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ABSTRACT

Active models are widely used in applications like image
segmentation and tracking. Region-based active models are
known for robustness to weak edges and high computational
complexity. We found previous region-based models can
easily get stuck in local minimums if initialization is far from
the true object boundary. This is caused by an inherent am-
biguity in evolution direction of the level set function when
minimizing the energy. To solve this problem, we propose
an intensity re-weighting (IR) model to bias the evolution
process in certain direction. IR model can effectively avoid
local minimums and enable much faster convergence of the
evolution process. The proposed method is applied to both
real and synthetic images with promising results.

Index Terms— active contours, level set, image segmen-
tation

1. INTRODUCTION

Active contour models are widely used in image segmentation
problems, especially for medical images with a lot of noise
and intensity inhomogeneity. State-of-the-art active contours
[1, 2, 3, 4] are implemented using the level set method [5] in
Eulerian framework. The level set method has several advan-
tages such as regular computation on a grid and being easy to
handle topological changes.

Existing active contour models can be roughly catego-
rized into edge-based models and region-based models. Gen-
erally speaking, region-based models are more robust when
weak edges exist and less sensitive to initialization, but more
computationally expensive than edge-based models.

In this paper, we choose LBF (local binary fitting) model
[4] as our baseline, which represents state-of-the-art of
region-based active contour models. Earlier region-based
models either lack the ability to handle image inhomogeneity
like the PC (piecewise constant) model [2], or too expensive
in computation like the PS (piecewise smooth) model [3].
The LBF model minimizes an energy term which encour-
ages smooth intensity variation locally within each region
and tolerates abrupt intensity change along region bound-
ary. We focus on the 2-region segmentation problem (fore-
ground/background) in this paper.

Motivation. LBF model can easily get stuck in local
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Fig. 1. An example for which LBF converges to local mini-
mums. First row shows contour evolution, second row illus-
trates areas whereφ > 0 (white) andφ < 0 (black). Bl and
Br marked true object boundary discussed in the text. (view
in color)

minimums for some initializations. Fig. 1 shows such an
example. In the following,R1, R2 refer to the brighter and
darker region in an image respectively.S1, S2 refer to two
segmented areas.φ is the level set function.S1 is the seg-
ment ofφ > 0, andS2 is the segment ofφ < 0. The goal
of LBF model is to evolveφ such thatφ has different signs
in R1 andR2 to minimize energy. In the first example, the
contour is initialized to be close to boundaryBr. After a few
iterations, contour is formed around boundaryBl to reflect
the intensity contrast, and contour around boundaryBr is at-
tracted towards the true boundary. However, evolution ofφ
aroundBl andBr are independent in the first few iterations.
This resultsφ < 0 aroundBl andφ > 0 aroundBr in R1,
and leads to region 1 separated into two at convergence. The
reason is that the initial contour is far fromBl, leading to two
ambiguous directions to evolveφ aroundBl: eitherφ > 0
for R1 andφ < 0 for R2, or the other way round. Small per-
turbation will causeφ to evolve in one of the two directions,
because having the same sign ofφ along true boundary is an
unstable state of high energy. But which directionφ evolves
in is hard to predict when initialization is far away, depending
on factors like boundary shape and numerical precision.

Summary of proposed method.To remove ambiguity in
the evolution direction, we propose intensity re-weighting in
the evolution process to biasφ > 0 for the brighter region and
andφ < 0 for the darker region, or the other way round. The



basic assumption is that one region is always brighter than the
other along the boundary. In this way, the level set function
will evolve towards the biased direction and different parts of
the same region have consistent signs ofφ at convergence.

Synopsis. In the following, we briefly review the LBF
model in section 2. Section 3 details our approach of inten-
sity re-weighting. Section 4 shows experimental results and
section 5 concludes.

2. BRIEF REVIEW OF THE LBF MODEL

In LBF model, the energy termELBF is defined for each point
x in the image as following

ELBF
x (φ, f1(x), f2(x)) =

λ1

∫
Kσ(y − x)|I(y) − f1(x)|2H1(φ(y))dy

+ λ2

∫
Kσ(y − x)|I(y) − f2(x)|2H2(φ(y))dy (1)

ELBF
x measures the summation of intensity variation within a

local neighborhood of pointx for two regions.Kσ(y− x) is a
Gaussian kernel that diminishes with distance fromx. S1 and
S2 refers to segment ofφ > 0 andφ < 0 respectively.f1(x)
andf2(x) are spatially fitting functions, capturing weighted
average intensities ofS1 andS2 from a local view ofx. I(y) is
the intensity aty. H1(φ(y)) andH2(φ(y)) capture the belief
of pointy in S1 andS2. H1(φ) is a Heaviside function.

