
On Using ZENTURIO for Performance and Parameter Studies on Cluster and
Grid Architectures �

Radu Prodan and Thomas Fahringer
Institute for Software Science

University of Vienna
Liechtensteinstr. 22, 1090 Vienna, Austria

�radu,tf�@par.univie.ac.at

Franz Franchetti
Institute for Applied and Numerical Mathematics

Technical University of Vienna
Wiedner Hauptstr. 8-10/1152, 1040 Vienna, Austria

franz.franchetti@tuwien.ac.at

Michael Geissler
Photonics Institute

Technical University of Vienna
Gusshausstr. 27/387,
1040 Vienna, Austria

geissler@tuwien.ac.at

Georg Madsen
Institute for Physical and
Theoretical Chemistry

Technical University of Vienna
Getreidemarkt 9/156,
1060 Vienna, Austria

madsen@theochem.tuwien.ac.at

Hans Moritsch
Department of Business

Administration
University of Vienna

Brünner Str. 72,
1210 Vienna, Austria

moritsch@finance2.bwl.univie.ac.at

Abstract
Over the last decade, a dramatic increase has been ob-

served in the need for generating and organising data in
the course of large parameter studies, performance analy-
sis, and software testings. We have developed the ZENTU-
RIO experiment management tool for performance and pa-
rameter studies on cluster and Grid architectures. In this
paper we describe our experience with ZENTURIO for per-
formance and parameter studies of a material science ker-
nel, a three-dimensional particle-in-cell simulation, a fast
fourier transform, and a financial modeling application. Ex-
periments have been conducted on an SMP cluster with Fast
Ethernet and Myrinet communication networks, using PBS
(Portable Batch System) and GRAM (Globus Resource Allo-
cation Manager) as job managers.

1. Introduction

The development and execution management of scien-
tific and engineering applications on complex, heteroge-
neous and non-dedicated distributed architectures, ranging
from cluster architectures to widely distributed Grid struc-
tures, is a tedious, time-consuming, and error-prone process.
Commonly these efforts require to conduct large number of
executions for a given application. In previous work [14] we
introduced the ZENTURIO experiment management tool
for parameter studies, performance analysis, and software
testings on cluster and Grid architectures. ZENTURIO pro-
vides theZEN directive-based language [13] to specify arbi-

�This research is supported by the Austrian Science Fund as part of the
Aurora project under contract SFBF1104.

trary value ranges for any application parameter, including
program variables, file names, compiler options, target ma-
chines, machine sizes, scheduling strategies, data distribu-
tions, etc. Application parameters are calledZEN variables.
In addition, ZEN directives can be used to request a large
variety of performance metrics (e.g. cache misses, load im-
ballance, execution, communication, synchronisation time)
for an application. ZENTURIO has been designed and im-
plemented as a distributed service architecture based on the
Jini technology (see Fig. 1). A graphical-basedUser Por-
tal allows to input an application via its constituent files and
displays an updated view of experiments, as they progress.
From the ZEN-annotated application, ZENTURIO automat-
ically generates the full set of experiments by using anEx-
periment Generator service. The SCALEA [17] perfor-
mance analysis tool, which provides a complete Fortran90,
OpenMP, and HPF front-end, is used to instrument the ap-
plication for performance metrics. After being generated,
experiments are automatically transferred to anExperiment
Executor service, which launches and manipulates the ex-
periments on the target machine. Upon their completion,
the output and performance data are automatically stored
into an Experiment Data Repository for post-mortem anal-
ysis. High level performance overheads are computed and
stored by a post-mortem performance analysis component
of SCALEA. An Application Data Visualiser, built on top
of the Askalon visualisation diagrams [6], is used to auto-
matically visualise the collected data across multiple exper-
iments. A wide range of diagrams is supported, including
barchart, linechart, piechart, and surface.

This paper illustrates the use of ZENTURIO for perfor-



Figure 1. The architecture of ZENTURIO.

mance and parameter studies of four parallel applications.
Our goal is to demonstrate that ZENTURIO is a generic
practical tool that enables to easily set-up and automatically
conduct and analyse large number of experiments for param-
eter and performance studies of parallel applications.

