
ARCHITECTURE INDEPENDENT SHORT VECTOR FFTS

Franz Franchetti, Herbert Karner, Stefan Kral, Christoph W. Ueberhuber

Department of Applied and Numerical Mathematics
Technical University of Vienna

Wiedner Hauptstrasse 8–10/115, A–1040 Vienna, Austria
franz@aurora.anum.tuwien.ac.at, christof@aurora.anum.tuwien.ac.at

ABSTRACT

This paper introduces a SIMD vectorization for FFTW—the
“fastest Fourier transform in the west” by Matteo Frigo and Steven
Johnson. The new method leads to an architecture independent
short vector SIMD FFT vectorization that utilizes the architec-
ture adaptivity of FFTW. It is based on special FFT kernels (up
to size 64 and more) that are utilized by FFTW to compute the
whole transform. This vectorization supports all features of com-
plex transforms in FFTW (arbitrary size, dimension and stride of
the data vector; in-place and out-of-place transforms) and is fully
transparent to the user. It is suitable for arbitrary vector sizes of
the underlying hardware.

1. INTRODUCTION

Major vendors of general purpose microprocessors have included
SIMD extensions into their instruction set architecture (ISA) to
improve the performance of multi media applications by exploiting
the parallelism available in most multi media kernels.

All these ISA extensions are based on the packing of large
registers with smaller data types (usually of 8-bits, 16-bits or 32-
bits) and parallel operation on the subwords within one register.
This is called short vector SIMD parallelism.

In this paper, a SIMD vectorized version of FFTW [2] for
different platforms is presented. It extends the FFTW-framework
with new vectorized codelets introduced in this paper. In this re-
spect we focus on the balance between performance, portability
and the integration into the existing FFTW system.

The paper is organized as follows. Section 2 describes the ar-
chitecture of different multi media extensions available on recent
processors. Section 3 shortly describes FFTW, while Section 4
describes how FFTW SIMD code can be made architecture inde-
pendent. Section 5 discusses the vectorization of the kernels and
Section 6 presents runtime results.

2. SHORT VECTOR EXTENSIONS

The following architectures feature a floating-point short vector
SIMD instruction set extension and are therefore potential targets
for FFTW SIMD vectorization.

The AltiVec SIMD architecture [8] [9] of Motorola’s G4 gen-
eration of PowerPC microprocessors, the MPC7400, expands the
current PowerPC architecture through the addition of a 128-bit

This work was supported by the Special Research Program SFB F011
“AURORA” of the Austrian Science Fund FWF.

vector execution unit, which operates independently of the existing
integer and floating-point units. This new execution unit provides
integer SIMD and four-way single-precision floating-point SIMD
instructions.

The Intel Pentium III streaming SIMD extensions (SSEs)
[5] [6] [7] include 70 new instructions, for instance, general pur-
pose floating-point instructions, which operate on a new set of
eight 128-bit SSE registers, and integer instructions as well as
cacheability control and data streaming capabilities.

Intel’s Willamette Processor (which is the first processor with
the new IA kernel and successor of the P6 processor line) is capa-
ble of two-way double-precision floating-point SIMD operations
in addition to the four-way single-precision floating-point SIMD
capabilities.

The new Intel IA-64 architecture includes two-way single-
precision floating-point SIMD instructions that operate on generic
64-bit registers.

The AMD 3DNow! technology provides an additional instruc-
tion set for SIMD processing. The 3DNow! instructions operate
on 64 bit registers, divided into two single-precision floating-point
words which are mapped onto the floating-point registers.

3. FFTW: A RECURSIVE, KERNEL-BASED APPROACH

FFTW (Frigo, Johnson [2]) is currently the most sophisticated and
fastest FFT package. It is based on a recursive algorithm that han-
dles arbitrary array sizes, dimensions and strides. Portability and
architecture-adaptivity are further important features of FFTW.