H1(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)) (2)

H2(φ) = 1 − H1(φ) (3)

An intuitive explanation of minimizingELBF
x is that I(y)

should be close tof1(x) if H1(φ(y)) is high, and close to
f2(x) otherwise. The complete LBF energy is defined as

ELBF (φ, f1, f2) =

∫
x
ELBF

x (φ, f1(x), f2(x))dx (4)

Keepingφ fixed, minimizingELBF with respect tof1(x), f2(x)
gives

fi(x) =
Kσ(x) ∗ [Hi(φ(x))I(x)]

Kσ(x) ∗ [Hi(φ(x)]
, i = 1, 2 (5)

Keepingf1 andf2 fixed, minimizingELBF with respect toφ,
we derive the gradient descent flow:

∂φ

∂t
= −

∂ELBF

∂φ
= −δ(φ)(λ1e1 − λ2e2) (6)

ei(x) =

∫
Kσ(x − y)|I(x) − fi(y)|2dy (7)

In Eq.(6), δ(φ) is the smooth Dirac function, which is the
derivative ofH1(φ). ei(x) measures the intensity coherence

of I(x) with the average intensity ofSi nearx. Largerei

means less coherent. Eq.(6) can be interpreted as increasing
the belief ofx in Si if ei < e3−i, i = 1, 2.

The complete energy definition has two extra regulariza-
tion terms:E = ELBF

x + µP(φ) + νL(φ). P(φ) keepsφ to
be close to the signed distance function.L(φ) minimized the
contour length. We keep these two terms unchanged.

3. PROPOSED METHOD

The goal of segmentation is to makeSi = Ri or Si = R3−i

(i = 1, 2) at convergence. Without lose of generality, we as-
sume the goal isSi = Ri, i.e.,φ > 0 in brighter region and
φ < 0 in darker region at convergence. We propose to in-
corporate bias in the level set function evolution process by
adjusting the intensity weight when computingf1 andf2 in
Eq.(5). From Eq.(5), we knowfi(y) measures the average in-
tensity ofSi around pointy. Given the assumption thatR1

is brighter thanR2 along the boundary, we can put higher
weights on brighter pixels when computingf1 and higher
weights on darker pixels when computingf2.

fi =
Kσ(x) ∗ [Hi(φ(x))I(x)Wi(I(x))]

Kσ(x) ∗ [Hi(φ(x)Wi(I(x))]
, i = 1, 2 (8)

W1(I(x)) = I(x) (9)

W2(I(x)) = 255 − I(x) (10)
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Fig. 2. Comparison of LBF and IR for the first example in
Fig. 1. Here we only show value for the middle row of the
image. Initialization is the same as the convergence state in
Fig. 1. One the left, we showf1, f2 andI in the first iteration.
On the right, we show evolution ofφ. φt is φ at iterationt.
φ0 is the initialization, andφC is φ at convergence. LBF does
not change sign ofφ in evolution process, so getting stuck in
local minimum. IR drives sign ofφ to flip in iteration 1, and
converges to global minimum.

We call LBF with intensity re-weighting as IR model,
which naturally encouragesφ of brighter pixels to increase



andφ of darker pixels to decrease along boundary. Fig. 2
shows for the first example in Fig. 1, why LBF gets stuck at
local minimum and IR converges to the desired global mini-
mum. We initialize sign ofφ to be the convergence state in
Fig. 1, with absolute value of 0.1. Here we just show value
for the middle row in the image (other rows are similar given
no vertical intensity variation in the image). Eq.(7) can beap-
proximated asei(x) = |I(x)− fi(x)|2 becausefi(y) ≈ fi(x)
wheny is close tox. Eq.(6) can be interpreted as increasingφ
if |I(x)−f1(x)| < |I(x)−f2(x)|, and decreasingφ otherwise.
In LBF around boundaryBl, φ > 0 for darker pixels and
φ < 0 for brighter pixels when initialized, resultingf1 < f2.
So nearBl, Eq.(6) drivesφ to increase inS1(φ > 0) and de-
crease in inS2(φ < 0), as shown in Fig. 2(b). In IR, around
Bl, f1 > f2 because brighter pixels are weighted more inf1,
and darker pixels are weighted more inf2. So nearBl, Eq.(6)
drivesφ to decrease inS1(φ > 0) and increase inS2(φ < 0),
causing the sign ofφ to flip aroundBl. At convergence,φ has
consistent sign in each region.
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Fig. 3. Comparingf1(x), f2(x) and ∂φ
∂t

in LBF and IR mod-
els. ‘+’ and ‘-’ indicates sign of the level set functionφ. (view
in color)

Fig. 3 shows a real example. Evolution direction ofφ
is visualized in the last column: increaseφ for bright pix-
els (∂φ

∂t
> 0) and decreaseφ for dark pixels (∂φ

∂t
< 0). In

both LBF and IR, if a pixel is close to initial contour and
true boundary (like A, B), thenf1 > f2. So Eq.(6) drives
φ to increase for bright pixel B and decrease for dark pixel
A. However, if a pixel is close to true boundary but far from
initialization (like C, D), in LBFf1 ≈ f2. This makes it un-
clear howφ evolves to reflect the intensity contrast on that
boundary. Either increasingφ for C and decreasingφ for D
or vice versa can decrease the energy. Such uncertainty of
which direction to go is exactly the reason that can lead to lo-
cal minimums (convergence shown in Fig. 6 first column). In
IR model,f1 > f2 near C and D, drivingφ to evolve in the
desired direction.