The next section summarises some related work. Sec-
tion 3 illustrates the use of ZENTURIO on four high-
performance parallel applications. Section 4 concludes the
paper and outlines some future work.

2. Related Work

The ZOO project [11] has been initiated to support
generic scientific experiment management by providing an
experiment specification language and by supporting auto-
matic experiment execution and data exploration. Parame-
terisation is limited to input and output files.

Nimrod [1] and ILAB [18] are tools that manage the
execution of parameter studies. Unlike in ZENTURIO,
parametrisation is limited to input files only.

Paradyn [12] supports performance experiment manage-
ment through techniques for quantitatively comparing sev-
eral experiments. In contrast to ZENTURIO, experiments
have to be run manually. Performance analysis is done auto-
matically for individual experiments only, based on histori-
cal data and dynamic instrumentation.

SKaMPI [15] provides a benchmarking environment for
MPI codes. A runtime parameter file allows the description
of a suite of measurements. A public performance database
allows storage of benchmark data and interactive compari-
son of MPI operations across different implementations and
platforms. Only a fixed number of machine and problem
sizes can be controlled by the programmer. SKaMPI pro-
vides limited control for performance analysis, while ZEN-
TURIO integrates a full performance analysis tool.

The US National Institute of Standards and Technol-
ogy (NIST) developed an automated benchmarking tool-

set [3] which provides a central repository for all collected
data and integrated analysis and visualisation mechanisms.
Parametrisation is not generic like in ZENTURIO, but re-
stricted to pre-defined application parameters.

The XPARE (eXPeriment Alerting and REporting) [4]
tools specify automated benchmark regression testings for a
given set of performance measurements of parallel applica-
tions. A historical panorama of the evolution of performance
across software versions is provided. Apart from software
versioning, no other parametrisation is addressed.

The Tracefile Testbed [7] is a new community repository
for performance data of parallel applications. It allows users
to search and retrieve tracefile metadata flexibly, based upon
parameters such as computer platform used, types of events
recorded, class of application, etc. Automatic execution of
experiments and data collection are not addressed.

Unicore [16] facilitates the usage of supercomputers on
the Internet. Unicore jobs are manually organised as di-
rected acyclic graphs, consisting of job groups and tasks.
There is no support for automatic invocation of multiple ex-
periments, parameter studies, and performance analysis.

3. Experiments

In this section we describe several performance and pa-
rameter studies that have been conducted by ZENTURIO
on four different parallel applications. All experiments have
been run on a cluster of SMP nodes, each node consisting
of 4 Intel Pentium III Xeon 700 MHz CPUs, with 1MB full-
speed L2 cache, 2 GByte ECC RAM, running Linux 2.2.18-
SMP. The cluster has two interconnection network installed:
Fast Ethernet and Myrinet. Globus GRAM and PBS have
been used as job schedulers.

3.1. LAPW0
LAPW0 is a material science kernel, part of the Wien97

package [2], that calculates the potential of the Kohn-Sham
eigen-value problem. LAPW0 is implemented as a For-
tran90 MPI program. Experiments have been scheduled on
the SMP cluster using PBS. We have varied several applica-
tion parameters by means of ZEN directives. The problem
size is expressed by pairs of.clmsum and.struct input
files, indicated in thelapw0.def input file (see Ex. 3.1).
ZEN substitute directives are used to specify the file lo-
cations. TheZEN index constraint directive pairs the in-
put files, according to the four problem sizes examined: 8,
16, 32, and 64 atoms. The machine size is controlled by
the nodes=1 andno procs ZEN variables in the PBS
script (see Ex. 3.2).nodes=1 controls the number of SMP
nodes, whileno procs the number of MPI processes to
execute. The constraint directive ensures that the correct
number of SMP nodes is allocated for each number of MPI
processes. We examined the application performance for
two interconnection networks: Fast Ethernet and Myrinet.

