation does not
fit well to the architectural features of SIMD extensions.

B. Vectorizing Codes for Short Vector SIMD Extensions

Currently available methods for producing programs that
are able to utilize short vector SIMD instructions can be
categorized as follows:

1) Interface Used. Currently, there are three commonly-used
interfaces available to programmers who want to utilize
SIMD instructions: (i) Portable high-level language in
tandem with vectorizing compilers, possibly requiring
hints (pragmas) on how to vectorize, (ii) proprietary C
language extensions that provide explicit access to short
vector SIMD extensions on source level, and (iii) assem-
bly language.

2) Who Vectorizes. The actual vectorization process can
be done explicitly by programmers. Contrary to this
approach is the use of vectorizing compilers (which may
or may not be hinted by programmers) to extract paral-
lelism from portable programs. As a third option, program
generators may generate innately vectorized codes.

3) Structures Vectorized. Vectorization methods either ex-
tract parallelism from independent loop iterations or
extract instruction-level parallelism from basic blocks.

4) Generality of Approach. Some vectorization approaches
are general purpose techniques (for instance, when they
are applicable to any program that features loops or to any
basic block) while other methods depend on the special
structure of given algorithms like complex FFTs.

All these approaches involve tradeoffs between portability and
generality on the one hand and achievable performance on the
other.

Hand-coding. For FFTs, there exist well-known hand-coded
vector algorithms like Stockham’s FFT algorithm [29], [48]
and vector computer libraries like the SCIPORT library [34].
However, without further adaptation to the memory hierarchy,
these algorithms lead to disappointingly low performance on
current SIMD architectures.

A general purpose hand-coding method utilizing instruction-
level parallelism is to implement a program using the complex
arithmetic of C99 [5] and let an appropriate compiler map the
complex operations to sequences of two-way vector instruc-
tions.

To exploit an algorithm’s intrinsic parallelism, ad-hoc uti-
lization of instruction-level parallelism within a program and
the hand-vectorization of loops is often performed. In this case
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the programmer formulates the parallelism within the algo-
rithm using proprietary language extensions, which inhibits
portability.

In the field of DSP transforms, these hand-coding ap-
proaches are used in SIMD-enabled vendor libraries (exam-
ples include Intel’s MKL and IPP [28], Apple’s vDSP [6]
and vBigDSP [12], as well as AMD’s core math library
ACML [4]), application notes (Intel’s split radix FFT [26]),
and free implementations like the NEC V80R FFT [41] or the
Linux SIMD library libSIMD [42]. SIMD-vectorized wavelet
transforms are presented in [11] and a SIMD-vectorized FFT
library is presented in [45].

Vectorizing Compilers. There exist many research and pro-
duction-quality compilers for SIMD extensions, including In-
tel’s C++ compiler [27], IBM’s XL C compiler for BlueGene/L
supercomputers [3], a vectorizing extension to the SUIF
compiler [46], Codeplay’s VECTOR C compiler [10], and the
SWAR compiler scc [14], [15].

Automatic general-purpose loop-vectorizing compiler tech-
nology originates from vector computer research and is in-
cluded in most vectorizing compilers [54]. These algorithms
were designed for long vector lengths and other characteristics
of conventional vector computers, like constant non-unit stride
memory access. Some of these implicit assumptions are no
longer valid for short vector SIMD extensions. In addition,
vectorization- and locality-enhancing loop transformations of-
ten conflict. Compilers therefore often require user hints
(for instance, by pragmas) in order to successfully vectorize
loops [21].

Automatic general purpose methods based on the extraction
of instruction-level parallelism in basic blocks are used in
many compilers (e. g., Intel, VectorC, and IBM compilers).
They originate from VLIW research [15], [35]. These algo-
rithms search for code sub-blocks that feature parallelism. In
order to map the full computation, these parallel blocks must
be connected, either by scalar operations or by data shuffling
operations, which can introduce considerable vectorization
overhead. Due to an exploding search space, these algorithms
tend to fail on large basic blocks having complicated structure.
Experiments show that in this case, these algorithms may
produce negligible speed-up or may even slow down the code.

A graph-based code selection technique for DSPs with
SIMD support has been introduced in [36]. Techniques for
SIMD utilization in the context of energy-aware compilation
for DSPs are presented in [38].

Pre-Existing Methods Used in Code Generators. ATLAS al-
lows for the insertion of hand-coded kernels featuring SIMD
instructions into its optimization cycle. ATLAS depends on
programmers contributing such hand-coded kernels for new
architectures [52]. These kernels are typically coded in as-
sembly language.

The code generator of FFTW 3 includes instruction-level
vectorization for two-way vector extensions that is based on
properties of complex FFTs and utilizes C language exten-
sions. For four-way vector extensions a combination of this
method and loop vectorization is applied.

C. Our Approach

This paper introduces two approaches to domain-specific
vectorization. Section IV introduces a loop vectorization
method for DSP algorithms. It provides a DSP-specific ap-
proach to optimizing memory access operations (in the pres-
ence of a deep memory hierarchy) and SIMD vectorization
simultaneously. This method was included in the code gener-
ators and the runtime systems of experimental SIMD versions
of FFTW and SPIRAL.

Section V provides a vectorizing compiler for numerical
kernels. It introduces a domain specific method to extract
instruction level parallelism. Domain knowledge is utilized to
search for a low vectorization overhead and avoid combina-
torial explosion. It is applied to the output of the automatic
performance tuning systems ATLAS, FFTW, and SPIRAL.

IV. SYMBOLIC VECTORIZATION OF SIGNAL TRANSFORMS

This section introduces domain-specific vectorization tech-
niques for DSP transforms [16]–[21]. The presented approach
originates from the observation that neither original vector
computer DSP transform algorithms [34] nor vectorizing com-
pilers [27], [35] are generally capable of producing high-
performance DSP transform implementations for short vector
SIMD architectures, even in tandem with automatic perfor-
mance tuning [21].

