
High Assurance Code Generation for
Cyber-Physical Systems

Tze Meng Low, Franz Franchetti

Carnegie Mellon University

{lowt, franzf}@cmu.edu

Abstract—High Assurance SPIRAL (HA-SPIRAL) is a tool
that synthesizes a faithful and high performance implementation
from the mathematical specification of a given controller or
monitor. At the heart of HA-SPIRAL is a mathematical identity
rewrite engine based on a computer algebra system. The rewrite
engine refines the mathematical expression provided by a control
engineer, through mathematical identities, into an equivalent
mathematical expression that can be implemented in code. In this
paper, we discuss the use of HA-SPIRAL in generating provably-
correct and high-performance implementations for different con-
trollers and monitors for autonomous land and air vehicles.

I. INTRODUCTION

The challenges of producing software with a high degree

of dependability (high assurance software) for control code

of cyber-physical systems such as autonomous vehicles have

given rise to a number of formal approaches that address

different parts of the problem. Model checking and hybrid

verification tools provide proofs that a model of a system

behaves as specified and that a control system is stable. Proof

assistants (Coq[1], Isabelle[2], PVS[3]) and verified compilers

(CompCert[4]) can provide a proof of certain properties of

the code and establish the equivalence between source code

and the compiled binary. However, the synthesis of high-

performance, floating-point heavy control code from a high

level specification together with the guarantee that the code

faithfully implements the behavior of the specification relative

to arithmetic over the real numbers is relatively unaddressed.

High assurance SPIRAL (HA-SPIRAL) is a code generation

tool developed to address this problem of generating provably

correct implementations from the mathematical specifications

of the desired control code [5]. Starting with the mathemat-

ical specification/formulation of the controller/monitor, HA-

SPIRAL produces both a highly optimized implementation

of the specification, and a trace that provides evidence that

the implementation is mathematically equivalent to the speci-

fication. The generated code can be compiled with certified

compilers to provide an unbroken chain of evidence that

the final binary is a faithful implementation of the original

specification.

In this paper, we demonstrate the use of high assurance

SPIRAL (HA-SPIRAL) within the context of implementing

monitors and controllers for autonomous air and ground vehi-

cles.

II. HA-SPIRAL AND CODE GENERATION

Control engineers typically describe their algorithm using

mathematical equations or mathematical operators that have

specific semantic meaning. These meanings are often lost

during the implementation process of turning the mathe-

matical description of the algorithm into code. HA-SPIRAL

addresses this difference in representations by providing a

domain specific language, the Hybrid Control Operator Lan-

guage (HCOL), to control engineers that is more akin to

the mathematical formulation commonly used to described

control algorithms. Through a series of identity rewriting, HA-

SPIRAL rewrites the input mathematical expression into a

more detailed but mathematical equivalent expression that can

be transformed into code.

A. Geo-Fence Monitor Example

We illustrate the use of HA-SPIRAL with the example of a

geo-fencing monitor that checks if a vehicle remains within a

specified area. The location of the vehicle can be modeled as

a point, and the geo-fenced area can be monitored as one or

more convex polygons. The vehicle is said to be in the geo-

fenced area if the point is inside at least one of the polygon.

For simplicity, we consider the case where the geo-fence

can be described by a single convex polygon. Mathematically,

this can be described as follows:

InsidePoly(x) = (Ax− b) ≤ �0,
where matrix A, and vector b are constants describing the

polygon, �0 is a vector of all zeros, and x is a vector describing

the position of the vehicle. In essence, the geo-fence can be

computed in four separate steps: 1) a matrix-vector multipli-

cation of A and x, followed by 2) a vector subtraction with

b, 3) a point-wise operation that compares all elements of the

resulting vector against zero, and 4) a reduction operation is

performed on the results of the comparisons, where the results

are reduced via conjunction to obtain a single boolean value

that tells us if the position of x is within the polygon described

by the matrix A and vector b.
An implementation of the monitor could be as follows:

for (int i = 0; p != m; ++i){
int out = 0; float tmp = 0.0;
for (int j = 0; != n; ++j)

tmp += A[i][j] * x[j];
out = out && ((tmp - b[i]) <= 0);