In FFTW, the computation is accomplished by an executor
which calls highly optimized blocks of code called codelets. The
combination of codelets applied by the executor is specified by a
special data structure called a plan. The plan is determined at run-
time in an extra initialization phase by the planner. The planner
measures the runtime of many plans and selects the fastest one
(Frigo, Johnson [2], Haentjens [3]). Since the generated plans de-
pend on the computer used, FFTW performs an architecture adap-
tive FFT computation.

Codelets are powerful machine-generated blocks of code for
performing computational steps for FFT execution of various
sizes. The standard distribution of FFTW includes various codelet
sizes (powers of two up to 64 and combinations of smaller primes).
Arbitrarily sized codelets can be generated automatically by the
FFTW codelet generator genfft [4].

Basically there are two codelet types, twiddle codelets and
no twiddle codelets, which have different fields of utilization. A
twiddle codelet of size � computes an in-place FFTs of given size



void fftw_twiddle_2 (fftw_complex * A, const fftw_complex * W,
int iostride, int m, int dist)

{
int i;
fftw_complex *inout;
inout = A;
for (i = m; i > 0; i = (i - 1), inout = (inout + dist), W = (W + 1))

{
fftw_real tmp1, tmp8, tmp6, tmp7;
tmp1 = c_re (inout[0]);
tmp8 = c_im (inout[0]);
{

fftw_real tmp3, tmp5, tmp2, tmp4;
tmp3 = c_re (inout[iostride]);
tmp5 = c_im (inout[iostride]);
tmp2 = c_re (W[0]);
tmp4 = c_im (W[0]);
tmp6 = (tmp2 * tmp3 - tmp4 * tmp5);
tmp7 = (tmp4 * tmp3 + tmp2 * tmp5);

}
c_re (inout[iostride]) = (tmp1 - tmp6);
c_re (inout[0]) = (tmp1 + tmp6);
c_im (inout[0]) = (tmp7 + tmp8);
c_im (inout[iostride]) = (tmp8 - tmp7);

}
}

Figure 1: A Radix-2 Twiddle Codelet.

scaled by the twiddle factors which can be outlined by

� �� ��� � ����
��
� � � (1)

where � is diagonal scaling matrix. See Fig. 1 for a standard twid-
dle codelet of size 2.

A no twiddle codelet of size � performs an out-of-place FFT
of given size with different strides for the input and output which
can be outlined by

� �� �� �	 (2)

4. THE SIMD MACRO FRAMEWORK

SIMD vectorization is a highly machine dependent process with
no common language extension or standard API. Short vector ex-
tensions differ in various aspects like the programming model, in-
struction set, data types, and syntax.

Currently, application developers have two ways to access
SIMD hardware. They can either rewrite key portions of the appli-
cation in assembly language using the SIMD instructions, or they
use a high-level language and apply vendor-supplied macros that
provide the functionality of the SIMD-processing primitives.

The most common language extension for specifying SIMD-
processing primitives is to provide function-call like macros within
the C programming language. Each macro directly translates to
a single SIMD processing instruction, leaving register allocation
and instruction scheduling to the compiler. This approach would
be even more attractive to application developers if the industry
agreed to a common set of macros, rather than having a different
set from each vendor.

Different programming models and proprietary software sup-
port do not have an impact as severe as expected on the vectoriza-
tion process, because there are only a few operations needed within
FFTW. These are standard operations like (
) loading a complex
number, (

) storing a complex number, (


) loading a twiddle fac-
tor, (
�) declaring a constant, (�) using a constant, (�
) extracting
the real parts into a vector, (�

) extracting the imaginary parts
into a vector, (�


) building complex numbers from a vector of
real parts and a vector of imaginary parts, (
�) adding two vectors,
(�) subtracting two vectors, and (�
) multiplying two vectors.