The intrinsic structure of DSP transforms prevents the
successful application of these well-known methods. The main
obstacle is that the structure of memory access (given by per-
mutations and loop carried array references) occurring in DSP
transform algorithms is incompatible with the features offered
by currently available short vector SIMD target architectures.

To overcome these problems, we introduce new SIMD
vectorization techniques that are designed to be used in
code generators and the runtime environment of automatic
performance tuning systems, specifically targeting FFTW and
SPIRAL:

(i) Vectorization of general DSP transforms like Walsh-
Hadamard transforms, two-dimensional discrete cosine trans-
forms, as well as other transforms, in their recursive formu-
lation. This method provides for vectorizing a larger class of
DSP transforms by allowing some less efficient instructions if
necessary to enable successful vectorization.

(ii) Vectorization of recursive Cooley-Tukey FFT algo-
rithms of size kν2 where ν is the vector length in the targeted
SIMD extension and k may be chosen arbitrarily. This method
ensures that FFTs are implemented using the most efficient
vector instructions solely, across all current short vector SIMD
architectures.

These vectorization methods are at the border of loop vec-
torization and the utilization of instruction-level parallelism.
All vectorized loops feature precisely the same number of
ν iterations. This approach allows the support of both the
recursive nature of DSP algorithms as well as the generic
SIMD extensions (with arbitrary vector lengths ν) at the same
time. Thus, it overcomes the limitations of classical loop
vectorization and extraction of ILP in this particular field.

The most challenging problem in our approach is the
recursive break-down of DSP algorithms or the manipulation
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of given recursive algorithms so that all arithmetic operations
occur in vectorizable loops with ν iterations, and the resulting
data access patterns can be handled efficiently across all
current SIMD architectures.

A. Mathematical Framework

We use the representation of DSP algorithms as matrix
factorizations applying the Kronecker product formalism [29],
[43] as language to express our vectorization algorithms. The
approach is based on the fact that many Kronecker product
formulas have an intuitive interpretation as programs [29],
[53].

The tensor or Kronecker product defined as

A ⊗ B =
(

ai,j B
)

i=0,...,m−1

j=0,...,n−1

for A =
(

ai,j

)

∈ C
m,n

is the most important construct to describe structure in DSP
algorithms. Tensor products with identity matrices—as in
(1)—describe the multiple application of the other factor to
different data sets, thus expressing data parallelism.

A (linear) DSP transform is a multiplication of the sampled
signal vector x ∈ C

n by a transform matrix M ∈ C
n×n. A

particularly important example is the discrete Fourier trans-
form (DFT), whose transform matrix, for size n, is given by

DFTn =
(

ωk`
n

)

k,`=0,1,...,n−1
, ωn = e2πi/n.

Other important examples of DSP transforms are the dis-
crete sine/cosine transforms (DSTs and DCTs) and the
Walsh-Hadamard transform (WHT), as well as their multi-
dimensional analogs. Fast algorithms for DSP transforms
can be represented as structured sparse factorizations of the
transform matrix. The Cooley-Tukey fast Fourier transform
(FFT) is a recursion that computes DFTmn from the smaller
DFTm and DFTn [49]

DFTmn = (DFTm ⊗ In)Tmn
n (Im ⊗DFTn) Lmn

m , (1)

where In is the n × n identity matrix, Tmn
n the complex

twiddle diagonal matrix, and Lmn
n the stride permutation

matrix. Recursive application of rules like (1) yields a fast
algorithm. The degree of freedom in choosing a factorization
of the transform size in each step leads to a large number
of mathematically equivalent formulas with similar arithmetic
cost, but different structure (data flow).

To describe algorithms for short vector SIMD extensions, a
formal translation from complex matrices into real matrices is
required [17]. The complex multiplication (u + iv)× (a + ib)
is equivalent to a real matrix-vector product,

(u + iv) × (a + ib) ∼=

(

u −v
v u

) (

a
b

)

, (2)

inducing the definition of the operator ( ). Formally, the
complex matrix-vector multiplication M x ∈ C

n is translated
into M x ∈ R

2n, where M ∈ R
2n×2n arises from M by

replacing every entry u + iv by the 2 × 2 matrix in (2) and
x ∈ R

2n is obtained by replacing each entry a + ib of x by
the two-dimensional real vector in (2).

TABLE III

MAPPING BLOCK MATRICES TO VECTOR CODE

Matrix SSE SSE 2 AltiVec
(ν = 4) (ν = 2) (ν = 4)

(Iν | Iν) addps addpd vaddfp
(Iν | − Iν) subps subpd vsubfp

diag(a0, . . . , aν−1) mulps mulpd vmaddfp

L2ν

ν
, Lν

2

ν
unpcklps unpcklpd vmrghw
unpckhps unpckhpd vmrglw

L2ν

2
shufps shufpd vperm

Algebraic manipulation of formulas by applying matrix
identities allows to change the data flow of a fast algo-
rithm [29]. Important examples in the context of this paper
include stride permutation matrix factorizations like

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗Lmn
n ) and Lkmn

mn = Lkmn
m Lkmn

n ,

as well as the conjugation MP = P−1MP of a matrix M by
a permutation P as applied to a tensor product by

Lmn
n (Am ⊗ Bn) Lmn

m = (Am ⊗ Bn)L
mn
m = (Bn ⊗ Am).

and manipulation rules for the bar operator,

AB = A B, Am ⊗ Inν = (Am ⊗ In ⊗ Iν)(Imn ⊗L
2ν
2 ).

