3D-Stacked Memory-Side Acceleration:
Accelerator and System Design

Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Meng Low,
Larry Pileggi, James C. Hoe, and Franz Franchetti
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Email: {qguol, nalachio, bakin, fsadi, guanglix, lowt, pileggi, jhoe, franzf} @andrew.cmu.edu

Abstract—Specialized hardware acceleration is an effective
technique to mitigate the dark silicon problems. A challenge
in designing on-chip hardware accelerators for data-intensive
applications is how to efficiently transfer data between the
memory hierarchy and the accelerators. Although the Processing-
in-Memory (PIM) technique has the potential to reduce the
overhead of data transfers, it is limited by the traditional process
technology. Recent process technology advancements such as 3D-
die stacking enable efficient PIM architectures by integrating
accelerators to the logic layer of 3D DRAM, thus leading to
the concept of the 3D-stacked Memory-Side Accelerator (MSA).
In this paper, we initially present the overall architecture of
the 3D-stacked MSA, which relies on a configurable array of
domain-specific accelerators. Thereafter, we describe a full-system
prototype that is built upon a novel software stack and a hybrid
evaluation methodology. Experimental results demonstrate that
the 3D-stacked MSA achieves up to 179x and 96x better energy-
efficiency than the Intel Haswell processor for the FFT and matrix
transposition algorithms, respectively.

I. INTRODUCTION

As transistor density continues to grow exponentially, the
limited power budget allows only a small fraction of active
transistors, which is referred to as dark silicon [1]. Dark silicon
forces us to trade silicon area for energy. Specialized hardware
acceleration has emerged as an effective technique to mitigate
the dark silicon, as it delivers up to several orders of magni-
tude better energy efficiency than general-purpose processors.
Heading towards the big data era, a key challenge in the design
of hardware accelerators is how to efficiently transfer data
between the memory hierarchy and the accelerators, mainly
when targeting emerging data-intensive applications (e.g., key-
value store, graph database, etc.).

Processing-in-memory (PIM) [2], [3] can reduce the over-
head on performance and energy consumption incurred by the
data movement between memory and computational compo-
nents. By integrating the computational logic into memory,
PIM allows computation to occur where the data reside,
leading to improved performance and reduced energy con-
sumption. However, an obstacle to make PIM viable is that the
computation implemented by the memory process is typically
much slower than that manufactured by logic process [4].

Fortunately, the emergence of the 3D die-stacking tech-
nique, e.g., Micron’s Hybrid Memory Cube (HMC) [5], is
promising to make PIM more practical. The 3D die-stacking

This work was sponsored by DARPA under agreement HRO0011-13-2-
0007. The content, views and conclusions presented in this document do not
necessarily reflect the position or the policy of DARPA.

technique allows to integrate multiple process technologies
(e.g., logic process and memory process) within a single stack
by using through-silicon vias (TSV). Therefore, incorporating
the hardware accelerator implemented by the logic process
technology to logic dies of the memory stack leads to the
concept of the 3D-stacked Memory-Side Accelerator (MSA).

To design and implement the 3D-stacked MSA system,
there are several challenges to address. From the hardware
perspective, a key challenge is how to design hardware ac-
celerators that are adaptable to various applications, as the
relatively specialized accelerators typically trade generality
for efficiency. Another challenge is how to design efficient
hardware accelerators that can saturate the excessively high
memory bandwidth of 3D-stacked DRAM, given the limited
area budget of the logic layer. From the software perspective,
the entire software stack, including the operating system, the
device driver, the library, and the user interface, should provide
sufficient support for the programmer to easily and efficiently
use the 3D-stacked MSA in order to achieve increased energy-
efficiency.

Contribution. In this paper we present a full-system pro-
totype to address the above challenges. More specifically, our
work makes the following contributions:

1) Overall architecture. We present the overall architecture
of 3D-stacked MSA systems to achieve energy-efficiency
for data-intensive applications.