2



For Fast Ethernet, shared memory has been used to com-
municate inside SMP nodes. The PBS script also assigns
the path of thempirun command to the MPIRUN environ-
ment variable through aZEN assignment directive. The ap-
plication’s Makefile (see Ex. 3.3) sets the MPILIB environ-
ment variable to the corresponding MPI library. Theglobal
constraint file (see Ex. 3.4) ensures the correct association
between the network specific (Fast Ethernet and Myrinet)
MPI libraries and the correspondingmpirun script. The
execution time (mnemonicWTIME) and the communication
time (mnemonicODATAmnemonics) for the entire program
(mnemonicCR P) have been measured by using aZEN be-
haviour directive (see Ex. 3.5).

Example 3.1 (Problem size –lapw0.def)
!ZEN$ SUBSTITUTE 125hour.clmsum={ .125hour.clmsum,

.25hour.clmsum, .5hour.clmsum, 1hour.clmsum }
8,’ktp_.125hour.clmsum’,’old’,’formatted’,0
...
!ZEN$ SUBSTITUTE 125hour.struct={ .125hour.struct,

.25hour.struct, .5hour.struct, 1hour.struct }
20,’ktp_.125hour.struct’,’old’,’formatted’,0
!ZEN$ CONSTRAINT INDEX

125hour.clmsum == 125hour.struct

Example 3.2 (PBS Script –run.pbs)
#!ZEN$ SUBSTITUTE nodes\=1 = { nodes={1:40} }
#PBS -l walltime=0:29:00,nodes=1:fourproc:ppn=4
cd $PBS_O_WORKDIR
#!ZEN$ ASSIGN MPIRUN = {

/opt/local/mpich/bin/mpirun,
/opt/local/mpich_gm/bin/mpirun.ch_gm }

#!ZEN$ SUBSTITUTE no_procs = {1:40}
$(MPIRUN) -np no_procs ../SRC/lapw0 lapw0.def
#!ZEN$ CONSTRAINT INDEX 4*(nodes\=1 -1)<no_procs

&& no_procs <= 4*nodes\=1 && no_procs != 1

Example 3.3 (Makefile)
#ZEN$ ASSIGN MPILIB = { /opt/local/mpich/lib,

/opt/local/mpich_gm/lib }
LIBS = ... -lsismpiwrapper -L$(MPILIB) -lmpich
...
$(EXEC): $(OBJS)

$(F90) -o lapw0 $(OBJS) $(LIBS)

Example 3.4 (Global constraint file)
!ZEN$ CONSTRAINT INDEX

Makefile:MPILIB == run.pbs:MPIRUN

Example 3.5 (Source file –lapw0.F)
!ZEN$ CR PMETRIC WTIME, ODATA

Eight ZEN directives have been inserted into 6 ZEN files,
based on which a total of 320 experiments were automati-
cally generated and executed by ZENTURIO. The Applica-
tion Data Visualiser has been used to automatically generate
the diagrams from Fig. 2. Fig. 2(a) shows the scalability of
the application for all four problems sizes. The scalability
of the algorithm improves by increasing the LAPW0 prob-
lem size (number of atoms). For a problem size of 8 atoms
(125hour.struct) LAPW0 does not scale at all. This is

partially due to the extensive communication overhead with
respect to the entire execution time. Fig. 2(c) shows the con-
tribution of each computed overhead to the overall execution
time for each experiment. We could not separate the uniden-
tified overhead from the optimal execution time (sequential
time divided by the number of processes) because a sequen-
tial implementation of LAPW0 could not be run due to phys-
ical memory limitations. For 64 atoms (1hour.struct),
the application scales well up to 16 processes, after which
the execution time becomes relatively constant.

The interconnection network does not improve the com-
munication behaviour (see Fig. 2(b)) because all receive op-
erations are blocking, which dominates the effective transfer
of the relative small amount of data among processes.