Different data layouts for complex numbers can be expressed
in terms of the bar operator and conjugation. The full set of
identities required to derive the formal vectorization algorithm
for DSP transforms as well as the full derivation can be found
in [17].

B. Vectorizable Formulas

Formulas describing DSP transforms are viewed as being
built from certain block matrices with block size ν × ν and
matrices that are not such block matrices. The non-block
matrices are either mapped to less efficient extension specific
vector code or to scalar code.

Block matrices are either built from diagonal matrices of
size ν × ν or they are special permutation matrices. Later on,
the block matrices are mapped to highly efficient vector code
independently of the target machine’s short vector architecture.
Their ν × ν block structure provides that all memory access
operations are properly aligned vector loads and stores. All
data reordering is done in the vector registers and all arithmetic
operations are pure vector operations. See Table III for vector
instructions and examples of corresponding block matrices.
The remainder of this section gives the particulars of the two
types of block matrices.

Compute Matrices. All arithmetic operations are done in
matrix-vector operations on vectors of length ν. Their building
blocks are the real ν × ν diagonal matrices

0ν , Iν , − Iν , and diag(a0, . . . , aν−1),

where 0ν denotes the ν × ν zero matrix.
One of the most important constructs in this class of block

matrices is the tensor product

A ⊗ Iν , A ∈ R
m×n. (3)
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__m128 t0, t1, x[2], y[2];
t0 = _mm_unpacklo_ps(x[0], x[1]);
t1 = _mm_unpackhi_ps(x[0], x[1]);
y[0] = _mm_add_ps(t0,t1);
y[1] = _mm_sub_ps(t0,t1);

Fig. 2. Implementation of y = (DFT2 ⊗ I4) L8

4
x for the 4-way vector

extension SSE using Intel’s C++ compiler intrinsics.

To obtain A ⊗ Iν , all entries ai,j in A are replaced by

diag(ai,j , . . . , ai,j) ∈ R
ν×ν .

It is crucial to our approach that the vectorization of constructs
of the form A ⊗ Iν is done independently of the actual
Kronecker formula describing the structure of A.

To describe block matrices arising from complex diagonal
matrices with entries ci ∈ C, the operator ( )

′

defined as

D
′
:= D

(Ik ⊗L
2ν
ν )

for D = diag(c0, . . . , ckν−1) (4)

is used. The conjugation of the real matrix D by Ik ⊗L2ν
ν

produces a matrix built from real diagonal matrices of size
ν×ν. As an example, consider the matrix derived from D0 =
diag(a0 + ib0, . . . , aν−1 + ibν−1):

D0

′
=

(

diag(a0, . . . , aν−1) diag(−b0, . . . , −bν−1)
diag(b0, . . . , bν−1) diag(a0, . . . , aν−1)

)

. (5)

An important block matrix is T
′mn

n , which is built from
diagonals of size ν × ν and does not originate from a tensor
product of the twiddle diagonal Tmn

n .

Permutation Matrices. To be considered a block matrix, a
permutation matrix P must be the product

(U ⊗ Iν)(Ik ⊗W )(V ⊗ Iν), ν divides the size of W, (6)

built from the permutation matrices U, V, and W .
Permutations P that are of type (6) only require vector

memory access (addressing encoded in U and V ) and a
moderate number (depending on W ) of register-to-register data
reordering operations, independently of the target architecture.

All other permutations must be implemented using scalar
code or less efficient vector code.

C. Symbolic Vectorization Algorithm

Symbolic vectorization of DSP transforms translates the
problem of vectorizing DSP transform algorithms into the
problem of generating efficient scalar code for DSP trans-
forms. First, formula manipulation is used to transform a
DSP algorithm (given in Kronecker product notation) into
a vectorizable algorithm with similar characteristics. This
new transform algorithm is then implemented using vector
instructions by utilizing existing code generators (FFTW’s
genfft [22] and SPIRAL’s SPL compiler [53]) and newly
developed vector-specific extensions to these code generators.

Our formal vectorization approach uses tensor products as
core constructs. Diagonal matrices and permutation matrices
are vectorized with respect to tensor products. All vectorized
constructs are transformed into symbols S, defined by

S = PD(A ⊗ Iν)EQ (7)

with permutation matrices P and Q. D and E are block
matrices originating from real or complex diagonals. A is an
arbitrary formula in Kronecker product notation.

The implementation of a symbol S is centered around the
implementation of A. First, existing code generators are uti-
lized to generate efficient vector code for A⊗Iν by generating
efficient scalar code for A and then replacing each scalar
instruction by the respective vector instruction (for instance,
c = a+b is replaced by c = vec_add(a,b)). In the
respective code for A⊗ Iν all vector load and store operations
are then replaced by the arithmetic operations required by D
and E and the data reorganization operations required by P
and Q. Provided P and Q match (6), this approach leads to
an efficient vector implementation of S. For example, Fig. 2
shows the generated code for the symbol S = (DFT2 ⊗ I4) L8

4.

D. Short Vector Cooley-Tukey Vectorization

The most crucial part in achieving good performance by
symbolic vectorization is to make the permutations P and Q of
a symbol S match (6) while keeping the changes to the original
formula minimal. For many transform algorithms like Walsh-
Hadamard transforms or two-dimensional transforms this is an
easy task. In case of the vectorization of Cooley-Tukey FFTs,
however, a more sophisticated approach is required.

The short vector Cooley-Tukey rules given by (8) to (10)
solve this problem for FFTs of size N = N1ν

2 with arbitrary
N1. All matrices occurring in FFT algorithms vectorized by
(8) to (10) are block matrices with diagonal matrices of size
ν×ν as blocks. All permutations match (6). When applying the
short vector Cooley-Tukey rules, the SIMD enabled versions of
FFTW and SPIRAL optimize efficient SIMD implementations
for the memory hierarchy by simultaneously searching for
the best factorization of N1 and for the best implementation
of constructs DFTr ⊗ Is ⊗ Iν . We also derived a transposed
version and versions for different complex data formats. (9)
originates from the vector recursion of FFTW 3 [24].