}
return out;

2017 IEEE 18th International Symposium on High Assurance Systems Engineering

1530-2059/17 $31.00 © 2017 IEEE

DOI 10.1109/HASE.2017.28

104

Inputs: HCOL Specification

HCOL Refinement

Abstract Code Generation

Instruction Generation

Output: Control Code

Fig. 1. HA-SPIRAL system consists of multiple rewriting phases. Each phase
refines the input specification into a more detailed expression. The final phase
uses rewrite rules to specialize the mathematical expression into code for a
specific platform.

Notice that mathematical operations such as the matrix-

vector product, vector-vector subtraction, comparison and re-

duction operations are no longer obvious from the implemen-

tation. Steps 2 through 4 of the geo-fence algorithm have

been merged via Loop Fusion/Merging, a traditional compiler

loop optimization [6]. This makes verifying the correctness

of the code, i.e. the faithful implementation of the original

specification, difficult.

B. HA-SPIRAL’s rewriting system

HA-SPIRAL uses a set of rewrite rules based on mathe-

matical identities to transform one representation to another.

Given an input specification written in HCOL, HA-SPIRAL

repeatedly applies rewrite rules that refines the input specifi-

cation, into more expressive mathematical expression that can

be generated into code. As all rewrite rules in HA-SPIRAL are

mathematical identities, this means that the expressions before

and after the application of a rewrite rule can be proven to be

equivalent. By implementing HA-SPIRAL and HCOL on top

of the computer algebra system, GAP [7], the correctness of

the rewrite rules are enforced by the mathematical rules built

within the system.

We illustrate the different phases of rewriting within HA-

SPIRAL (as shown in Figure 1) to turn an input specification

into output code with the first step of the geo-fence example,

the matrix-vector product.

Phase 0: HCOL Specification. Recall that the key

reason for HCOL is to provide control engineers a language

that is similar to the mathematics they would write. As such,

HCOL is defined in terms of operators, operations that are

applied to the input. In addition, these operators are higher

level mathematics operations, i.e., they are usually easy to

specify mathematically, but would typically take multiple

lines of code to implement. An example of such an operator

is the matrix-vector product, y = Ax, used in the first step of

our geo-fence example.

The input to HA-SPIRAL is the operator:

MatrixVectorProdm,n,(ai) .

Subscripts m, n and (ai) are parameters to the operator. In

this case, m and n describe the dimensions of the matrix A,

and (ai) represents the specific row values of A.

Phase 1: HCOL Refinement. The matrix-vector product,

y = Ax,

where A is a m × n matrix and x, y are vectors of length n
and m respectively. y can be computed by first partitioning y,

and A into rows, i.e.,

y →

⎛
⎜⎝

ψ0

...

ψm−1

⎞
⎟⎠ and A→

⎛
⎜⎝

aT0
...

aTm−1

⎞
⎟⎠

and then each element of y (ψi) is computed by performing a

scalar product of the corresponding row of A with x, i.e.⎛
⎜⎝

ψ0

...

ψn−1

⎞
⎟⎠ =

⎛
⎜⎝

aT0 x.
...

aTn−1x

⎞
⎟⎠

This mathematical identity is captured within HA-SPIRAL as

a rewrite rule of the form:

MatrixVectorProdm,n,(ai) →
[

...

]m−1

i=0

ScalarProdn,ai
,

where ScalarProd represents the operator for the scalar prod-

uct operation, and the operation[
...

]m−1

i=0

can be thought of as the vertical stacking of multiple

ScalarProd. A more formal definition is defined subsequently.

