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Introduction
Tracking the continuous evolution of surfaces such as a shock
wavefront has a wide range of real world applications. The
level set algorithm is a widely used tool for tracking evolving
surfaces[4]. It embeds the surface into a higher dimensional
function defined on a structural grid discretized volume, and
performs numerical computation on the fixed Cartesian grid.
The narrow band level set[4] is a variation of the level set
method that can significantly reduce the computational cost
without noticeable change in quality, by constraining compu-
tation to a neighborhood region around the interface which is
called narrow band.

The narrow band level set algorithm performs a compu-
tation similar to iteratively solving partial differential equa-
tions with stencils, but on a irregular shaped and dynami-
cally evolving narrow band. Usually, the interface motion is
tracked for a large number of iterations, thus having the po-
tential for a high data reuse rate. However, extracting data
reuse on the highly irregular computational pattern is diffi-
cult. The major contribution of the paper is that we develop
a framework to generate highly efficient code for this algo-
rithm on mainstream CPUs with multicore, deep memory hi-
erarchies and SIMD instructions.

Related work. This work is closely related to prior
works on optimization of stencils [3, 2] and sparse linear
algebra[5, 6]. Prior work on stencils has been primarily fo-
cusing on the dense structural grid. Sparse matrix solvers are
usually memory-bound because of the low data reuse rate.
We combined concepts from both areas, and develop a novel
framework for the narrow band level set algorithm.

Surface Tracking Algorithm

Figure 1: An example of level set evolution for image segmentation. First
row shows evolution of thezero level set; second row shows evolution of the
level set function.

We use a 2-D image segmentation example in Fig 1 to il-
lustrate the surface tracking process by using the level setnar-
row band algorithm. The level set is a functionφ defined on
the 2-D image plane, whosezero level set corresponds to the
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Figure 2: The narrow band level set and its algorithm flow.

evolving interface. Thezero level set is the intersection ofφ
and the zero plane:{(y, x)|φ(y, x) = 0}. The evolution of
φ is driven by some force field such that at convergence, the
zero level set forms a smooth contour on the object boundary.
Computationally, updating the level set evolution function φ

can be viewed as nearest-neighbor stencil computation. In
this example,φ(t+1) is a function ofφt(x ± ∆x, y ± ∆y)),
where∆x, ∆y ∈ {0, 1, 2}.

In the level set method, what we are interested in is the evo-
lution of thezero level set interface rather than the complete
level set function. This leads to the lower complexity narrow
band level set method in Fig 2, in which the computation is
restricted to a narrow band around the zero level set. It is an
iterative process of two basic components: 1) stencil compu-
tation for all points in the narrow band and 2) band update
process based on the current level set.

Surface Tracking Framework
Our surface tracking framework thoroughly explores opti-
mization opportunities of the narrow band level set algorithm,
and integrates them in an auto-tuner to deliver performance
portable code across different machines. The techniques pro-
posed are grouped in the following six categories, addressing
different aspects of the algorithm and hardware systems.

A fundamental algorithmic tradeoff. There is a funda-
mental tradeoff between the cost for stencil computation and
the cost for band update. The tradeoff is controlled by band
radiusBr and tile size. Using largerBr or tile size reduces
the band update cost, but incurs higher computational cost.
These two parameters are chosen in the auto-tuning process.

In-Core stencil. In-core stencil explores efficient utiliza-
tions of on-chip resources. The major techniques include
SIMDization, approximate transcendental functions, and op-
timizing instruction scheduling in the basic tile. For exam-
ple, we approximatecos with a quadratic function that is
simply vectorizable. We construct a search space of instruc-
tion schedules. Empirically we find that there is a 30%-70%
performance difference between the best scheduling and the
worst one.
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Figure 3: Single-threaded speed-up on Atom.
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Figure 4: Single-threaded speed-up on Xeon.
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Figure 5: Full speedup on Xeon with multithreading (up to 8 cores).
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Figure 6: Computational rate and kernel stencil upper bound.

Memory. Memory level optimizations target removing the
memory bottleneck by extracting the temporal reuse of data.
Time skewing is a standard technique to remove the memory
bottleneck for iterative stencil computation on dense stencils,
by re-organizing the computational order. Directly applying
time skewing transformation to the narrow band level set al-
gorithm is not efficient, due to the high overhead incurred by
the irregular shape and tracking process of the narrow band.

We propose a simple yet effective way to decompose the
time skewing space and the narrow band part. The idea is to
project an+1-dim grid inton-dim, where each node in then-
dim space represents one sparse row in the originaln+1-dim
space. The continuous evolving interface which is sparse in
then + 1-dim space now becomes dense in then-dim space.
The tracking process can be solved in a similar way asn-dim
dense stencil computation, plus some special handling for the
projected dimension and the narrow band tracking process.
This technique can significantly reduce the memory pressure,
or even make the application completely compute-bound.

Band update. The band update process has many short
loops with unpredictable trip counts, due to the uncertainty
in the updated band positions and interaction with tuning pa-
rameters like band radius and tile size. We build a big jump
table using a code generator, and essentially unroll the short
loops for each possible case.

Multithreading. We use a low overhead parallelization
scheme when scaled to multiple cores. Naı̈vely partitioning
the workload into independent sets will incur redundant com-
putation along partition boundaries. We tailor the method in
[7] to the narrow band setting, which has very low communi-
cation overhead and no redundancy for large data size. Per-
formance scales almost linearly with the number of cores.

Auto-tuning. Now we have developed a parameterized
framework that integrates all above techniques. The remain-
ing problem is to identify good choice for our tunable param-
eters. On top of the framework, we build an auto-tuner that
automates the search process for good parameter values, us-
ing some empirical search methods.

Experimental Results
Our test machines include a a Intel dual-socket 2.8 GHz Xeon
5560 and a 1.6 GHz Atom N270. Fig 3 and Fig 4 show the
single-threaded speedup over a straight forward implementa-
tion baseline of the surface tracking algorithm, by incremen-
tally adding one optimization technique a time. Our baseline
runs at comparable efficiency to the best publicly available
code [1]. On Xeon, single-threaded speedup ranges in 7x-34x
for a wide range of image sizes. On Atom speedup ranges in
6x-13x. With multithreading, the speedup ranges in 11x-170x
on Xeon, as shown in Fig 5.

We show the computational rate delivered in Fig 6. To
understand the code efficiency, we setup an upper bound of
the computational rate, which is the rate of dense stencil ker-
nel after applying all in-core optimizations. The kernel runs
at about 50% of peak on Xeon, and 25% of peak on Atom.
The delivered computational rate is about 30%-40% of peak
on Xeon, and 7%-13% of peak on Atom. The result indi-
cates that the memory bottleneck becomes completely hid-
den on Xeon, but still has a penalty for large inputs on Atom,
mainly due to the much smaller last level cache size and larger
penalty for cache miss on Atom.
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