2) Configurable accelerator array. We design a hardware
architecture to configure the array of multiple accelerators
to adapt to various applications.

3) Software stack. We implement a novel software stack
to make the 3D-stacked MSA easily accessible for the
programmers.

4) Full-system prototype. We build a full-system prototype
on a commodity machine with the help of a novel
hybrid (in simulation and on real machine) evaluation
methodology to accurately and efficiently evaluate the
3D-stacked MSA architecture.

Related work. Many specialized hardware accelerators
have been proposed to accelerate various applications, e.g.,
[6], [71, [8], [9], [10]. Our solution can integrate and configure
such accelerators in the 3D-stacked memory, and ultimately
provide an easy-to-use interface for programmers. Recently,
there are also several proposals on incorporating computation
to the logic die of 3D-stacked DRAM. Pugsley et al. [11]
integrated energy-efficient processor cores to the logic die
of 3D-stacked DRAM for MapReduce workloads, and they

High-speed Links

=
=

DRAM
Layer

=

Memory Stack

Host
TSV bus| |
\ H

Bank

Accelerator Array
l”’
= Reshape wm
Accelerator Layer (|
ER iR e LB
t'I\II||||V|'|\: |
E I I {2
I P B R Ut o | \
= Resampling ===
//‘
Mem. Ctrl. Layer \ \\ |
AY
Rank (Vault) \\ | Feature
\ Extraction
\

Fig. 1: The overall architecture of the proposed 3D-stacked MSA system.

further compared the benefits of different near-data comput-
ing approaches for in-memory MapReduce [12]. Zhang et
al. [13] proposed to integrate programmable GPU to 3D-
stacked DRAM to offer high throughput. However, to the
best of the author’s knowledge, our work is the first to build
and evaluate a full-system 3D-stacked MSA architecture on
commodity machines.

II. OVERVIEW OF 3D-STACKED MSA

Overview. 3D-stacking technology enables the integration
of specialized accelerators and 3D DRAM. As shown in
Figure 1, the entire 3D-stacked Memory-Side Accelerator
(MSA) system consists of a central host processor and multiple
memory stacks, and they are connected with high-speed links
that are also used in the HMC system. Each memory stack
consists of multiple dies, while each die could be a DRAM
die or a logic die. The logic die can contain the memory
controller, the accelerators, or both. Each layer communicates
with others in the same memory stack via high-bandwidth,
low-latency, and low-energy TSVs. As the off-stack data traffic
is drastically reduced, an expected use of this architecture is
to efficiently process emerging data-intensive applications that
typically exhibit huge memory footprints.

Accelerator layer. The accelerator layer mainly consists of
a configurable array of multiple domain-specific accelerators.
These accelerators target various application domains such as
signal processing, graph computing, machine learning, and
others. Targeting signal processing applications for instance,
the potential accelerators could include Reshape for data layout
transformations (e.g. linear to blocked, row-major to column-
major), FFT (fast Fourier transform) as a basic computation
kernel [14], Resampling for data interpolation, geometric trans-
formations and image alignment, and Feature Extraction for
edge and shape detection of images. Such primitive accel-
erators can be further configured to accomplish complicated
tasks. For instance, a Synthetic Aperture Radar (SAR) image
formation algorithm typically requires Reshape, FFT, and
Resampling accelerators [15]. To offer such reconfigurability to
the users, we have carefully designed the hardware architecture
of an array of accelerators as well as the required configuration
interface.

III. THE CONFIGURABLE ACCELERATOR ARRAY

The overall design of the configurable array of accelerators
is shown in Figure 2. In addition to the series of domain-

[sraM |<>
[SRAM | <>

<> [srawm |
<> [sRAW |

=
S
F=
2
@
<
E-1
x

[sram] <> |~ | <> [sram |
— I

Addr. bael Reshape Fontrol
Remap. Unit

<>

to/from
to/from DRAM DRAM

M 7 Decode Uni
~ t

H Resemeine O

i To Memory ControllerI

to/from
DRAM

Fig. 2: The architecture of the configurable array of accelera-
tors.

specific accelerators, the MSA architecture contains all the
necessary configuration logic to implement every possible
datapath described by an accelerator descriptor.