The scalar product operator can be further decomposed

based on the identity

xT y =
n−1∑
i=0

χiψi,

into a point-wise multiplication all n elements of x and y,

followed by a reduction (summation) of the results from the

multiplication. In HCOL, this identity is captured by the

rewrite rule

ScalarProd(αi) →
Reductionn,(α,β)�→(α+β),0 ◦Pointwisen,(xi,αi)�→αixi

,

where ◦ represents operator composition, similar to functional

composition (f ◦ g)(x) = f(g(x)).
Other rewrite rules within HA-SPIRAL that are used in

our geo-fence model are captured in Figure 2.

Phase 2: Abstract Code Generation. At the end of the

rewriting, HA-SPIRAL produces a mathematical expression

105

involving simple arithmetic/comparison functions that can

either be directly translated into code, or replaced with an

abstract code template. In this particular phase, mathematical

expressions that operate on higher dimensional data (e.g.

vectors and matrices) are transformed into loops over

scalar computations. Exposing scalar computations may also

introduce opportunities for optimizations, which are exploited

in this phase on the code generation process.

Recall that in order to compute our matrix-vector mutlipli-

cation, the output of every scalar products needs to be placed

in a different memory address as described by the operator[
...

]m−1

i=0

ScalarProdn,ai .

We leverage the fact that a consecutive block of memory can

be thought of as a vector, where each element is a unique

memory address. This means that selecting elements from the

vector can be done via the multiplication of the memory vector

with the appropriate standard basis vectors. For example, the

following mathematical expression gathers/selects the first n
elements (i.e., the first row) from the matrix A,

(emn
1 + emn

2 + . . .+ emn
n)TA,

where emn
i is a vector of length mn, and has a one in the ith

position, and zeros in all other positions, in order to compute

the first scalar product.

Storing elements into the memory vector can be performed

using a similar mathematical expression. For example, the

output of the jth scalar product, denoted as αj , can be stored

back into the appropriate location in the memory vector, y
with the following expression

(emj)T y = αj .

These functions that selects and stores elements to and

from memory are automatically generated via HA-SPIRAL

based on the input and output dimensions of the operator,

which in turn are governed by the rules of mathematics.

Phase 3: Instruction Generation. In this phase, the

abstract code generated in the previous phase is specialized

to a particular output language for a particular architecture.

C. Hybrid Control Operator Language (HCOL)

Rewrite rules within HA-SPIRAL are written in the Hybrid

Control Operator Language (HCOL) that was designed to be

extensible so that higher level mathematical constructs can be

built from operators that were previously formalized in HCOL.

HCOL is an operator-based language where the primitives

in the languages are operators and operations. Operators

within HCOL are essentially mathematical functions, while

operations are higher order operators that take one or more

operators and return a new operator. The core of HCOL is

built upon a small number of basic operators and operations

highlighted in the rest of this subsection.

Operator. In HCOL, the following primitive operators

are defined.

1) Constant Operator. The Constant Operator, denoted Cc,

returns the constant value c, regardless of its input, i.e.

Cc(x) = c

2) Identity Operator. The Identity operator, denoted I(x),
simply returns the input, i.e.

I(x) = x

3) Atomic Operator. The Atomic Operator is any mathe-

matical function of n-arity, and is denoted as

fn(x0, x1, . . . , xn) = y

4) Pointwise Operator. The Pointwise Operator is a gen-

eralization of the Atomic Operator where n Atomic

operators fi’s are applied to each of the n elements, xi of

a vector input to compute a vector output. This is similar

to the map function in many functional languages.

We denote the Pointwise operator using the following

symbol:

Pointwisen,fi

Note that while we do not restrict that fi’s to be the same

operator, it is usually the case that the same operator is

applied to every input element.

5) Reduction Operator. The Reduction Operator is the

HCOL equivalent of the fold function in many func-

tional language. Mathematically, it can be described as

Reductionn,fi,c =
fn−1(xn−1,

fn−2(xn−2, . . . f0(x0, Cc(.))))