Another advantage of IR model is that it enables faster
convergence. LBF relies on the closeness of current contour
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Fig. 4. Comparing evolution contour (in red) at iteration 2–
64 for the same initialization (in cyan) for LBF and IR model.
(view in color)

to the true boundary to guide evolution in the right direction.
Whereas IR provides additional driving force from intensity
contrast to guide evolution even when current contour is far
from the true boundary. Fig. 4 gives such an example.

Implementation. The implementations of IR model and
LBF model are very similar. The only difference comes from
computingfi in Eq.(5) and Eq.(8). In LBF,Kσ ∗I andKσ ∗1
(1 is an array of 1s, and of the same size asI) can be pre-
computed once. In each iteration, Eq.(5) can be computed
from two convolutionsC1 andC2.

C1 = Kσ(x) ∗ H1(φ(x)) (11)

C2 = Kσ(x) ∗ [H1(φ(x))I(x)] (12)

f1 = C2/C1 (13)

f2 = (Kσ ∗ I − C2)/(Kσ ∗ 1− C1) (14)

In IR model, we need to pre-computeKσ ∗ I2, Kσ ∗ I and
Kσ ∗ 1 once. In each iteration, Eq.(8) can be computed from
three convolutionsC1, C2 andC3. C1, C2 are the same as
Eq.(11–12),

C3 = Kσ(x) ∗ [H1(φ(x))I2(x)] (15)

f1 = C3/C2 (16)

f2 =
255(Kσ ∗ I − C2) − Kσ ∗ I2 + C3

255(Kσ ∗ 1− C1) − Kσ ∗ I + C2

(17)

Compared to LBF, we observe about 10%–15% increase in
the computing time for each iteration in IR model.

4. EXPERIMENTAL RESULT

All experimental results use the same parameter settingλ1 =
λ2 = 1, ν = 0.001× 2552, µ = 1, σ = 3.0, ε = 1, except for
the first example in Fig. 5, we setν = 0.003× 2552.

We first show some examples for which LBF get stuck in
local minimums, but IR successfully converges to the desired
boundary in Fig. 6. The last column shows an example where
IR model does not work. This is an example when the ba-
sic assumption is violated. The two regions are of completely
symmetric intensity. Unsurprisingly, at convergenceφ > 0



Fig. 5. Comparison of LBF (row 1) and IR (row 2) model, with initializations in cyan and final contours in red. (view in color)

maps to brighter areas. Preprocessing the image (like com-
puting the gradient image) can meet the basic assumption.

In Fig. 5, we show both real and synthetic examples, and
compare CPU time using LBF and IR in Table 1. To make fair
comparison of computing time, we choose examples in which
both models converge (or closely) to desired region bound-
aries. Table 1 lists CPU time for Matlab code on a Dell XPS
720 machine with 2.66G Hz Intel Core 2 Extreme QX6700
CPU and 2GB memory. We check convergence at every 25
iterations. If the average percentage of pixels that changethe
sign of φ is less than 0.2%, then the model converges. It is
clear that IR model converges much faster than LBF model.
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Fig. 6. Top to bottom: initialization, final contours in LBF
model, final contours in IR model. ‘+’ and ‘-’ indicates sign
of the level set functionφ. First four columns show examples
in which LBF model gets stuck in local minimums and IR
model converges to the desired boundary. The last column
shows an example that IR model fails.(view in color)

ImgID 1 2 3 4 5 6
LBF(CPU time) 3.16 4.23 7.47 0.80 7.02 2.33
iter # 350 225 350 75 275 175
IR(CPU time) 0.78 2.14 1.80 0.64 5.18 1.47
iter # 75 100 75 50 175 100

Table 1. CPU time (in second) and iteration number at con-
vergence for LBF and IR model in Fig. 5.

5. CONCLUSION

In this paper, we propose an intensity re-weighting (IR)
model, which is an extension of LBF model. LBF model can
easily get stuck in local minimums if initialization is far from
the true region boundary. Given the basic assumption that one
region is brighter than the other along the region boundary,
IR model can effectively avoid local minimums and allow
much faster convergence. Experimental results demonstrate
the effectiveness of the proposed method.

When multiple regions exist, it’s very common to see
one region been split when initialization is not close enough
to true boundary. Current IR model cannot handle mul-
tiple regions. Extending the idea of IR may enable auto-
segmentation without manual initialization.

6. REFERENCES

[1] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” in IJCV, 1997.

[2] T. Chan and L. Vese, “Active contours without edges,” inIEEE
Trans. on Image Processing, 2001.

[3] L. Vese and T. Chan, “A multiphase level set framework for
image segmentation using the mumford and shah model,” in
IJCV, 2002.

[4] C. Li, C. Kao, J. C. Gore, and Z. Ding, “Minimization of region-
scalable fitting energy for image segmentation,” inIEEE Trans.
on Image Processing, 2008.

[5] J. A. Sethian, ,” inLevel set methods and fast marching methods.
1999, Cambridge: Cambridge University Press.


