Fast Fourier Transform on FPGA: Design Choices and Evaluation
Peter A. Milder, Franz Franchetti, James C. Hoe, Markus Püschel

Problem Statement
- The discrete Fourier transform (DFT) is among the most important tools in signal processing.
- DFT has many algorithms (FFTs) and design choices.
- How to represent, generate, and evaluate the design space for given user constraints?

Results: 1) FFT IP core generator: “point and click”

2) FFT implementation guidelines

<table>
<thead>
<tr>
<th>Architecture level</th>
<th>Option</th>
<th>Objective / Optimization</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic</td>
<td>algorithm</td>
<td>variable-latency or cost</td>
<td>Pass FFT</td>
</tr>
<tr>
<td></td>
<td>reduction</td>
<td>variable-latency or cost</td>
<td>Pass FFT</td>
</tr>
<tr>
<td></td>
<td>reduction</td>
<td>fixed by application</td>
<td>fixed by application</td>
</tr>
<tr>
<td></td>
<td>retention</td>
<td>2 or 4</td>
<td>2 or 4</td>
</tr>
</tbody>
</table>

Algorithmic Level

- Discrete Fourier Transform (DFT)
 \[y[n] = DFT_x y \]
 \[y[n] = \exp\left(\frac{2\pi i n}{M}\right) \]
- Fast Fourier Transform (FFT) Algorithms
 - Matrix factorization
 \[DFT_3 = \begin{bmatrix} DFT_2 & 0 & 0 \\ 0 & DFT_2 & 0 \\ 0 & 0 & DFT_2 \end{bmatrix} \]
 - Representation as matrix formula
 \[DFT_2 = \begin{bmatrix} X_0 & Y_0 \\ X_1 & Y_1 \\ X_2 & Y_2 \end{bmatrix} \]
- Pease FFT [2]:
 \[DFT_3 = \begin{bmatrix} X_0 & Y_0 & 0 \\ X_1 & Y_1 & 0 \\ X_2 & Y_2 & 0 \end{bmatrix} \]
- Iterative FFT [3]:
 \[DFT_3 = \begin{bmatrix} X_0 & Y_0 & Z_0 \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{bmatrix} \]

Architectural Level

- Formal View of Streaming
 \[I_m \otimes A_r \]
 \[I_m \otimes A_r' \]
 \[I_m/n \otimes M(1/r \otimes A_r) \]

- FPGA Mapping
 - Stride permutation
 - Method 1: RAM-Based [4]
 - storage
 - proper cost
 - execution time
 - Method 2: FIFO-Based [5]
 - storage
 - proper cost
 - execution time

Evaluation

- Synthesis: Xilinx ISE version 8.1
- Spiral generated FFT IP cores vs. Xilinx LogiCore FFT 3.2
- Gap (1/4 throughput) versus area
- Para-optimal points

Other FPGA-Mapping Options
- Complex multiplication (2 options)
- Twiddle factor storage (2 options)

Cost / performance comparable to benchmarks.

High degree of control over tradeoffs.

References

© 2007 Peter A. Milder

This work was supported by DARPA under DOD grant N00014-10-50099 and by NSF awards ACI-0424395 and ITR/ACI-0352687.