6) Selection Operator. Often known as the gather operator,

this operator picks out particular scalar elements from

a higher dimensional input through the use of basis

vectors, i.e.

(eni)
T ((χ0, . . . , χn−1)) = χi.

7) Embed Operator. The embed operator puts a scalar

element into a higher dimensional output. Again, the

basis vector notation from linear algebra is used to

denote the Embed operator.

(eni)
T (x) = (∗, . . . ,

ithelement︷︸︸︷
x , . . . , ∗),

where ∗ represents values that are undefined.

Operation. In order to create mathematical operators from the

primitive operators, operations, or higher order operators, are

defined within HCOL:

1) Compose Operation. Given two operators, A and B, the

Compose operation, denoted by ◦, takes the output of the

first operator A and uses it as the input to operator B. In

essence, the Compose operation is function composition,

and can be described as follows:

(B ◦A)(x) = B(A(x))

106

InsidePolym,n,A,b → ForAlln−1
i=0 (Pointwisen,xi �→xi≤0 ◦LinearSysm,n,A,b)

LinearSysm,n,A,b → Pointwisen,(xi,βi)�→xi−βi
◦MatrixVectorProdm,n,A

MatrixVectorProdm,n,(ai) →
[

...

]n−1

i=0

ScalarProdai

ScalarProd(αi) → Reductionn,(α,β)�→(α+β),0 ◦Pointwisen,(xi,αi)�→αixi

ForAlln−1
i=0 (Ai) → Reductionn,(α,β)�→α∧β,�

Fig. 2. Subset of mathematical operators in HA-SPIRAL. More complex operators can be composed from the existing operators within HA-SPIRAL.
Reduction and PointWise are special operators in HA-SPIRAL’s Hybrid Control Operator Language (HCOL) that are replaced by code templates in order to
transform mathematical expressions into code involving loops.

2) Direct Sum Operation. The Direct Sum operation, de-

noted by ⊕, takes two operators, A and B and returns

an operator that performs operator A on the first part

of the input and B on the second part of the input.

Mathematically, the Direct Sum is defined as follows:

(A⊕B)

(
x
y

)
=

(
A(x)
B(y)

)
3) Broadcast Operation. Given m operators Ai, the Broad-

cast operator duplicates the input m times and performs

the Direct Sum Operation on the duplicated output, i.e.

([
...

]m−1

i=0

Ai

)
(x) =

⎛
⎜⎝ A0(x)

...

Am−1(x)

⎞
⎟⎠

D. Optimizations

Traditional loop optimizations within HA-SPIRAL are also

implemented with the same rule-based system described pre-

viously. To illustrate how optimization is performed within

HA-SPIRAL, we return to the geo-fence example.

Recall that Step 2 of the algorithm is a vector subtraction

of the output of the previous step with the vector b. Mathe-

matically, the output of the vector subtraction (i.e., y = x− b)
is ⎛

⎜⎝ ψ0

...

ψn−1

⎞
⎟⎠ =

⎛
⎜⎝ χ0 − β0

...

χn−1 − βn−1

⎞
⎟⎠ ,

where every element is subtracted with the corresponding

element from the vector b. In HCOL, the operator is

Pointwisen,(xi,βi) �→xi−βi
.

Step 3 of the algorithm checks if every element of the result

from Step 2 is less than zero. Mathematically, the following

mathematical operation,

ψi = χi ≤ 0,

is performed on every input element to Step 3. The net result

of applying both steps of the algorithm is an output whose

elements are ⎛
⎜⎝ (x0 − β0) ≤ 0

...

(xn−1 − βn−1) ≤ 0

⎞
⎟⎠ .

From the above expression, it should be obvious that operator

that is the equivalent to performing Steps 2 and 3, is the point-

wise application of the following mathematical expression

(xi, βi) �→ xi − βi ≤ 0,

where a subtraction with the corresponding element of b is

first performed before the result is compared with zero. More

concisely, the HCOL operator that is the equivalent of Steps

2 and 3 is

Pointwisen,(xi,βi)�→xi−βi≤0, .