3.2. Three-Dimensional Particle-In-Cell
The three-dimensional Particle-In-Cell (3DPIC) applica-

tion [10] simulates the interaction of high intensity ultra-
shot laser pulses with plasma in three dimensional geometry.
3DPIC has been implemented as a Fortran90/MPI code. We
scheduled the experiments on the SMP cluster using GRAM
over PBS as job manager. The application scalability has
been tested on seven different machine sizes (1, 4, 9, 12,
16, 25, and 36 processes), expressed by thecount argu-
ment of the RSL script (see Ex. 3.6). Based on the number
of processes of one experiment, GRAM allocates the cor-
rect number of SMP nodes using PBS. Even though it is an
MPI application, we have set the RSL job type to single,
which allows us to vary the interconnection network locally
within the cluster. The application is started using the shell
script from Ex. 3.7, which assigns to the MPIRUN ZEN vari-
able the path to thempirun script. Similar to LAPW0, we
study the impact of the communication network (Fast Eth-
ernet and Myrinet) by annotating the application’s Make-
file (see Ex. 3.3). A global ZEN constraint file associates
thempirun command with the corresponding MPI library
(see Ex. 3.8). Execution and communication time have been
measured, as already shown in Ex. 3.5.

Example 3.6 (Globus RSL script –run.rsl)
+(&
(resourceManagerContact="gescher/jobmanager-pbs")

(*ZEN$ SUBSTITUTE count\=4 =
{count={1,1,3,3,4,7,9}}*)

(count=4)
(jobtype=single)
(directory="/home/radu/APPS/LAPW0/znse_6")
(executable="script.sh") )

Example 3.7 (Shell script –script.sh)
#!/bin/sh
cd $PBS_O_WORKDIR
n = ‘wc -l < $PBS_NODEFILE‘
#ZEN$ ASSIGN MPIRUN = {

/opt/local/mpich/bin/mpirun,
/opt/local/mpich_gm/bin/mpirun.ch_gm }

$(MPIRUN) -np $n -machinefile $PBS_NODEFILE lapw0

3



(a) Scalability study for 4 problem sizes using Fast Ethernet
communication.

(b) Network comparison for 64 atoms problem size.

(c) Contribution of Myrinet communication metrics to the total execution time for 8 atoms problem size.

Figure 2. Visualisation Diagrams for LAPW0.

(a) Scalability study and network comparison (Fast Ethernet
versus Myrinet).

(b) Comparison of communication overhead for Fast Ethernet
and Myrinet.

(c) Contribution of Myrinet communication metrics to the total execution time.

Figure 3. Visualisation Diagrams for 3DPIC.

4



(a) Scalability study forlength=�� problem size, for differ-
ent number of SMP nodes and MPI processes per node over
Myrinet.

(b) Network comparison (Fast Ethernet versus Myrinet) for

length=�� problem size using 4 MPI processes per SMP
node.

Figure 4. Visualisation Diagrams for FFTW.

Example 3.8 (Global constraint file)
!ZEN$ CONSTRAINT INDEX

Makefile:MPILIB==script.sh:MPIRUN

Five ZEN directives have been inserted into 4 files to gen-
erate fourteen experiments. Fig. 3(a) indicates a good scal-
ability behaviour of the application. The use of Myrinet
yields up to 50% improvement in performance compared
to Fast Ethernet, which is explained by the reduced com-
munication overhead (see Fig. 3(b)). Fig. 3(c) shows the
relatively low ratio between the application execution time
(one full pie) and the MPI overheads measured, which ex-
plains the good application scalability. As a sequential ver-
sion of this application is not available, we did not separate
the unidentified overhead from the optimal execution time.

3.3. FFTW
The Fastest Fourier Transform in the West (FFTW) [9]

is an MPI C subroutine library for computing the Discrete
Fourier Transform (DFT) in one or more dimensions, of both
real and complex data and of arbitrary input size. We have
created a Fortran90 wrapper program which calls a three-
dimensional FFT, in order to be able to automatically instru-
ment it with SCALEA.