These operations must be mapped onto the underlying SIMD-
architecture. To achieve a high abstraction level, the basic FFTW
operations are mapped directly onto a set of macros. All operations

typedef __m128 FFTW_SIMD_VECT;
typedef __m64 FFTW_SIMD_COMPLEX;

/* define const operations */
#define FFTW_SIMD_KONST(c,v) \

static const __declspec(align(16)) float (c)[4]={v,v,v,v}
#define FFTW_LOAD_KONST_SIMD(c) *(FFTW_SIMD_VECT *)(c)

/* define arithmetic operations */
#define SIMD_ADD(a,b) _mm_add_ps((a),(b))
#define SIMD_SUB(a,b) _mm_sub_ps((a),(b))
#define SIMD_MUL(a,b) _mm_mul_ps((a),(b))

/* define load operations */
#define LOAD_RE_IM(re,im,input,stride) \
{ \

FFTW_SIMD_VECT ldtmp1,ldtmp2; \
ldtmp1=_mm_loadl_pi(ldtmp1,(input)); \
ldtmp1=_mm_loadh_pi(ldtmp1,(input) + (stride)); \
ldtmp2=_mm_loadl_pi(ldtmp2,(input) + 2 * (stride)); \
ldtmp2=_mm_loadh_pi(ldtmp2,(input) + 3 * (stride)); \
(re)=_mm_shuffle_ps(ldtmp1,ldtmp2,_MM_SHUFFLE(2,0,2,0)); \
(im)=_mm_shuffle_ps(ldtmp1,ldtmp2,_MM_SHUFFLE(3,1,3,1)); \

}

Figure 2: FFTW SIMD Macros for the Intel Pentium III.

within the codelets are done using these macros (see Figs. 2 and
3 for details). So the vectorized version of FFTW is architecture
independent and all architectural differences are covered by one
single include file that defines the needed high-level macros.

FFTW accesses single real numbers like the real or imaginary
part of a complex number. That results in an access to quanti-
ties of size 4 byte (single-precision) or 8 byte (double-precision)
that are naturally aligned. But SIMD instructions normally offer
fast access only to naturally aligned �-way vectors, e. g., 16 byte
aligned 16 byte quantities (vectors of 4 single-precision floating-
point numbers) for four-way SIMD architectures. All other ac-
cesses are called unaligned and are very expensive in terms of ac-
cess time. Avoiding extra loads, stores and shuffling is therefore
one of the key problem when producing fast FFTW SIMD kernels.

5. VECTORIZING THE KERNELS

To vectorize the FFTW codelets, two different approaches have
been applied.

Internal Vectorization. The computation in the codelets can be
vectorized, if the codelet contains a loop. The vectoriza-
tion results in computing some passes of the loop simulta-
neously. Twiddle codelets can be handled that way.

External Vectorization. If more than one codelet has to be exe-
cuted with the same parameters on strided data, subsequent
calls to this codelet can be replaced by one call to a vec-
torized form of this codelet. This can be done using the
no twiddle codelets as well as using the twiddle codelets.
The different methods result in a different number of mem-
ory accesses due to the way, twiddle factors are accessed.
The cache locality of FFTW can be perturbed as memory
accesses are reordered.

Per invocation, an internally vectorized codelet does the same
amount of work as a standard codelet, while an externally vec-
torized codelet does � times the work of a standard codelet on a
�-way SIMD architecture.

The vectorization presented in this paper requires changes in
the codelets, the executor and the planner as well as in FFTW’s in-
ternal data structures. Every codelet (no twiddle and twiddle) gets
an internally vectorized and an externally vectorized version asso-
ciated. Whenever a codelet (i. e., a pointer to a codelet) is saved,



three pointers to the associated codelets are saved after the vec-
torization. So the planner has to initialize the plans in a different
way. These pointers are used by the executor, to use the appropri-
ate vectorized codelet instead of a loop of standard codelets.

To vectorize a codelet, either a loop has to be vectorized or
the computation of four codelets are put into one vector codelet.
Like the FPU codelets the SIMD codelets are generated auto-
matically by incorporating the following transformations into the
FFTW codelet generator.

� In the FPU codelet the real parts and the imaginary parts can
be accessed independently. In a SIMD codelet, the real part
and the imaginary part have to be loaded with one macro.

� An equivalent transformation is applied to the data storing
instructions.