Notice that this new operator is essentially the function compo-

sition of the mathematical expressions for Steps 2 and 3. This

new operator represents an optimization because, the original

two steps required three passes (once for βi, and twice for xi)
through the data, whereas this new operator only requires two

passes through the data. The above optimization is also known

in compiler literature as loop fusion / loop merging.

This optimization is encoded as a more general optimization

rewrite rule within HA-SPIRAL:

Pointwisen,(xi)�→f(xi) ◦Pointwisen,(xi)�→g(xi)

→ Pointwisen,(xi)�→(f◦g)(xi) .

Other optimization rewrite rules within HA-SPIRAL are sim-

ilarly encoded.

III. REAL VS. FLOATING-POINT NUMBERS

As the input specification is supposed to capture the math-

ematics used by control engineers, all numbers are implicitly

real numbers. However, practical implementations of control

codes require that all values be discrete. This necessitates the

conversion of all values into one of the IEEE floating point

representations. To mitigate this difference in representation,

HA-SPIRAL allows one to use interval arithmetics instead of

regular arithmetics [8].

107

x → (x− ε, x+ ε)

(�0, u0) + (�1, u1) → (�0 + �1, u0 + u1)

(�0, u0)− (�1, u1) → (�0 − u1, u0 − �1)

(�0, u0)× (�1, u1) → (min(�0�1, �0u0, �1, u0u1),
max(�0�1, �0u0�1, u0u1)

(�0, u0) < (�1, u1) →
⎧⎨
⎩

True, u0 < �1
False, �0 > u1

Unknown, Otherwise

Fig. 3. Sample rules for implementing interval arithmetic.

For every real number x, HA-SPIRAL replaces x with

a tuple of two floating-point values, (x − ε, x + ε), where

ε is machine precision of the chosen IEEE floating-point

representation. This tuple describes the interval where the

true value of x may reside. Using the mathematical rules for

interval arithmetics, the upper and lower bounds are updated

accordingly, thus always ensuring that the true value is always

within the interval. Some of these interval arithmetics rules are

captured in Figure 3.

A. Comparison and boolean operations with intervals

One of the key differences with the use of comparisons is

that there is no notion of equality (or inequality) within interval

arithmetics. Recall that each real number is represented by

an interval, and the real number can lie anywhere within the

interval. This implies that even if two intervals are identical,

the represented real numbers may be at different locations

within the interval. Similarly, even if the intervals may be

different, the real numbers may be the same.

In addition, comparisons over intervals are no longer

boolean operations. Instead, they are ternary operators, i.e.

there are three possible return values. Consider the following

cases when comparing two numbers represented by the tuples

(l0, u0) and (l1, u1), and we want to know if the number

represented by (l0, u0) is less than the other number:

1) Always True. When u0 is less than l1, then we know

that regardless of the actual real value, the real number

represented by (l0, u0) will always be less than the

number represented by the tuple (l1, u1).
2) Always False. When u1 is less than l0, then we know

that regardless of the actual real value, the real number

represented by (l0, u0) will always be larger than the

number represented by the tuple (l1, u1).
3) Unknown. When l0 < l1 but u0 > u1, there exist

a region in the interval where the number represented

by the first tuple could be larger than the number

represented by the second tuple. In addition, there is

also a region where the second number is larger. Hence,

we cannot be sure if the which of the real numbers are

larger.

Finally, boolean operations such as conjunction, disjunction

are no longer binary (True or False) but ternary. In particular,

the logic system for intervals within HA-SPIRAL is based

∧ T U F

T T U F

U U U F

F F F F

∨ T U F

T T T T

U T U U

F T U F
Fig. 4. Truth-tables for conjunction (left) and disjunction (right) implemented
within HA-SPIRAL for boolean operations and comparisons over the interval.
T, F, and U represent True, False and Unknown values respectively.

on Kleene’s three-value logic, and is described by the truth-

table in Figure 4. In HA-SPIRAL’s implementation of Kleene’s

three value logic, we use the integer values 0, 1, and −1 to

represent the values T, F and U, respectively.