The short vector Cooley-Tukey “entry rule” is given by

DFTν2mk1···ksn = S0 R1 (8)

translating DFTN into the symbol

S0 := P0

(

DFTνm ⊗ Ik1···ksn ⊗ Iν
)

T
′ν

2mk1···ksn

νk1···ksn

with
P0 := Iνmk1···ksn ⊗L2ν

ν

and the recursive part R1. Any recursive part

Ri :=
(

Iνmki···ksn ⊗L2ν
2

)

(Iνm ⊗DFTνki···ksn) Lν2mki···ksn
νm

is further factorized using the recursive rule

Ri = (Iνm ⊗Si) Pi (Iki
⊗Ri+1) Qi (9)

with

Pi := Lνkim
νm ⊗ I2νki+1···ksn, Qi := Lνki···ksn

ki
⊗ I2νm,
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leading to a symbol

Si :=
(

DFTki
⊗ Iki+1···ksn ⊗ Iν

)

T
′νki···ksn

νki+1···ksn

and a new recursive part Ri+1. Considering the factorization
N1 = mk1 · · · ksn, the ith application of rule (9) “consumes”
the factor ki by breaking the factor mki · · · ksn recursively
into ki and mki+1 · · · ksn. The recursion ends when all factors
ki are “consumed” by the application of rule (9), finally
leading to the last recursive part

Rs+1 :=
(

Iνmn ⊗L2ν
2

)

(Iνm ⊗DFTνn) Lν2mn
νm .

The application of the leaf rule,

Rs+1 =
(

Im ⊗Ps+1

(

DFTνn ⊗ Iν
)

)

Qs+1 (10)

with

Ps+1 :=
(

L2νn
ν ⊗ Iν

)

(

I2n ⊗Lν2

ν

)

, Qs+1 := Lνmn
m ⊗L2ν

2

transforms Rs+1 into the required form to make the permuta-
tions Ps+1 and Qs+1 match (6).

V. VECTORIZATION TECHNIQUES FOR STRAIGHT-LINE

CODE

This section introduces the Vienna MAP vectorizer [32],
[33], [37] that automatically extracts 2-way SIMD parallelism
out of given numerical straight-line code. The MAP vectorizer
additionally supports the extraction of SIMD fused multiply-
add instructions.

MAP has been applied successfully to straight-line code
produced by FFTW, SPIRAL, and ATLAS. Thus, a large variety
of numerical computations ranging from FFTs and other DSP
transforms to BLAS kernels can be vectorized automatically.

A. Fundamentals of Vectorization

Existing approaches to vectorizing basic blocks [15], [35],
[36] try to find an efficient mix of SIMD and scalar instructions
to do the required computation, MAP’s vectorization mandates
that all computation is performed by SIMD instructions, while
attempting to keep the SIMD reordering overhead reasonably
small.

MAP’s vectorizer uses depth-first search with chronological
backtracking to discover SIMD style parallelism in a scalar
code block, aiming at a reduction of the overall instruction
count. Obtaining a satisfactory SIMD utilization is tantamount
to minimizing the amount of SIMD data reorganization while
maximizing the coverage of the scalar DAG by natively
supported SIMD instructions.

Fig. 3 gives an example of short vector SIMD code obtained
by vectorizing straight-line complex FFT code.

B. The Vectorization Engine

The central goal of vectorization is to replace all scalar
instructions by vector instructions. The description of the
vectorization technique relies on the following definitions.

Operation Pairing. Pairing rules specify ways of transforming
pairs of scalar instructions into a sequence of SIMD instruc-
tions. A pairing rule often provides several alternatives to

Scalar Data Flow Vectorized Data Flow

Fig. 3. Vectorization of a Scalar FFT of Size 3. The scalar data flow in
the left part of the illustration is computationally equivalent to the vectorized
data flow depicted in the right part.

ACC PAR CHI

Fig. 4. Fusion Layouts. Three layouts for fusing the source variables
of the scalar instructions (op1,S1,T1,D1) and (op2,S2,T2,D2) are
supported by the MAP vectorization engine. Intra-operand SIMD instructions
are supported by the ACC layout, whereas the layouts PAR and CHI are used
for inter-operand SIMD instructions.

do so. The vectorizer supports pairing rules of the follow-
ing instruction combinations: (i) load/load, (ii) store/store,
(iii) unary/unary, (iv) binary/binary, (v) unary/binary,
(vi) unary/load, and (vii) load/binary.

Variable Fusion. Two scalar variables s, t can be fused to a
SIMD variable of the form st = (s,t) or ts = (t,s).
The vectorization process ensures that no scalar variable is
part of two different SIMD variables.

C. Vectorization Quality

To produce vector code of the highest quality, the vector-
ization engine starts out by constraining all SIMD memory
operations to access consecutive locations and by disabling
sub-optimal operation pairing rules of type (v), (vi), and (vii).

If these restrictions cause the vectorization process to fail, it
is restarted after enabling operation pairing rules of type (v),
(vi), and (vii), and the support for less efficient, i. e., non-
consecutive, memory accesses. This step substantially extends
the class of vectorizable codes by allowing the extraction of
some less efficient instruction combinations.

In the worst case, a fallback to the vector implementation of
scalar code is made by leaving half of each SIMD instruction’s
capacity unused. On all surveyed x86 machines, the resulting
codes are faster than the scalar legacy x87 codes generated by
standard general purpose compilers.
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Scalar ACC PAR CHI

Fig. 5. Vectorization Alternatives. Two scalar instructions, one addition
and one subtraction, are transformed into a sequence of SIMD instructions in
three different ways.