� Any arithmetic operation is transformed into the corre-
sponding macro.

� The function prototypes and data types have to be adjusted.

� An extra stride parameter is passed to the twiddle codelets.

� According to the vectorization type, the twiddle factor ac-
cess has to be adjusted.

See Fig. 4 for the Radix-2 SIMD twiddle codelet.
The changes in the internal data structure must be handled

by the executor loop and by the loops in the twiddle codelets
within the executor and results in an different index computation
within the executor. E. g., for a vectorized loop with 10 passes
on a 4-way SIMD architecture, 2 vectorized passes and 2 stan-
dard passes are needed when operating with externally vector-
ized codelets. The function fftw_executor_simple is the
FFTW recursion entry point. All further steps are done by calls to
executor_many_vector.

In fftw_executor_simple, the no twiddle case can only
occur with only one call to the codelet as it is the entry point of the
recursion. So this case cannot be vectorized. The key issue is the
twiddle case.

In the executor_many_vector, both the twiddle and the
no twiddle case have to be changed. The no twiddle case occurs
with a lot of repetitions and is the leaf of the recursion. So the
vectorized version of the codelets can be used.

In the twiddle case, both the internally and the externally vec-
torized case is possible. The original code can be modified in two
different ways: The first method leads to the externally vectorized
version. Only the standard codelets and the externally vectorized
codelets are used. This vectorization may lead to cache problems,
as elements with big power of two strides are loaded within a few
lines of code within the codelet. However, this technique is more
obvious and faster to implement.

The internally vectorized version has the same data access pat-
tern as the original FFTW version and shows a better data local-
ity than the externally vectorized version. As the no twiddle case
has no obvious internal vectorization, two different vectorization
methods have to be used: the external version for the no twiddle
case and the internal vectorization for the twiddle case. This leads
to a more complex executor implementation.

6. EXPERIMENTAL RESULTS

The new SIMD version of FFTW was tested on a 650 MHz Pen-
tium III system operating under Windows NT 4.0 using the native

#define FFTW_TWIDDLE_STRIDE_2 1

void fftw_twiddle_simd_int_2 (FFTW_SIMD_COMPLEX * A,
FFTW_SIMD_COMPLEX * W, int iostride, int m, int dist)

{
int i;
FFTW_SIMD_COMPLEX *inout;
inout = A;
m >>= FFTW_LD_SIMD_LEN;
for (i = m; i > 0; i = (i - 1), inout = (inout + FFTW_SIMD_LEN * dist),

W = (W + FFTW_TWIDDLE_STRIDE_2 * FFTW_SIMD_LEN))
{

FFTW_SIMD_VECT tmp1, tmp8, tmp6, tmp7;
LOAD_RE_IM (tmp1, tmp8, inout + (0), dist);
{

FFTW_SIMD_VECT tmp3, tmp5, tmp2, tmp4;
LOAD_RE_IM (tmp3, tmp5, inout + (iostride), dist);
LOAD_RE_IM (tmp2, tmp4, W + (0), FFTW_TWIDDLE_STRIDE_2);
tmp6 = SIMD_SUB (SIMD_MUL (tmp2, tmp3), SIMD_MUL (tmp4, tmp5));
tmp7 = SIMD_ADD (SIMD_MUL (tmp4, tmp3), SIMD_MUL (tmp2, tmp5));

}
STORE_RE_IM (SIMD_ADD (tmp1, tmp6),

SIMD_ADD (tmp7, tmp8), inout + (0), dist);
STORE_RE_IM (SIMD_SUB (tmp1, tmp6),

SIMD_SUB (tmp8, tmp7), inout + (iostride), dist);
}

}

Figure 3: The Radix-2 SIMD Twiddle Codelet.

Intel C/C++ Compiler 4.5 and on a 400 MHz G4 AltiVec system
operating under Yellodog Linux 1.2 using gcc-vec 2.9.5. In both
cases the highest available optimization was used (see [1] for de-
tails).

��������

������� ��	�

�������������������	
������

����


��

���

���

��

Figure 4: Speed-Up of No Twiddle Codelets on a 650 MHz Pen-
tium III.