B. Implementation.

Using interval arithmetics will result in at least twice as

many floating point operations. This is because the implemen-

tation has to compute with both the upper and lower bounds

of the interval. However, HA-SPIRAL provides the control

engineer the option to implement interval arithmetics using

vector or Single Instruction Multiple Data (SIMD) instructions

if the platform supports it. As vector instructions allows one to

perform multiple identical operations in with a single instruc-

tion, implementing interval arithmetics with vector instructions

has the effect of speeding up the computation of the interval

updates.

The resulting code when implemented using interval arith-

metics within HA-SPIRAL is shown in Figure 5. We manually

annotated Figure 5 with comments to highlight the sections of

generated code that correspond to the code from Page 1. In

addition, variable names were manually changed to match the

variable names from the code on Page 1. The key take-away

from this code example is that implementating interval arith-

metic with vector instructions will result in the obfuscation

of the non-interval arithmetic algorithm. This makes manual

implementation of interval arithmetic a daunting task that is

also error-prone. HA-SPIRAL’s approach where regular math-

ematical operators and variables are systematically replaced

with their interval arithemtic counterparts can manage this

complex process, and is necessary as the program becomes

complicated.

IV. OTHER CONTROL EXAMPLES IN HCOL

HA-SPIRAL has been used to implement a number of

controllers and monitors that have been deployed on actual

ground and air vehicle and/or their simulators as part of

DARPA HACMS project [9]. In addition, it has been used as

both a stand-alone tool, and a back-end code generation engine

for the KeYMaeraX hybrid program theorem prover [10].

In this section, we briefly showcase other controllers and

monitors that have been implmented using HA-SPIRAL.

A. Dynamic Window Monitor

The dynamic window monitor is a safety critical monitor

that checks that the vehicle is still far enough from the nearest

obstacle such that the vehicle can still stop without hitting the

obstacle [11], [12]. The input to HA-SPIRAL is a monitor

108

#include <immintrin.h>
#include <float.h>

int insideGeoFence(float *X, float A[5][3], float *b) {
static int U1[5];
__m128d u1;
int out;
{

unsigned _xm = _mm_getcsr();
_mm_setcsr(_xm & 0xffff0000 | 0x0000dfc0);

/* 4 sided polygon */
for(int i1 = 0; i1 <= 4; i1++) {

__m128d tmp, u3, x1, x11, x2, x3, x4, x6, x9;

/* Initialize accumlation variable as an interval */
tmp = _mm_set1_pd(0.0);

/* Position is described in two dimensions*/
for(int i7 = 0; i7 <= 2; i7++) {

/* Convert x[j] into an interval */
u1 = _mm_addsub_pd(_mm_cvtps_pd(_mm_set1_ps(FLT_MIN)), _mm_cvtps_pd(_mm_set1_ps(X[i7])));

/* Convert A[i][j] into an interval */
x6 = _mm_addsub_pd(_mm_cvtps_pd(_mm_set1_ps(FLT_MIN)), _mm_cvtps_pd(_mm_set1_ps(A[i1][i7])));

/* u2 = A[i][j] * x[j] */
x1 = _mm_addsub_pd(_mm_set1_pd(0.0), u1);
x2 = _mm_mul_pd(x1, x6);
x3 = _mm_mul_pd(_mm_shuffle_pd(x1, x1, _MM_SHUFFLE2(0, 1)), x6);
x4 = _mm_sub_pd(_mm_set1_pd(0.0), _mm_min_pd(x3, x2));
u2 = _mm_add_pd(_mm_max_pd(x3, _mm_max_pd(x2, _mm_shuffle_pd(x4, x4, _MM_SHUFFLE2(0, 1)))), _mm_set1_pd(DBL_MIN));