Accelerator descriptor. The accelerator descriptor typi-
cally consists of one or more passes. Each pass contains a
series of processing instructions that all together describe a
datapath. Each datapath is a complete processing operation
that starts by retrieving input data from the main memory,
implements a pipeline of the accelerators included in the pass,
and stores the output data back to main memory. Additionally,
the accelerator descriptor may contain flow instructions to
allow the convenient implementation of iterative operations
that contain one or more passes.

Architecture. When the host processor is ready to deploy
the accelerator, it stores the accelerator descriptor in a pre-
allocated memory space. When this happens, the FETCH unit
transfers the entire descriptor to the local Instruction Memory
(IMEM) and activates the DECODE unit. The DECODE unit
parses the descriptor sequentially until the end of a pass is
detected. For every instruction in the pass, the DECODE
unit activates the corresponding accelerator and appropriately
configures the switch logic at the input and output ports. When
all accelerators in a pass are activated, the DECODE unit
enables an accelerator initialization process during which each
accelerator retrieves domain-specific configuration data from
the main memory. When all accelerators in the current pass

are individually configured, the DECODE unit initiates the
processing phase. During processing, the very first accelerator
in the pass fetches input data from main memory while the
last accelerator stores the output data back to main memory.
It is notable that the data stays on the accelerator die during
processing. The DECODE unit monitors the status of the last
accelerator in the pass to detect when the pass processing is
over in order to proceed with the next pass in the descriptor.

IV. SOFTWARE DESIGN OF 3D-STACKED MSA

To make the 3D-stacked MSA easily accessible for pro-
grammers, we revisit the entire software stack at various levels.

OS kernel level. In a typical HMC system that con-
tains multiple memory stacks, each stack may contain several
MSAs. For a given MSA, the memory stack that it is integrated
can be regarded as Local Memory Stack (LMS), but the exter-
nal memory stacks are considered as Remote Memory Stacks
(RMS). Hence an MSA accesses the entire memory space in
an asymmetric way, which is conceptually similar to NUMA
(Non-Uniformed Memory Access) systems. To efficiently use
the accelerator, the data for processing should reside in the
LMS rather than the RMS. Therefore, in the kernel, we reserve
the contiguous memory region of the LMS for MSA, so that
the upper-level memory management functions (which will be
elaborated later) only allocate/free memory in the LMS.

LMS is also used for communication and synchronization
between the CPU and the MSA. Therefore, we further divide
the entire LMS to command and data space. The command
space primarily contains the command address, the status
address, and the configuration parameters of the employed
accelerators. The command address is monitored by the hard-
ware, and once special commands are written to that address,
the MSA is invoked for processing the task. The status address
stores the state of the MSA (e.g., busy or free), which can be
retrieved by the CPU. The configuration parameters of used
accelerators, e.g., chaining of accelerators, the addresses of
the input/output data, the number of tiles, etc., are employed
to configure the accelerator array.

Driver level. In the driver level, we implement a device
driver, allowing the users to directly manipulate the physical
memory space (i.e., command and data space) of LMS. During
the installation of the device driver, the command space is
allocated from the LMS, and then it is mapped to virtual
memory space via mmap. Thus, the corresponding MSA can be
directly controlled by writing commands to the mapped space.
Regarding the data space, it is also allocated/freed through the
device driver. More specifically, the device driver provides ioct!
to process the memory allocation/free requests from upper-
level library. After that, mmap is implemented in the device
driver to map the allocated contiguous physical memory to
virtual memory space. Therefore, the host and the MSA share
the same virtual space, and the host is in charge of the virtual-
to-physical translation to reduce the hardware cost.