D. The Vectorization Algorithm

Before the actual vectorization process is carried out, the
following preparatory steps are taken. First, dependencies of
the scalar DAG are analyzed and instruction statistics are
assembled. This data is used to speed up the vectorization pro-
cess by avoiding useless vectorization. Then, store instructions
are combined non-deterministically by fusing their respective
source operands.

The actual vectorization algorithm consists of two steps:
(i) Pick two scalar instructions I1=(op1,s1,t1,d1)

and I2=(op2,s2,t2,d2) that have not been vectorized,
with (d1,d2) or (d2,d1) being an existing fusion.

(ii) Non-deterministically pair the two scalar operations into
one SIMD operation. This step may produce new fusions for
the respective source operands.

The vectorizer alternatingly applies these two steps until
either the vectorization succeeds, i. e., thereafter all scalar vari-
ables are part of at most one fusion and all scalar operations
have been paired, or the vectorization fails. If the vectorizer
succeeds, it commits to the first solution of the search process.

Non-determinism in vectorization arises due to different
vectorization choices. For a fusion (d1,d2) there may be
several ways (see Fig. 4) of fusing the source operands
s1,t1,s2,t2, depending on the pairing (op1,op2), as
depicted in Fig. 5.

The rule ranking, i. e., the order in which vectorization al-
ternatives are tried, influences the order of the solutions of
the vectorization process. As the vectorizer always commits
to the first solution, the rule ranking is adapted in such a
way that the first solution favors instruction sequences which
are particularly well-suited for a given target machine. For
instance, on an AMD K7 processor the vectorizer prefers
extracting intra-operand (ACC) over inter-operand (PAR, CHI)
style SIMD instructions (see Fig. 5).

E. Peephole Based Optimization

After vectorization, a local rewriting system is used to
implement peephole optimization on the vector DAG.

The first group of rewriting rules aims at (i) minimizing the
number of instructions, (ii) eliminating redundancies and dead
code, (iii) reducing the number of source operands, (iv) copy
propagation, and (v) constant folding.

The second group of rules can be used to extract SIMD-
FMA instructions.

The third group of rules rewrites unsupported SIMD instruc-
tions into sequences of SIMD instructions actually supported
by the target architecture.

Finally, the optimizer topologically sorts the instructions
of the vector DAG. The scheduling algorithm minimizes the
lifespan of variables by improving the locality of variable
accesses. It is based on the scheduler of genfft [22].

VI. BACKEND TECHNIQUES FOR STRAIGHT-LINE CODE

The Vienna MAP backend [32], [33] introduced in this
section generates assembly code optimized for short vector
SIMD hardware. It is included in an experimental version of
FFTW, FFTW-GEL [31], and has been connected to SPIRAL

and ATLAS. Currently supported targets include x86/3DNow!
and x86/SSE2. A PowerPC version is currently being devel-
oped.

Like in [25], the MAP backend uses the farthest first
algorithm as its spilling policy in the register allocator. Ad-
ditionally, as the MAP backend does not target a broad
range of structurally different hand-written code, it makes
use of domain specific meta information by exploiting the
following properties of array access operations occurring in
automatically generated straight-line code. (i) Any memory
access is indexed, possibly with a stride as runtime parameter,
and (ii) each memory location is read/written at most once.

A. Main Parts of the Backend

Fig. 6. The basic structure of
the MAP backend. A SIMD DAG
generated by MAP’s vectorization
frontend is optimized and compiled
to assembly code.

The MAP backend per-
forms ISA specific optimiza-
tion in (i) register alloca-
tion, (ii) computation of ef-
fective addresses, (iii) usage
of in-memory operands, and
(iv) register reallocation. ISA
specific optimization addresses
general properties such as the
number (and type) of available
logical registers, available in-
struction forms, and the ex-
istence of special instructions
like lea (on x86).

The instruction scheduler
performs processor specific op-
timization by taking into ac-
count execution properties pro-
vided by a processor-specific
execution model. This model
specifies required execution re-
sources, available resources,
the maximum number of in-
structions issued at each clock cycle, and instruction latencies.

The last optimization step of MAP’s backend is responsible
for the avoidance of address generation interlocks (AGIs).

B. Nonrecurring Optimizations

Register allocation, computation of effective addresses, and
AGI prevention are optimization techniques performed only
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once. Register allocation is followed by instruction scheduling,
which tries to maximize the usage of the functional units and
the pipeline of the processor on hand.

Register Allocation for Straight-Line Code. While there is no
single best phase ordering in the context of general purpose
compilers targeting hand-written code, MAP’s backend as-
sumes that the input code has been reasonably scheduled on a
higher level using domain-specific meta information. This kind
of preprocessing can be done, for example, like genfft [22]
does, by performing an FFT-specific topological sort of the
computation DAG in an attempt to minimize the asymptotical
number of register spills.

As any future access to temporary variables is known in
advance, the MAP backend uses the farthest first algorithm [8]
as its spilling heuristic. This means that whenever a temporary
variable needs to be mapped to a logical register, the following
strategy is used: (i) Whenever possible, choose a fresh logical
register. (ii) If there is at least one dead logical register, i. e.,
a logical register holding a value that is not referenced in the
future, choose the one logical register that has been dead for
the longest time. Notice that reusing any dead logical register
introduces a false dependency. (iii) If there are no dead logical
registers, choose that logical register R, which holds a value
V whose reference lies farther in the future than all other
references to logical registers.

Optimized Index Computation. Index computation is not
normally a relevant issue in performance optimization of non-
DSP code. However, straight-line codes produced by DSP
program generators feature an unusually large proportion of
memory access operations in relation to arithmetic operations.
Thus, optimized index computation is crucial to achieving high
performance in this case.