/* tmp += A[i][j] * [j] */
tmp = _mm_add_pd(tmp, u2);

}

/* x9 = tmp - b[i] */
x9 = _mm_addsub_pd(_mm_set1_pd(0.0), _mm_sub_pd(tmp, _mm_addsub_pd(
_mm_cvtps_pd(_mm_set1_ps(FLT_MIN)), _mm_cvtps_pd(_mm_set1_ps(b[i1])))));

/* U1[i] = x9 <= 0 */
x11 = _mm_cmple_pd(x9, _mm_set1_pd(0.0));
U1[i1] = (_mm_testc_si128(_mm_castpd_si128(x11), _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff)) -

(_mm_testnzc_si128(_mm_castpd_si128(x11), _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff))));

}
out = 1;
for(int i6 = 0; i6 <= 4, ((out != 0)); i6++) {

float s4;
s4 = U1[i6];

/* out = out && U1[i]*/
out = ((((out == s4))) ? (out) : (((out)*(s4))));

}

// BASIC BLOCK BARRIER
if (_mm_getcsr() & 0x0d) {

_mm_setcsr(_xm);
return -1;

}
_mm_setcsr(_xm);

}
return out;

}

Fig. 5. Geo-fence algorithm implemented using interval arithmetics with Streaming SIMD Extensions (SSE) instructions. Comments in the code where
manually added, and variable names (when necessary) were manually edited to better highlight the relationship between the code on page 1 and the generated
code.

109

row

pitch

yaw 1/s

limit

limit

limit

measured row

measured pitch

measured yaw

-

-

-

DCM

PID

PID

PID

Fig. 6. Block diagram for the attitude controller for the aerial vehicle.

description generated from KeYMaeraX, and can briefly be

summarised as

SafeDistα,β,γ,po,pr
(vr) =

Polynomialα,β,γ(vr) < ‖po − pr‖∞,
where po, pr represent the location of the vehicle and obsta-

cles, α, β, γ are predefined coefficients related to the dynamics

of the vehicle, vr is the current velocity of the vehicle, and

Polynomialα,β,γ and ‖.‖∞ are mathematical operators that

describe a polynomial of degree two and coefficients α, β,

and γ, and the infinity norm of a vector respectively.

B. Attitude Controller for Aerial Vehicle

The attitude controller for an aerial vehicle, in our case

a quadcopter, is a controller that stabilizes the vehicle while

it is in flight. The controller is essentially made up of PID

controllers that have been connected together in order to

control the roll, pitch and yaw of the vehicle. The block-

diagram of the controller is given in Figure 6. In HCOL,

the block-diagram is implemented as separate stages that

correspond to 1) computing of the errors in row, pitch and

yaw, 2) performing a coordinate transform to the appropriate

coordinate frame via a matrix-vector multiplication, and 3)

applying PIDs on the transformed coordinates.

[
...

]3
i=0

PIDgainsi◦

MatrixVectorProd3,3,A ◦⎛
⎝ Atomic(x,roll)�→max (min (x,rmax),−rmax)−roll⊕

Atomic(x,pitch) �→max (min (x,pmax),−pmax)−pitch⊕
Atomic(x,yaw)�→max (min (x+prev yaw,ymax),−ymax)−yaw

⎞
⎠

C. Statistical Tests

When working with sensors, statistical tests are often re-

quired to determine if a sensor is working as expected. An

example of such a test would be to perform a z-test to

determine if the mean error of a sensor is equal to zero [13].