Library level. We provide the native and the wrapped
library. The native library provides a standard library for MSA
control and LMS management. As stated, CPU controls the
MSA through a pre-allocated command space. As shown in
Figure 3, the users can leverage msa_acc_plan to generate
the accelerator descriptor as introduced in Section III. Such

accelerator descriptor is stored in a structure called acc_plan.
Then, the users can invoke the accelerators with the same
configuration many times by using msa_acc_execute, where
the accelerator descriptor is written to the command space
by a lightweight user-level memcpy. Finally, the accelerator
descriptor can be destroyed by calling msa_acc_destroy. Addi-
tionally, the native library is also used for LMS management,
and it works on the data space. It provides memory alloca-
tion (msa_mem_alloc) and free (mea_mem_free) functions, as
shown in Figure 4.

// generate the accelerator descriptor

acc_plan msa_acc_plan (const char xtdl,
long xbuf_addr,
long *buf_size,
long length);

// invoke the accelerators

void msa_acc_execute (acc_plan p);

// destroy the accelerator descriptor
void msa_acc_destroy (acc_plan p);

Fig. 3: The native functions working on command space.

// allocate memory from LMS
void xmsa_mem_alloc (long size);
// free memory to LMS

void msa_mem_free (void xaddr);

Fig. 4: The native functions working on data space.

The wrapped library aims to ease the programming burden
of the users for specific applications. Assuming FFT for
instance, since FFTW [16] is the most widely used interface,
we implement a wrapper on the native library to provide the
same interface as the FFTW. Therefore, programs written with
the FFTW library can directly use MSA with only trivial
modifications (e.g., by adding the MSA-related header files).

User level. In the user level, we provide a Task Description
Language (TDL) to configure multiple accelerators for various
applications. In the example shown in Figure 5, TDL offers 5
basic primitives, i.e., component, pass, task, parallel, and loop.
The component block corresponds to a specific accelerator
component (e.g., FFT, Reshape, Resampling, etc.). Multiple
component blocks constitute the pass block, and each pass
block has its own input and output data buffers. The fask block
contains multiple pass blocks, and it represents a basic compu-
tational task. The parallel block contains several computational
tasks, and all these tasks can be executed simultaneously. The
loop block indicates that all included tasks can be executed
multiple times. In the example shown in Figure 5, the loop
block should be executed 10 times. The user-specified TDL
file is the input to the msa_acc_plan function to generate the
corresponding accelerator descriptor.

V. EVALUATION METHODOLOGY

One of the major issues during the design of accelerator-
based architectures is the evaluation methodology. The tradi-
tional way to evaluate a novel architecture is to conduct cycle-
accurate full-system simulation on architectural simulators
such as Gem5 [17]. However, such cycle-accurate full-system
simulation methodology exhibits two major problems. The
first one is that the simulation may be inaccurate due to
specification and abstraction errors [18], which may deviate

[Header [FFT [1 Reshape [l Resampling
TASK] 3 N PARA
numPass = 1; LOOP PARA A numTask = 2;
LOOP PASS N TASK
numLoop = 10; “e T) § cee
TASK ENDPASS Y —— | ENDTASK
- ENDTASK TASK TASK
ENDTASK ..
PARA ENDTASK
o PASS — T ENDPARA
ENDPARA zghr:;omp =2 I
TASK COMP
. N
ENDTASK ggg(;omp o AN P
ENDLOOP
. { — Inst = FFT;
ENDCOMP PASS =10 Conf = “fft.conf”;
ENDPASS - - } ENDCOMP

Fig. 5: An example to leverage user-level task description language (TDL) to configure multiple accelerators.

the final design decision. The second one is that the simulation
speed is too slow to explore the entire design space. To address
these issues, in this paper, we propose a hybrid approach
that combines simulation, modeling, and native execution to
accurately and efficiently evaluate the 3D-stacked MSA on
commodity systems.