In the first test series, only the codelet runtime was mea-
sured. The internally vectorized codelets and the externally vec-
torized codelets were compared to the original FPU codelets. In
these tests, the externally vectorized codelets were typically about
15 % faster than the internally vectorized codelets due to a smaller
number of shuffling operations. Speed-ups of 25 % to 70 % are
achieved over the standard FPU codelets. See Figs. 5 and 6.

In the second test series, the new codelets were tested within
FFTW. The SIMD FFTW version was tested using vectorlengths
ranging from �� to ��� and ranging from ��� to ��� . Compared to
the standard version of FFTW typically speed-ups of 25 % to 50 %
have been achieved.

For the vectorlengths of type �� the performance of the ex-
ternally vectorized version degrades (due to cache associativity
problems) while the internally vectorized version shows a good
speed-up for both the in-cache case and the out-of-cache case.

For vectorlengths of type ��� the externally vectorized ver-
sion and the internally vectorized version show similar characteris-



���� ����� �	
�����
��� ����� �	
�����

��������

������� ��	�

����������������

����

���

���

���

�

Figure 5: Speed-Up of Twiddle Codelets on a 650 MHz Pen-
tium III.

tics with an average speed-up of about 25 % which even increases
for the out of cache case. Typically more than 99 % of the compu-
tation is done in the SIMD part. See Figs. 7 and 8.

���� ����� ��	
���
���� ����� ��	
���

��������

�����	 ����� �

������������������������

����

���

���

���

�

Figure 6: Speed-Up compared to FFTW FPU, � � �� on a
650 MHz Pentium III.

7. CONCLUSION

In this paper a SIMD extension to FFTW is presented. It sup-
ports all features of complex transforms in FFTW (arbitrary size,
dimension and stride of the data vector; in-place and out-of-place
transforms) in an architecture independent way. Arbitrary �-way
floating-point SIMD is supported within arbitrary sized FFTW ker-
nels. It turns out that the access to complex numbers instead of
SIMD vectors within the kernels is the key problem.

Significant speed-ups over the standard version of FFTW have
been achieved.

For unit stride data, special codelets are more appropriate.
They are incorporated into the next version of FFTW as special-
ized solvers.

���� ����� ��	
���
���� ����� ��	
���

��������

�����	 ����� �

������������������

���

���

���

�

Figure 7: Speed-Up compared to FFTW FPU, � � ��� on a
650 MHz Pentium III.

8. ACKNOWLEDGEMENTS

Matteo Frigo, with whom we have worked closely for more than
a year, has had a very strong influence on the greater part of this
paper.

9. REFERENCES

[1] F. Franchetti, Short Vector FFTs, Master Thesis, Depart-
ment of Applied and Numeric Mathematics, Technical Uni-
versity of Vienna, 2000.

[2] M. Frigo, S. Johnson, FFTW: An Adaptive Software Ar-
chitecture for the FFT, Proceedings of the ACM SIGPLAN
’99 conference on Programming language design and im-
plementation, 1999, Pages 169 - 180.

[3] G. Haentjens, An Investigation of Recursive FFT Imple-
mentations, Masters Thesis, Electrical and Computer En-
gineering, Carnegie Mellon University, 2000.

[4] M. Frigo, A Fast Fourier Transform Compiler, Proceedings
of the PLDI Conference, May 1999, Vol. 3, p. 1381.

[5] Intel Corporation, Intel C/C++ Compiler User’s Guide —
With Spport for the Streaming SIMD Extensions, 1999.

[6] Intel Corporation, Intel Architecture Software Developer’s
Manual, 1999.

[7] Intel Corporation, AP-833 Data Alignment and Program-
ming Issues for the Streaming SIMD Extensions with the
Intel C/C++ Compiler, 1999.

[8] Motorola Corporation, AltiVec Technology Programming
Environments Manual, 1998.

[9] Motorola Corporation, AltiVec Technology Programming
Interface Manual, 1998.