MAP targets code that operates on arrays of input and output
data not necessarily stored contiguously in memory. Thus,
access to an array element a[i] may result in a memory
access operation either at address a+i*sizeof(float) or
a+i*sizeof(float)*stride, where a and stride are
parameters passed from the calling function. Memory access
operations with constant stride do not need explicit effective
address computation, whereas those with variable stride do.

To achieve an efficient effective address computation, the
usage of general integer multiplication instructions is avoided
by performing a combination of strength reduction and com-
mon subexpression elimination in the register allocator.

Whenever the register allocator needs to emit code for
the calculation of an effective address, the (locally) shortest
possible sequence of simple instructions (add, sub, shift, lea)
is determined by forward chaining using depth-first iterative
deepening with a depth limit that depends on the latency
of the integer multiplication instruction on the given target
architecture. In case the depth limit is exceeded, strength
reduction is not applied.

As the shortest sequences of code doing effective address
calculation tend to eagerly reuse already calculated contents of
the integer register file as factors, a replacement policy based
on the LRU heuristic is employed in the allocation of integer
registers.

Prevention of AGIs. Although modern x86 compatible proces-
sors allow the out-of-order execution of instructions, the defini-
tion of Intel’s Pentium architecture mandates that instructions
accessing memory, i. e., loads and stores, must be executed in-
order. This requirement is the reason why address generation
interlocks (AGIs) occur. Whenever a memory-operation in
need of additional effort for effective address calculation (in
scaled index-addressing mode) directly precedes a memory op-
eration not requiring additional effort, both memory operations
are delayed for the duration of the more expensive address
calculation—an AGI occurs. The MAP backend tries to avoid
such AGIs by reordering the affected instructions after leaving
the feedback-driven optimization loop.

C. Feedback Driven Optimizations

The instruction scheduler and the register reallocator form a
feedback driven optimization loop. The instruction scheduler
serves as a basis for estimating the runtime of the entire basic
block. As long as the code’s estimated execution time can be
improved, feedback-driven optimization is carried out.

Basic Block Instruction Scheduling. To maximize the overall
performance, the respective code has to be scheduled in a
way to take maximum advantage of the pipelines provided
by the architecture [40], [47]. Instruction scheduling is an
optimization technique that rearranges the micro-operations
executed in a processor’s pipeline, attempting to maximize
the number of functional units operating in parallel and to
minimize the time they spend waiting for each other [30].

MAP’s instruction scheduler deals with the instructions of a
single basic block by using local list scheduling [40], [47]. The
scheduling algorithm utilizes information about the critical-
path lengths of the underlying data dependency graph as a
heuristic when selecting an instruction to be issued. The list
scheduling algorithm implemented in MAP interacts with an
execution model of the target processor to simulate the effects
of super-scalar in-order execution of an instruction sequence.

Register Reallocation. Register allocation and instruction
scheduling have conflicting goals. As the register allocator
tries to minimize the number of register spills, it prefers
introducing a false dependency (by reusing a dead logical
register) over spilling a live logical register. The instruction
scheduler, on the other hand, tries to maximize the pipeline
usage of the processor by spreading out the dependent parts
of code sequences according to the latencies of the respective
instructions.

As the MAP backend performs register allocation before
instruction scheduling, false dependencies introduced by the
register allocator severely reduce the degree of freedom of the
instruction scheduler.

To address this problem, the register reallocator tries to
lift some of the restrictive data dependencies introduced by
register allocation, enabling the instruction scheduler to do
a better job in a subsequent pass. Additionally, the register
reallocator uses information about the spills introduced by the
register allocator to minimize the code size by appropriately
utilizing CISC-style instructions (with in-memory operands)
and by optimizing x86 copy instructions.
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VII. EXPERIMENTAL RESULTS

This section provides experimental evidence for the impres-
sive performance gain unleashed by the methods introduced
in this paper. In particular, high-performance implementations
of DSP algorithms are obtained by including support for short
vector SIMD extensions to SPIRAL and FFTW.

Symbolic vectorization and the Vienna MAP vectorizer
provide the fastest FFTs currently available on x86 architec-
tures featuring 3DNow!, SSE, or SSE 2, for certain problem
sizes. In addition, these methods produce the only currently
available FFT software for IBM’s BlueGene/L PowerPC 440
FP2 processors which takes full advantage of their double
FPU. Formal vectorization and the Vienna MAP vectorizer
also provide the only current vectorized implementations of
general 1D and multidimensional DSP transforms that are
automatically tuned, as well as supplying the only fully
automatically vectorized ATLAS kernels.

A. Experimental Setup

Numerical experiments were conducted on the following
machines featuring different short vector extensions: (i) a
prototype of BlueGene/L’s PowerPC 440 FP2 running at
500 MHz featuring a double FPU, (ii) various Pentium 4
machines featuring SSE and SSE 2 running at 1.8, 2, 2.6, and
3 GHz, (iii) a 1.53 GHz Athlon XP 1800+ featuring 3DNow!
professional, and (iv) a 933 MHz MPC7450 G4 featuring
AltiVec.

SSE and AltiVec are four-way vector extensions, while
3DNow! and IBM’s double FPU are two-way vector ex-
tensions (see Table I). SSE (on Pentium 4 processors) and
Altivec (on the PowerPC) provide a theoretical speed-up of
four, while 3DNow! (on the AMD Athlon and Opteron) and
IBM’s double FPU (on the IBM PowerPC 440 FP2) provide
a theoretical speed-up of two (see Table II). In addition,
AltiVec and the double FPU provide fused multiply-add
(FMA) instructions. Note that these speed-up figures do not
imply anything about the theoretical performance per cycle:
For instance, both Athlon XP processors with 3DNow! and
Pentium 4 processors with SSE can retire four single-precision
flops per cycle, despite their different SIMD vector lengths of
2 and 4, respectively.