A. Overview

Since a modern commodity system (e.g., Intel Haswell
machine) typically contains multiple memory channels, and
each channel has multiple memory DIMMs, each DIMM
could be used to mimic one memory stack of 3D DRAM
system. Therefore, we can assume that the accelerators could
be attached to any of such DIMMs. Figure 6 shows the overall
evaluation system for the 3D-stacked MSA architecture. We
assume that the accelerators are attached to DIMM3, and
thus the memory region of DIMM3 is treated as LMS (local
memory stack). The behavior of DIMM3 is simulated and
modeled by several tools, including Synopsis Design Compiler,
DesignWare, McPAT [19], 3D DRAM Model, and overall 3D
MSA Model [14]. On the other hand, the performance and
power of the remaining DIMMs and the central processor are
measured by native execution. Finally, the overall system per-
formance and power are estimated by combining the simulated
and the measured results.

Simulation
-~ o 1
= = i
= = /
a =} - [a) ' DRAM Layer
= h '
2l cpu |E) DRAM Layer
c c 1
©] 1
£ £ T
10| Memory (O] K DRAM Layer
Controller '
K Accelerator Layer
~ Synopsys 3D DRAM
= L DC Model
=
a
Lo]
Measurement

Fig. 6: Overview of the hybrid evaluation methodology.

B. Measurement Methodology

The measurement is conducted on the host processor,
an 8-core Intel 17-4770K (Haswell) processor. It has two 2

memory channels, and supports at most 4 memory DIMMs.
Since we are interested in the energy efficiency of the entire
system, we use PAPI [20] to measure both performance
and energy consumption of the host processor, as well as
the “common” memory DIMMs (i.e., DIMMO, DIMMI, and
DIMM?2) through the Running Average Power Limit (RAPL)
interface [21]. The measurement stops when entering the
simulation process, and resumes when exiting the simulation.

C. Simulation Methodology

Simulation trigger. In a real 3D-stacked MSA system,
the accelerator is invoked by writing control commands to
a specific address space. To characterize this behavior, in
the evaluated system, such command space is monitored by
memory page protection. In more detail, once the protected
address space is updated with control commands, the entire
system will be trapped into a user-defined signal handler,
where all the simulation and modeling tools are invoked to
estimate the performance and power of 3D-stacked MSA.

Disable channel interleaving. Since one specific DIMM is
used to mimic the LMS of the MSA, we need to determine the
memory region of this DIMM so that the kernel can reserve
contiguous memory for LMS. However, in commodity multi-
channel systems, memory channel interleaving is automati-
cally enabled to improve the overall memory bandwidth. In
the memory channel-interleaving mode, one physical page is
equally distributed across different channels in cache-block
granularity. In this case, the physical address is not contiguous
within one memory channel. Therefore, for simulation pur-
poses, we need to disable the memory channel interleaving on
the evaluated platform.

To disable the memory channel interleaving, we only
populate three memory DIMMs (i.e., DIMMO, DIMMI1, and
DIMM3 in Figure 6) with the same size on the motherboard
to convert the channel-interleaving mode to the asymmetric
mode. In the asymmetric mode, where the memory capacities
of different channels are not equal, the entire memory is
divided into symmetric and asymmetric zones. The symmetric
zone starts at the lowest address until the asymmetric zone
begins, and the symmetric zone is still in channel-interleaving
mode, while the asymmetric zone is in single-channel mode. In
the example shown in Figure 6, the address spaces of DIMMO
and DIMMI1 are still interleaved, while the address space of
DIMM3 is separate from others. Therefore, DIMM3 can be
used to simulate the behavior of LMS of MSA.

System params

App & Arch Params
3D DRAM conf.

Spiral Memory Trace
* Breakdown & rewrite rules

* Best algorithm for the arch.