We analysed seven problem sizes, represented by the
three-dimensional square matrix size, ranging from� � to
�
� (see Ex. 3.9). We benchmark the subroutine call
fftwnd f77 mpi through a local ZEN behaviour direc-
tive (see Ex. 3.9). The experiments are submitted on the
cluster using PBS. We run each problem size on 1, 2,
4, 8, and 16 SMP nodes by annotating the PBS script
with the ZEN variablenodes=1. On each node we exe-
cute 1, 2 and 4 MPI processes, which we control through
the MPI MAX CLUSTER SIZE environment variable (see
Ex. 3.10). The constraint directive ensures that the cor-
rect number MPI processes is started for each machine size

and configuration. The application performance has been
examined for two interconnection networks (Fast Ethernet
and Myrinet) by annotating the application Makefile (see
Ex. 3.3) and the PBS script (see Ex. 3.10), as already ex-
plained in Section 3.1. For Fast Ethernet, shared memory
has been used for communication inside SMP nodes.

Example 3.9 (Source File –benchF.f90)
!ZEN$ SUBSTITUTE length\=256 = {length=2**{2:8}}
INTEGER, PARAMETER :: length=256
...
!ZEN$ CR FFTW_CALL PMETRIC WTIME BEGIN

CALL fftwnd_f77_mpi_(plan, 1, loc, work, 1,
FFTW_TRANSPOSED_ORDER)

!ZEN$ END CR

Example 3.10 (PBS script –run.pbs)
#!ZEN$ SUBSTITUTE nodes\=1 = { nodes={1,2,4} }
#PBS -l walltime=0:29:59,nodes=1:fourproc:ppn=4
#!ZEN$ SUBSTITUTE MPI_MAX_CLUSTER_SIZE\=4 = {

MPI_MAX_CLUSTER_SIZE={1,2,4} }
#PBS -v MPI_MAX_CLUSTER_SIZE=4
cd $PBS_O_WORKDIR
#!ZEN$ ASSIGN MPIRUN = {

/opt/local/mpich/bin/mpirun,
/opt/local/mpich_gm/bin/mpirun.ch_gm }

#!ZEN$ SUBSTITUTE no_procs = {1,2,4,8,16}
mpirun -np no_procs benchF
#!ZEN$ CONSTRAINT INDEX 2ˆ(nodes\=1 - 1) *

2ˆ(MPI_MAX_CLUSTER_SIZE\=4-1)==2ˆ(no_procs-1)

Nine ZEN directives have been inserted into four files to
generate a total of 210 experiments that have been automati-
cally generated and conducted by ZENTURIO. Fig. 4 shows
two samples from the variety of diagrams that have been au-
tomatically generated from the data stored in the data repos-
itory. It is well known that the performance of FFTW is de-
pendent on enough work per processor and on fast networks.
For a�� problem size, FFTW scales well over Myrinet up
to 16 MPI processes, beyond which the performance de-
grades (see Fig. 4(a)). For a large�� matrix size, FFTW

5



performs by far better over Myrinet than over Fast Ethernet
(see Fig. 4(b)). For this large problem size FFTW scales
well over Myrinet, while Fast Ethernet produces a complete
non-scalability.

3.4. Backward Pricing
The backward pricing kernel [5] is a parallel implemen-

tation of the backward induction algorithm which computes
the price of an interest rate dependent financial product, such
as a variable coupon bond. It is based on the Hull and
White trinomial interest rate tree which models future devel-
opments of interest rates. We have performed a performance
and a parameter study for this code.