The vectorization techniques introduced in this paper were
assessed using ATLAS kernels and general DSP transforms
with special focus on FFTs. The new techniques were com-
pared to (i) scalar public-domain non-adaptive FFT imple-
mentations (Numerical Recipes and the GNU scientific li-
brary GSL 1.4; both without SIMD support), (ii) vendor
libraries with SIMD support (Intel’s MKL 6.1 and IPP 4.0),
(iii) vectorizing compilers performing loop vectorization and
extracting instruction level parallelism (IBM’s XL C compiler
for BlueGene/L and Intel’s C++ compiler 8.0), as well as
(iv) the scalar version of SPIRAL (latest experimental version)
and ATLAS 3.4.1, as well as both the scalar and SIMD version
of FFTW 3.0.1. We used the experimentally determined best
compiler flags for each machine/library combination.

Due to the variable flop count of different FFT algo-
rithms, FFT performance is given in pseudo Gflop/s, i. e.,

Relative Instruction Count

0.00

0.50

1.00

1.50

FFT 13 FFT 64 DCT-II 16 DCT-III 16 DST-II 8 DGEMM 80 DGEMM 128

Reorder Instr.

FPU Instr.

Fig. 7. Instruction counts of codes vectorized by the Vienna MAP vectorizer,
relative to scalar code.

5N log2 N/runtime (in nanoseconds). For all other transforms
actual performance in Gflop/s is measured. This keeps the
relation of runtime between different implementations for all
transforms.

B. Main Insights

Figs. 7, 8, and 9 display a selection of instruction statis-
tics and performance data to provide evidence for the most
important experimental results.

The main insights provided by the numerical experiments
can be summarized as follows:

Speed. Both symbolic vectorization and the Vienna MAP
vectorizer considerably speed up computation across all the
assessed machines. Fig. 8 (a) and Figs. 9 (a)–(h) show the
performance of the generated codes across the test machines.

Using four-way SIMD, speed-ups of up to 3.3 have been
achieved leading to FFTs running at 7.3 pseudo Gflop/s on a
3 GHz Pentium 4, displayed in Fig. 9 (a).

Using two-way SIMD, high performance FFTs running at
2.4 pseudo Gflop/s on a 2 GHz Pentium 4 have been achieved,
as displayed in Fig. 9 (e).

Versatility. High speed-up values are maintained across a
large variety of transforms: real and complex FFTs, both for
power of two as well as arbitrary vector lengths displayed in
Figs. 8 (a) and Fig. 9 (a), (c)–(f ). More general transforms like
2D DCTs have been sped up as well, as shown in Fig. 9 (b).

The Vienna MAP vectorizer is able to vectorize ATLAS

kernels (illustrated in Fig. 9 (h)) and FFT codes (Figs. 9 (e)-
(g)). The relative instruction counts displayed in Fig. 7
show that by using SIMD instructions the total number of
arithmetic instructions is in some cases reduced by 50 %,
and in most cases reduced significantly. Slightly increased
instruction counts may occur in some cases, which does not
introduce severe problems, as the execution units for SIMD
data shuffling and SIMD floating-point operations can operate
in parallel.

Vectorizing Compilers and Portable Non-adaptive FFT Li-
braries. Both tested portable non-adaptive FFT libraries (Nu-
merical Recipes and GNU GSL) feature optimized algorithms
but are much slower than the best scalar adaptive code. They
are slower than the best SIMD vectorized codes by a factor
of five to ten, as can be seen in Figs. 8 (a), 9 (a), and (e).
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Fig. 8. Floating-point performance and speed-up of vectorized FFT implementations compared to scalar implementations on BlueGene/L’s PowerPC 440
FP2 running at 500 MHz. (a) Assessment of both symbolic vectorization and the Vienna MAP vectorizer in tandem with SPIRAL. (b) Assessment of the
vectorization quality of the Vienna MAP vectorizer and IBM’s XL C compiler both applied to FFTW no-twiddle codelets.

These experiments provide evidence that modern (vectorizing)
compilers are not able to generate fast machine code in
conjunction with portable non-adaptive libraries.

Vectorizing Compilers and Automatic Performance Tun-
ing. Automatic performance tuning in combination with
vectorizing compilers does not, in practice, reach the same
level of performance as hand tuned code and code generated
using symbolic vectorization or the Vienna MAP vectorizer
and backend. In the best case, when using loop vectorization,
Intel’s C++ compiler reaches 60 % of the speed-up of symbolic
vectorization, as demonstrated in Figs. 9 (a)–(b).

For automatically generated FFT codes, vectorization of
basic blocks using instruction level parallelism sometimes
achieves a slight acceleration, but in other cases leads to a
significant performance degradation. This effect is especially
striking when using IBM’s XL C compiler for BlueGene/L’s
PowerPC 440 FP2 processor, as displayed in Figs. 8 (a)–
(b). In all these cases the Vienna MAP vectorizer achieves
satisfactory speed-up values.

Hand Tuned Libraries with SIMD Support. Symbolic vec-
torization and the MAP vectorizer provide about the same
performance as vendor-supplied hand tuned libraries that are
obtained in a laborious and costly process. In contrast, the
presented techniques utilize modern software technology to
automatically adapt code to a given machine. The resulting
performance behavior is illustrated by Figs. 9 (a), (d), and
(e). The highly satisfactory performance level achieved by
the MAP vectorizer when applied to linear algebra kernels
(as illustrated by Fig. 9 (h)) is the same as that achieved by
ATLAS.

Effect of the MAP Backend. The Vienna MAP backend
accelerates automatically generated DSP code by up to 25 %,
compared with standard C compilers like the GNU C and Intel
C++ compiler, as displayed in Fig. 9 (g).