Gty
3D DRAM Model
CACTI-3DD, McPAT, HMC
Perf/power model

Bandwidth/Power

Co-Design
Space ASIC
* Synopsys DC, DesignWare
* CACTI 6.5/ McPAT / Std Cell
3D MSA Model

Analyticaland empirical s
perf/power model

Area/Perf/Power

Algorithmic params

Overall Perf/Power

Fig. 7: The design flow to explore the co-design space of 3D-
stacked MSA.

Performance/power model. The performance/power
model of 3D-stacked MSA contains multiple simulation
and modeling tools, including Synopsis Design Compiler,
DesignWare, McPAT, 3D DRAM Model, and 3D MSA
Model. The Design Compiler, DesignWare and McPAT are
used to estimate the performance/power/area of the MSA
logic. The 3D DRAM model is built upon CACTI-3DD [22]
and a performance/power model offering the bandwidth/power
estimation of 3D-stacked DRAM. According to the above
information, the accelerator-specific 3D MSA model is
customized to estimate the overall performance and power of
the 3D-stacked MSA architecture.

One challenge in the design of a 3D-stacked MSA is that
there is a huge co-design space, which consists of application
parameters, accelerator architectural configurations, and 3D
DRAM configurations to explore. To facilitate the exploration
of such co-design space of 3D-stacked MSA, we use an
automated framework based on the performance/power model.
As shown in Figure 7, for each design point consisting of
the application parameters (e.g., algorithm type and problem
size, etc.), the architectural configurations (e.g., local memory
size and data-path width, etc.), and the 3D DRAM config-
urations (e.g., number of TSVs and number of layers, etc.),
the framework first uses Spiral [23], an automated tool to
generate and optimize RTL design. The generated RTL design
then undergoes the typical ASIC synthesis flow to obtain the
estimated area, performance and power of the MSA logic.
The 3D DRAM configuration is also sent to the 3D DRAM
Model to get the estimation of the bandwidth and power of
the 3D DRAM. Finally, the application parameters, the 3D
DRAM configuration, the estimated area/performance/power
of the MSA logic, and the estimated bandwidth/power of the
3D DRAM are treated as the inputs of the 3D MSA model
to produce the overall performance and power of the 3D-
stacked MSA. The above process can be automatically iterated
for many times to explore the entire design space. Moreover,
several advanced design space exploration techniques [24] can
be also employed to significantly accelerate the search process.

VI. EXPERIMENTAL RESULTS

We present the experimental results for (i) running an
FFTW-compatible program and (ii) matrix transposition on
the 3D-stacked MSA system with an FFT accelerator and a
reshape accelerator, respectively.

Experimental setup. Table I shows the configuration of the

3D-stacked MSA system with memory-side FFT and reshape
accelerators. The FFT accelerator processes radix-2 2D FFT,
the problem size is 4kx4k, and each point is a complex
single-precision number. For design space exploration, we
also consider several design options, i.e., streaming width
(s = 2,4,8,16), tile width (t = 8,16, 32,64), and frequency
(f = 04,0.8,1.2,1.6,2 GHz). The reshape accelerator per-
forms the in-place matrix transposition on various size matrices
and the design is adopted from [25].

The 3D-stacked memory has 1 GB capacity, 4 DRAM
layers, 8 banks per layer, and 2,048 data TSVs. It also features
8 high-speed SERDES links each with 40 GB/s bandwidth,
total 320 GB/s, similar to HMC [5]. The maximal achievable
internal bandwidth of this 3D-stacked memory is about 510
GB/s and the external bandwidth can reach up to 320 GB/s.
The internal power consumption is 23 W at the peak bandwidth
hence the energy per bit is 5.6 pj/bit. When the data is
transferred externally the energy per bit reaches 12 pj/bit.

Category Configuration Values
FFT Type 2D, radix-2

Size 4k x 4k

Precision Complex Single
Reshape Type Matrix transpose

Size 1k x 1k — 16k x 16k

Precision Single

Local SRAM 2 x 8 x 32 KB =512 KB
3D DRAM Nguck 4

Nbank 8

Nrsy 2,048

Bandwidth 510 GB/s

TABLE [: Configuration of 3D-stacked MSA with the FFT
and the Reshape accelerators.

