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Introduction
In this paper we extend the program generation system Spi-
ral [5, 6] beyond its problem domain. Spiral was origi-
nally developed to automate the optimization of software li-
braries for linear transforms like the discrete Fourier trans-
form (DFT), filters, wavelets, and others. In previous work
we enabled Spiral to generate high-performance libraries for
state-of-the-art and emerging platforms, including multicore
CPUs with SIMD vector instruction sets, graphics processors
(GPUs), field-programmable gate arrays (FPGAs), or a CPU
with FPGA acceleration [2].

Beyond transforms. In this paper we take Spiral a
first step beyond the domain of linear transforms. We ex-
tend Spiral to generate parallel and/or vectorized libraries
for 1) Viterbi decoding, 2) the EBCOT encoder used in
JPEG2000, 3) an SAR imaging algorithm, and 4) matrix-
matrix-multiplication (MMM) for small matrices. This is
work in progress: our automatically generated Viterbi de-
coder libraries and small-size SGEMM MMM libraries are
competitive with or outperform the best available hand-tuned
libraries for the same functionality. For the EBCOT encoder
and SAR imaging, Spiral automatically generates fast imple-
mentations but these are not yet competitive with the best
available software.

Spiral. Spiral automates the generation of high-perfor-
mance software libraries for the domain of linear transforms.
It generates software that takes advantage of different forms
of parallelism, while at the same time matching the perfor-
mance of hand-written code. Spiral is based on the following
key ideas: 1) A domain-specific, declarative, mathematical
language to describe algorithms; and 2) the use of rewriting
to parallelize and optimize algorithms at a high level of ab-
straction.

Related work. Spiral belongs to the field of automatic per-
formance tuning and program generation, which includes the
projects ATLAS, PHiPAC, FFTW, OSKI, TCE, and others
[1, 3, 4].

Extending Spiral Beyond Transforms
Spiral uses the declarative mathematical language SPL (sig-
nal processing language) to describe the structure of signal
transform algorithms. SPL is based on the Kronecker product
formalism used in multi-linear algebra [5].
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name definition

basic operator
projection πx : Cm × Cn → Cm; (x,y) 7→ x
linear transform M : Cn → Cm;x 7→ Mx

vector sum Σn : Cn → C; x 7→ ∑n−1
i=0 xi

vector minimum minn : Cn → C; x 7→ min(x0, . . . , xn−1)
constant vector Cc : ∅→ Cn; () 7→ c

operations
addition (M+N)(x,y) = M(x,y) + N(x,y)
multiplication (M ·N)(x,y) = M(x,y) ·N(x,y)
cartesian product (M×N)(x,y,u,v) = M(x,y)×N(u,v)
composition (M ◦N)(x,y) = M(N(x,y))
tensor product I⊗M, M⊗ I

Table 1: A subset of operators and operations defined by OL.

The key idea in going beyond transforms is to extend SPL
so that a larger class of algorithms can be expressed, while
Spiral’s rewriting system (which enables parallelization and
vectorization) still remains applicable. We call this extension
of SPL operator language (OL).

Operator language (OL). OL is based on two extensions
to SPL: 1) matrices are viewed as linear operators, and in ad-
dition general (potentially nonlinear) operators are allowed.
2) Matrices are viewed as operators with one input and one
output vector. In OL we allow operators with multiple input
and multiple output vectors. All SPL expressions can be in-
terpreted as OL expression; for instance, the Cooley-Tukey
FFT rule [5] is expressed in OL by

DFTmn → (DFTm⊗ In) ◦Dm,n ◦ (Im⊗DFTn) ◦ Lmn
m .

Here, all matrices become linear operators, and the matrix
multiplication is replaced by operator composition.

Table 1 summarizes some new OL operators and opera-
tions that we use to describe algorithms outside the transform
domain. Most importantly, we define a tensor product which
generalizes to the non-linear case where the usual tensor prod-
uct definition is not available. The definition is compatible
with our parallelizing and vectorizing rewriting system.

Non-transform algorithms in OL. In this paper we
express four non-transform applications in OL and gen-
erate shared memory parallel and SIMD vector code for
them: 1) Viterbi decoding, 2) the EBCOT encoder used in
JPEG2000, 3) a SAR imaging algorithm, and 4) matrix-
matrix-multiplication (MMM) for small matrices. As exam-
ple, Table 2 shows the the rewriting of OL formulas for the
MMM and the Viterbi decoder, parallelizing or vectorizing



MMMM,N,K︸ ︷︷ ︸
smp(p,µ)

→ (
(LMp

M ⊗ IN/(pµ))⊗̄ Iµ
) ◦ (

I1×p→p⊗‖MMMM,N/p,K

) ◦ (
(IKM/µ ⊗̄ Iµ)× ((LKp

p ⊗ IN/(pµ))⊗̄ Iµ)
)

Vite,f,x
m,n,N︸ ︷︷ ︸

vec(ν)

→
n−1∏

i=0

(
I2m−1/ν×2m−1×1⊗j

(
( L2ν

ν︸︷︷︸
reg(ν)

× I2m×nN ) ◦ (Ve,f
i,4j+k ⊗̄k Iν×1×1)

)) ◦ (
(L2m

2m−1/ν
⊗̄ Iν)× I2mn×nN

)

Table 2: OL expressions for the shared memory parallelization of a matrix-matrix-multiplication and SIMD vectorization of a Viterbi decoder.
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Figure 1: Experimental results. (a) SIMD vectorized Spiral-generated Viterbi decoder libraries perform comparably or outperform the Viterbi library by
Phil Karn. (b) Spiral-generated JPEG2000 decoder (EBCOT and wavelet transform) performs within 2x of the C implementation Jasper and within 4x of
the hand-tuned Intel IPP library. (c) A Spiral-generated SAR imaging implementation is sped up by SIMD vectorization and loop optimizations. (d) Spiral-
generated matrix-matrix-multiplication on a Cell SPU (compared to Hackenberg’s implementation) provides many more sizes and reaches high performance.

the respective application. Due to space limitations we omit
the formulas for EBCOT and SAR imaging.

Experimental results. We summarize our experimental
results in Figure 1, providing results for all four applications.
We show that for the Viterbi decoder and for matrix-matrix-
multiplication our generated libraries are competitive with or
outperform the best available code. For JPEG2000 we show
the current status (it is still work-in-progress): Our generated
library is within 2x of the performance of Jasper and 4x of the
Intel IPP. For SAR imaging we show how SIMD vectorization
and loop optimization speeds up a reference implementation;
all versions (except MATLAB) are generated by Spiral.
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