Mathematically, this z-test is computed as follows

P = (X̄ − μ)/σ
n
,

where μ = 0, X̄ and σ is the sample mean and standard devi-

ation respectively. The HCOL specification that correspond to

this z-test for a sample size of n at 95% confidence interval

is simply:

Ztestn,1.96 = (Meann /
Atomicx �→√x ◦Variancen /n) < 1.96,

where Meann and Variance are defined as follows:

Meann → Atomicx �→x/n ◦
Reductionn,(a,b)�→(a+b),0, and

Variancen → (
Reductionn,(a,b)�→(a+b),0 ◦
Pointwisen,x �→x2

)−
Atomicx �→x2 ◦Meann,

respectively. The constant 1.96 is the approximate value of the

97.5 percentile (i.e. the α value corresponding to a two-tailed

95% confidence interval).

V. CONCLUSION

In this paper, we demonstrated the use of HA-SPIRAL

in generating a geo-fence monitor that is deployed on an

autonomous land vehicle. HA-SPIRAL provides a high level

specification language (HCOL) that is similar to the mathe-

matics used by a control engineer to specify the control algo-

rithm. This high level specification is then rewritten through

mathematical identities using a rewrite system in order to

systematically introduce details and generate code from the

high level specification.

While we have only discussed the generation of a provably

correct geo-fence monitor, the approach has been used to

generate code for a wide range of problems that may be

of interest to a control engineer. The synthesized code is

highly optimized and takes advantage of modern instruction

set extensions, and provides numerical guarantees through the

use of interval arithmetic. Together with a verified compiler

like CompCert our approach provides an end-to-end guarantee

from specification to binary and lends itself to be used as a

code synthesis backend for formal verification tools.

ACKNOWLEDGMENT

This material is based on research sponsored by DARPA

under agreement number FA8750-12-2-0291. The content,

views and conclusions presented in this document do not

necessarily reflect the position or the policy of DARPA or the

U.S. Government. No official endorsement should be inferred.

REFERENCES

[1] The Coq development team, The Coq proof assistant reference manual,
LogiCal Project, 2004, version 8.0. [Online]. Available: http://coq.inria.fr

[2] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag,
2002.

[3] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed.,
vol. 607. Saratoga, NY: Springer-Verlag, Jun. 1992, pp. 748–752.

[4] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009. [Online]. Available:
http://gallium.inria.fr/∼xleroy/publi/compcert-CACM.pdf

110

[5] F. Franchetti, A. Sandryhaila, and J. R. Johnson, “High assurance
SPIRAL,” in SPIE Defense+ Security. International Society for Optics
and Photonics, 2014, pp. 90 911O–90 911O.

[6] K. Kennedy and K. S. McKinley, “Maximizing loop parallelism and im-
proving data locality via loop fusion and distribution,” in In Languages
And Compilers For Parallel Computing. Springer-Verlag, 1994, pp.
301–320.

[7] M. Schönert et al., GAP – Groups, Algorithms, and Programming –
version 3 release 4 patchlevel 4, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1997.

[8] B. Jeannet and A. Miné, “Apron: A library of numerical abstract
domains for static analysis,” in Proceedings of the 21st International
Conference on Computer Aided Verification, ser. CAV ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 661–667. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02658-4 52

[9] F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phao-
sawasdi, D. Padua, S. Kar, J. M. F. Moura, M. Frnusich, A. Platzer,
J. Johnson, and M. Velosa, “High-assurance SPIRAL: End-to-end guar-
antees for robot and car control,” IEEE Control Systems Magazine.

[10] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE,
ser. LNCS, A. P. Felty and A. Middeldorp, Eds., vol. 9195. Springer,
2015, pp. 527–538.

[11] S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle
avoidance for autonomous robotic ground vehicles,” in Robotics: Science
and Systems, P. Newman, D. Fox, and D. Hsu, Eds., 2013.

[12] S. Mitsch and A. Platzer, “Modelplex: Verified runtime validation of,”
in RV, ser. Lecture Notes in Computer Science, B. Bonakdarpour and
S. A. Smolka, Eds., vol. 8734. Springer, 2014, pp. 199–214.

[13] J. P. Mendoza, M. Veloso, and R. Simmons, “Mobile robot fault
detection based on redundant information statistics,” October 2012.

111