Experimental results. Figure 8 shows the performance
(GFLOPS) and power (Watt) of the investigated design space
for the FFT acceleration. The energy-efficiency of different
designs varies between 6 GFLOPS/W and 46 GFLOPS/W, and
the configuration of the optimal design is, s = 16, t = 32,
f = 2 GHz. We further compare the energy-efficiency of all
design options to that of the Intel Haswell as shown in the
right part of Figure 8, where the results are normalized to the
Haswell. We observe that the improvement over the Haswell
is up to 179x in terms of GFLOPS/W.

3D-stacked MSA System Design Space 3D-stacked MSA over Intel i7-4770K

Power (w) Energy-Efficiency Improvement (x)
5 200
hd 179x
30 . g
> o 160
o o¥¥%® 46GFLOPS/W

20 o 120
15 ’[’ 80
10
5 40
0. | Performalnce (GFLOII’S) | o | 23x . Design IOption . .

0 400 800 1200 1600 1 80

Fig. 8: The design space of 3D-stacked MSA system with
FFT accelerator and comparison with Intel Haswell processor
in terms of GFLOPS/W.

We also evaluate the matrix transposition using MSA and
traditional multi-threaded software implementations in Fig-
ure 9 in terms of performance and energy efficiency. We report

Performance Improvement Over Naive Transp. Energy Improvement Over Naive Transpose
speed-up vs. matrix dimension improvement vs. matrix dimension

1000 10000
B MKL

Colfax ® MSA
100 35x1 1000
100
10
fdl el -
1 I 1

1024 2048 4096 8192 16384

| MKL

| |96xI‘
||I|I i

1024 2048 4096 8192 16384

Colfax m MSA

Fig. 9: Matrix transpose using MSA with reshape accelerator,
Intel MKL and optimized software from Colfax research.
Results are normalized to a naive matrix transpose implemen-
tation on Intel Haswell.

performance and energy of an Intel MKL-based implementa-
tion [26], an implementation from Colfax Research [27] and a
MSA-based reshape accelerator where the results are normal-
ized to a reference naive matrix transpose implementation. The
software implementations are based on the Intel Haswell. The
reshape accelerator within the 3D-stacked DRAM implements
a blocked transposition algorithm to transfer DRAM page size
data chunks. It also features multiple SRAM banks and exploits
the parallelism of multiple vaults/layers. We observe that MSA
provides up to 35x performance and 96x energy improvements
over the best software implementation.

Offloading the execution from the host to the MSA incurs
significant overhead, which is included in the results presented
in Figure 8 and Figure 9. To offer more insights for the
offloading overhead, we also demonstrate the runtime and
energy spent on the host processor due to communication
and synchronization (e.g. invocation of the accelerator, cache
flush). Although the offloading overhead comprises 10% and
6% of the overall energy and runtime, respectively, for large
matrices, it can span 94% and 96% of the overall runtime
and energy, respectively, for small matrices. Therefore, to
efficiently use the MSA, it is necessary to further investigate
highly efficient communication and synchronization mecha-
nisms between the host processor and the accelerator.

Overall Runtime Breakdown
time [ms] vs. matrix dimension

Overall Energy Breakdown
energy [mJ] vs. matrix dimension

. 150
B MSA runtime B MSA Energy
4 Host offload time 100 Host offload energy
2 50
- = 0 . - = n
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384

Fig. 10: Runtime and energy breakdown for offloading the
execution to the MSA and the actual MSA operation.