3.4.1 Performance Study

Backward pricing has been encoded as an HPF+ appli-
cation which uses HPF+ directives to distribute the data
onto the SMP nodes. The application is compiled into a
mixed OpenMP/MPI program by the SCALEA instrumen-
tation engine built on top of the HPF+ Vienna Fortran Com-
piler (VFC). Intra-node parallelisation is achieved through
OpenMP directives. Communication among SMP nodes is
realised through MPI calls. We scheduled the experiments
on the SMP cluster using GRAM. We annotated the RSL
script to vary the machine size from 1 to 10 SMP nodes
(see Ex. 3.11). The ZEN variablecount=4 is set with
the number of SMP nodes. Based on thecount RSL
parameter, GRAM allocates the corresponding number of
SMP nodes and uses an available local MPI implementa-
tion, which must be defined by the user default shell envi-
ronment. In the current experiment, we have set our envi-
ronment for MPICH using the p4 device over Fast Ether-
net. TheMPI MAX CLUSTER SIZE environment variable
ensures that thempirun script starts only one MPI process
per SMP node. The intra-node parallelisation is achieved by
means of OpenMP. The application has been encoded such
that it reads the number of OpenMP threads to be forked per
SMP node from a file calledbench.in. We annotated this
input file with a ZEN substitute directive which varies the
number of threads from 1 to 4 (see Ex. 3.12). The overall
execution time, as well as the MPI communication and the
HPF+ inspector/executor overheads have been measured.

Example 3.11 (Globus RSL script –run.rsl)
+(&
(resourceManagerContact="gescher/jobmanager-pbs")
(*ZEN$ SUBSTITUTE count\=4 = {count={1:10}}*)
(count=4)
(jobtype=mpi)
(environment=(MPI_MAX_CLUSTER_SIZE 1))
(directory="/home/radu/APPS/HANS")
(executable="bw_halo_sis") )

Example 3.12 (Input file –bench.in)
!ZEN$ SUBSTITUTE threads = { 1:4 }
threads

Two ZEN directives have been inserted into two files to
produce 40 experiments automatically conducted by ZEN-
TURIO. Fig. 5(a) shows a good scalability of this code.
Backward pricing is a computational intensive application,
which highly benefits from the inter-node MPI and intra-
node OpenMP parallelisation. The overall wallclock time
of the application significantly improves by encreasing the
number of nodes and OpenMP threads per SMP node.
Fig. 5(b) shows a very high ratio between the application
total execution user time (one full bar) and the HPF and
MPI overheads measured, which explains the good paral-
lel behaviour. This ratio decreases for a high number of
SMP nodes, for which the overheads significantly degrade
the overall performance.

3.4.2 Parameter Study

We performed two parameter studies for the Backward pric-
ing code by varying four input parameters: (1) the coupon
bond (ZEN variablecoupon from 0.01 to 0.1 with incre-
ment 0.001); (2) the number of time steps, over which the
price is computed (ZEN variablenr steps from 5 to 60
with increment 5); (3) the coupon bond’s end time (ZEN
variablebond%end), which must be equal to the number
of time steps; (4) the length of one time step (ZEN variable
delta t from 1/12 to 1 with increment 1/12). The applica-
tion has been encoded such that it reads its input parameters
from different input data files. ZEN assignment directives
are inserted in the source code immediately after the corre-
spondingread statements (see Ex. 3.13). Thus, the original
read statement is made redundant. A constraint directive
guarantees that the coupon bond’s end time is identical with
the number of time steps. We examined the effects of these
input parameters on the total price output result.

Example 3.13 (Source file –bw halo.f90)
read(10,*) nr_steps
!ZEN$ ASSIGN nr_steps = { 5:60:5 }
...
read(10,*) delta_t
!ZEN$ ASSIGN delta_t = { 0.08, 0.17, 0.25, 0.33,

0.42, 0.5, 0.58, 0.67, 0.75, 0.83, 0.92, 1 }
...
read(10,*) bond%end
!ZEN$ ASSIGN bond\%end = { 5:60:5 }
!ZEN$ CONSTRAINT VALUE nr_steps == bond\%end
...
read(10,*) bond%coupon
!ZEN$ ASSIGN bond\%coupon = { 0.01:0.1:0.001 }

A total number of 1481 experiments have been automat-
ically generated. The output of each completed experiment
containing the total price has been stored into the data repos-
itory. Two sample diagrams are depicted in Fig. 5.

The three-dimensional surface in Fig. 5(c) shows the evo-
lution of the total price as a function of the number of time
steps and the coupon, with the following meaning: (a) the

6



(a) Wallclock time for different number of nodes and OpenMP
threads per SMP node.