VIII. CONCLUSION

This paper presents special purpose compilation techniques
targeting the SIMD vectorization of DSP transforms and
straight-line code, both in the context of automatic perfor-
mance tuning.

The paper addresses the difficulty of optimizing for SIMD
extensions and memory hierarchy simultaneously. The prob-
lems of generic loop vectorization and instruction-level par-
allelism extraction present in state-of-the-art vectorizing com-
pilers are avoided by utilizing knowledge of the properties of
the algorithms underlying the programs to be vectorized.

Most approaches described in literature try to find a good
SIMD coverage, and have to trade the scope of SIMD ap-
plication against low vectorization overhead. In contrast, the
presented techniques guarantee full SIMD coverage and a very
small vectorization overhead for most important BLAS and
DSP kernels. This is achieved by utilizing knowledge about
the algorithms at three different layers:

(i) Symbolic vectorization of DSP transforms handles a
large class of DSP transforms, including FFTs, WHTs, and
all multidimensional DSP transforms.

(ii) Alternatively, automatic vectorization of straight-line
code targets the large basic blocks generated by automatic
performance tuning systems.

(iii) Finally, a special purpose compiler for large basic
blocks featuring vector instructions achieves fast object code.

The presented compiler technology obtains unusually high
speed-up values—1.85 for two-way and 3.3 for four-way
SIMD extensions—on top of the fastest scalar codes available,
thus leading to an unprecedentedly high overall performance.
In this way the performance level of hand-tuned vendor
libraries is attained conjointly with performance portability.

In conjunction with the leading automatic performance
tuning systems SPIRAL, FFTW, and ATLAS, high performance
short vector SIMD implementations of FFTs, general DSP
transforms, and BLAS kernels have been obtained.

Some of the techniques described in this paper have been
included in the current release of the industry-standard numer-
ical library FFTW and will become part of IBM’s numerical
library for BlueGene/L supercomputers.
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Fig. 9. Floating-point performance of vectorized DSP implementations and linear algebra kernels compared to scalar implementations and third-party SIMD
implementations across various machines. (a)–(d) illustrate the effect of symbolic vectorization, (e)–(g) assess the Vienna MAP vectorizer and the Vienna
MAP backend, and (h) shows the performance of MAP vectorized BLAS kernels compared to scalar code and code vectorized by the INTEL C compiler.
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[43] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platform-
adapted libraries of signal processing algorithms,” Journal on High
Performance Computing and Applications, special issue on Automatic
Performance Tuning, Vol. 18, pp. 21–45, 2004.



IEEE PROCEEDINGS SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND PLATFORM ADAPTATION 15

[44] G. Ren, P. Wu and D. A. Padua, “A preliminary study on the vector-
ization of multimedia applications for multimedia extensions”, in Proc.
LCPC 03, pp. 420–435, 2003.

[45] P. Rodriguez, “A radix-2 FFT algorithm for modern single instruction
multiple data (SIMD) architectures”, in Proc. ICASSP 02, 2002.

[46] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multime-
dia extensions,” International Journal of Parallel Programming, vol. 28,
no. 4, pp. 363–400, 2000.

[47] Y. Srikant and P. Shankar, The Compiler Design Handbook. Boca Raton
London New York Washington D.C.: CRC Press LLC, 2003.

[48] P. N. Swarztrauber, “FFT algorithms for vector computers,” Parallel
Comput., vol. 1, pp. 45–63, 1984.

[49] C. F. Van Loan, Computational Frameworks for the Fast Fourier
Transform, ser. Frontiers in Applied Mathematics. Philadelphia: Society
for Industrial and Applied Mathematics, 1992, vol. 10.

[50] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra
software,” Ninth SIAM Conference on Parallel Processing for Scientific
Computing, CD-ROM Proceedings, 1999.

[51] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Comput.,
vol. 27, pp. 3–35, 2001.

[52] R. C. Whaley, “User contribution to ATLAS,” [Online]. Available:
http://www.cs.utk.edu/∼rwhaley/papers/
atlas contrib.ps

[53] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Proceedings of the Conference
on Programming Languages Design and Implementation (PLDI), pp.
298–308, 2001.

[54] H. Zima and B. Chapman, Supercompilers for Parallel and Vector
Computers. New York: ACM Press, 1991.

Franz Franchetti received the Dipl.-Ing. degree
and the PhD degree in technical mathematics from
the Vienna University of Technology in 2000 and
2003, respectively. Dr. Franchetti has been with the
Vienna University of Technology since 1997. He is
currently a research associate with the Dept. of Elec-
trical and Computer Engineering at Carnegie Mellon
University. His research interests concentrate on the
development of high performance DSP algorithms.

Stefan Kral received the Dipl.-Ing. degree in com-
puter science from the Vienna University of Technol-
ogy in 2004. He is currently a research associate at
the Vienna University of Technology. His research
interests include logic programming and compiler
backends.

Juergen Lorenz received the Dipl.-Ing. degree and
the PhD degree in computer science from the Vi-
enna University of Technology in 2002 and 2004,
respectively. He is currently a research associate at
the Vienna University of Technology. His research
interests include parallel programming and special
purpose compilers.

Christoph W. Ueberhuber received the Dipl.-Ing.
degree and the PhD degree in technical mathematics
from the Vienna University of Technology in 1973
and 1976, respectively, and the venia docendi ha-
bilitation for numerical mathematics in 1979. Dr.
Ueberhuber has been with the Vienna University of
Technology since 1973 and is currently a professor
of numerical mathematics. His research interests in-
clude numerical analysis, high performance numeri-
cal computing, and advanced scientific computing.
He has published 15 books and more than 100

publications in journals, books, and conference proceedings.