VII. CONCLUSION

As we enter the dark silicon era, a 3D-stacked MSA
architecture is promising to improve the energy-efficiency for
processing emerging data-intensive applications. In this paper,
we build a full-system prototype of the 3D-stacked MSA sys-
tem. This system is enabled by a configurable accelerator array
on the logic layer of 3D-stacked DRAM, and a novel software
stack to ease the burden of programming. Experimental results
demonstrate that the 3D-stacked MSA system achieves up to
179x and 96x better energy-efficiency than the Intel Haswell
processor for the FFT and matrix transposition algorithms,
respectively.

(1]

(31

(4]

(5]

(6]
(71
(8]
(91
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES

M. B. Taylor, “Is dark silicon useful? harnessing the four horesemen of
the coming dark silicon apocalypse,” in DAC, 2012, pp. 1131-1136.
M. Gokhale et al., “Processing in memory: The terasys massively
parallel pim array,” Computer, vol. 28, no. 4, pp. 23-31, 1995.

M. Oskin et al., “Active pages: A computation model for intelligent
memory,” in ISCA, 1998, pp. 192-203.

M. L. Chu et al., “High-level programming model abstractions for
processing in memory,” in WoNDP, 2013.

J. Jeddeloh et al., “Hybrid memory cube new dram architecture in-
creases density and performance,” in VLSI Technology (VLSIT), 2012
Symposium on, June 2012, pp. 87-88.

G. Venkatesh et al., “Conservation cores: Reducing the energy of mature
computations,” in ASPLOS, 2010, pp. 205-218.

H. Esmaeilzadeh er al., “Neural acceleration for general-purpose ap-
proximate programs,” in MICRO, 2012, pp. 449-460.

K. Lim et al., “Thin servers with smart pipes: Designing soc accelerators
for memcached,” in ISCA, 2013, pp. 36-47.

L. Wu et al., “Navigating big data with high-throughput, energy-efficient
data partitioning,” 2013, pp. 249-260.

O. Kocberber et al., “Meet the walkers: Accelerating index traversals
for in-memory databases,” in MICRO, 2013, pp. 468—479.

S. H. Pugsley et al., “NDC: analyzing the impact of 3d-stacked
memory+logic devices on mapreduce workloads,” in ISPASS, 2014, pp.
190-200.

S. Pugsley et al., “Comparing implementations of near-data computing
with in-memory mapreduce workloads,” Micro, IEEE, vol. 34, no. 4,
pp. 44-52, 2014.

D. Zhang et al., “Top-pim: Throughput-oriented programmable process-
ing in memory,” in HPDC, 2014, pp. 85-98.

B. Akin et al, “Understanding the design space of dram-optimized
hardware FFT accelerators,” in ASAP, 2014, pp. 248-255.

F. Sadi et al., “Algorithm/hardware co-optimized sar image reconstruc-
tion with 3d-stacked logic in memory,” in HPEC, 2014.

M. Frigo et al., “The design and implementation of fftw3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, 2011.

A. Gutierrez et al., “Sources of error in full-system simulation,” in
ISPASS, 2014, pp. 13-22.

S. Li et al., “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009,
pp. 469-480.

V. Weaver et al., “Measuring energy and power with papi,” in ICPPW,
2012, pp. 262-268.

“Intel 64 and ia-32 architectures software
developers,” October 2014. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

K. Chen et al., “Cacti-3dd: Architecture-level modeling for 3d die-
stacked dram main memory,” in DATE, 2012, pp. 33-38.

M. Piischel et al., “SPIRAL: Code generation for DSP transforms,”
Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 232— 275, 2005.

T. Chen et al., “Archranker: A ranking approach to design space
exploration,” in ISCA, 2014, pp. 85-96.

B. Akin et al., “Hamlet: Hardware accelerated memory layout transform
within 3d-stacked dram,” in HPEC, 2014.
“Intel math kernel library (MKL),”
us/articles/intel-mkl/.

http://software.intel.com/en-

A. Vladimirov, “Multithreaded transposition of square matrices with
common code for intel xeon processors and intel xeon phi coproces-
sors,” http://research.colfaxinternational.com, Aug 2013.