(b) Contribution of MPI and HPF overheads to the overall ex-
ecution time (4 threads per SMP node).

(c) Total price for length of time step (delta t) = 1.0. (d) Total price for coupon = 0.05.

Figure 5. Visualisation Diagrams for Backward Pricing.

price decreases with the maturity (number of time steps�

length of time step), because the effect of discounting future
payments increases (i.e. $100 in 20 years are less then $100
in 10 years), but only if the coupon is less than the interest
rates (e.g. for 0.06, the coupon rate is greater than the inter-
est rates); (b) the price increases with coupon, because the
higher the coupon rate is, the higher the future payments are;
(c) for very large maturities, the price linearly depends only
on the coupon.

Fig. 5(d) shows the price evolution by varying the number
of time steps and the length of a time step, with the following
meaning: (a) the price decreases with the length of a time
step, because a smaller payment number implies less money
in the future; (b) depending on the number of time steps, the
price may increase or decrease with maturity, depending on
how much the smaller number of payments are compensated
by smaller discount effects.

4. Conclusions

ZENTURIO has been purposely designed as a generic
experiment management tool to support scientists and en-
gineers in their effort to conduct large scale parameter stud-

ies, performance analysis, and software testings on cluster
and Grid architectures. We have shown a few realistic sce-
narios of using ZENTURIO for performance and parameter
studies of four parallel applications. A ZEN directive-based
language is used to define values of interest for any appli-
cation parameter in any source or input file of the applica-
tion. Parametrisation is therefore no longer restricted to in-
put files only, as in existing conventional parameter study
tools [1, 18]. We have shown the use of ZEN directives for
varying arbitrary application input files, input variables, ma-
chine sizes for an SMP cluster (both the number of nodes
and the number of threads per SMP node), and communica-
tion networks (Fast Ethernet and Myrinet) within MPI. For
each application we have used a small number of ZEN direc-
tives (regularly less than 10) to annotate arbitrary application
source and input files and specify a few hundreds (up to even
thousands) of experiments for each application. We have in-
tegrated a full performance analysis tool [17], based on a
full-fledged Fortran 90, HPF, and OpenMP compiler front-
end, providing powerful high-level overhead analysis. The
experiments have been conducted (i.e. transferred to the tar-
get machine, compiled, and executed) by ZENTURIO fully

7



automatically. PBS for cluster and GRAM for Grid com-
puting have been used to submit the jobs to an SMP cluster.
For each completed experiment, the performance and output
data are automatically stored into a data repository. An Ap-
plication Data Visualiser, built on top of the Askalon visu-
alisation diagrams [6], provides advanced techniques to dis-
play the performance and output data across multiple exper-
iments, by mapping application parameters to visualisation
axis. A wide variety of visualisation diagrams are supported,
including linechart, barchart, piechart, and surface.

Future work involves the development of a Grid-oriented
architecture based on the Web services technology and the
Open Grid Service Architecture (OGSA) [8] specification.

Acknowledgement. We thank Andreas Bonelli from the
Technical University of Vienna for providing the Fortran
wrapper to the FFTW application.

References

[1] D. Abramson, R. Sosic, R. Giddy, and B. Hall. Nimrod:
A tool for performing parameterised simulations using dis-
tributed workstations high performance parametric modeling
with nimrod/G: Killer application for the global grid? In
Proceedings of the 4th IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC-95), pages 520–528,
Virginia, August 1995. IEEE Computer Society Press.

[2] Peter Blaha, Karlheinz Schwarz, and Joachim Luitz.
WIEN97: A Full Potential Linearized Augmented Plane Wave
Package for Calculating Crystal Properties. Institute of Phys-
ical and Theoretical Chemistry, April 2000.

[3] Michel Courson, Alan Mink, Guillaume Marcais, and Ben-
jamin Traverse. An automated benchmarking toolset. In
HPCN Europe, pages 497–506, 2000.

[4] J. Davison de St. Germain, Alan Morris, Steven G. Parker,
Allen D. Malony, and Sameer Shende. Integrating perfor-
mance analysis in the uintah software development cycle. In
Proceedings of the The fourth International Symposium on
High Performance Computing (ISHPC-IV), pages 190–206,
Kansai Science City, Japan, 2002.

[5] E. Dockner and H. Moritsch. Pricing Constant Maturity
Floaters with Embeeded Options Using Monte Carlo Simu-
lation. Technical Report AuR99-04, AURORA Technical
Reports, University of Vienna, January 1999.

[6] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Sera-
giotto, and H.-L. Truong. ASKALON - A Programming
Environment and Tool Set for Cluster and Grid Computing.
www.par.univie.ac.at/project/askalon, Institute for Software
Science, University of Vienna.

[7] Ken Ferschweiler, Mariacarla Calzarossa, Cherri Pancake,
Daniele Tessera, and Dylan Keon. A community databank for
performance tracefiles. In Y. Cotronis and J. Dongarra, edi-
tors,Euro PVM/MPI, pages 233–240. Springer-Verlag, 2001.
Lect. Notes Comput. Sci. vol. 2131.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration. The
Globus Project and The Global Grid Forum, January 2002.
http://www.globus.org/research/papers/OGSA.pdf.

[9] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. InProceedings of the Interna-
tional Conference on Acoustics Speech and Signal Processing
(ICASSP), pages 1381–1384, 1998.

[10] M. Geissler. Interaction of High Intensity Ultrashort Laser
Pulses with Plasmas. PhD thesis, Vienna University of Tech-
nology, 2001.

[11] Yannis E. Ioannidis, Miron Livny, S. Gupta, and Nagavamsi
Ponnekanti. ZOO: A desktop experiment management en-
vironment. In T. M. Vijayaraman, Alejandro P. Buchmann,
C. Mohan, and Nandlal L. Sarda, editors,VLDB’96, Pro-
ceedings of 22th International Conference on Very Large
Data Bases, pages 274–285, Mumbai (Bombay), India, 3–
6 September 1996. Morgan Kaufmann.

[12] Karen L. Karavanic and Barton P. Miller. Experiment man-
agement support for performance tuning. In ACM, editor,
Proceedings of the SC’97 Conference, San Jose, California,
USA, November 1997. ACM Press and IEEE Computer So-
ciety Press.

[13] Radu Prodan and Thomas Fahringer. ZEN: A Directive-based
Language for Automatic Experiment Management of Parallel
and Distributed Programs. InProceedings of the 31st Inter-
national Conference on Parallel Processing (ICPP-02), Van-
couver, Canada, August 2002. IEEE Computer Society Press.

[14] Radu Prodan and Thomas Fahringer. ZENTURIO: An Ex-
periment Management System for Cluster and Grid Com-
puting. In Proceedings of the 4th International Confer-
ence on Cluster Computing (CLUSTER 2002), Chicago,
USA, September 2002. IEEE Computer Society Press.
http://www.par.univie.ac.at/project/zenturio.

[15] R. Reussner, P. Sanders, L. Prechelt, and M. Mueller.
SKaMPI: A detailed, accurate MPI benchmark.Lecture
Notes in Computer Science, 1497:52, 1998.

[16] M. Romberg. The UNICORE architecture: Seamless ac-
cess to distributed resources.Proceedings of the 8th Inter-
national Symposium on High Performance Distributed Com-
puting HPDC-8, pages 287–293, August 1999.

[17] Hong-Linh Truong and Thomas Fahringer. SCALEA: A
Performance Analysis Tool for Distributed and Parallel Pro-
gram. In 8th International Europar Conference(EuroPar
2002), Lecture Notes in Computer Science, Paderborn, Ger-
many, August 2002. Springer-Verlag.

[18] M. Yarrow, K. M. McCann, R. Biswas, and R. F. Van der Wi-
jngaart. Ilab: An advanced user interface approach for com-
plex parameter study process specification on the informa-
tion power grid. InProceedings of Grid 2000: International
Workshop on Grid Computing, Bangalore, India, December
2000. ACM Press and IEEE Computer Society Press.

8


