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Kurzfassung

In dieser Dissertation wird eine mathematische Methode entwickelt, die automati-
sche Leistungsoptimierung von Programmen zur Berechnung von diskreten linearen
Transformationen für Prozessoren mit Multimedia-Vektorerweiterungen (short vector
SIMD extensions) ermöglicht, wobei besonderes Gewicht auf die diskrete Fourier-
Transformation (DFT) gelegt wird. Die neuentwickelte Methode basiert auf dem
Kronecker-Produkt-Formalismus, der erweitert wurde, um die spezifischen Eigenschaf-
ten von Multimedia-Vektorerweiterungen abzubilden. Es wurde auch eine speziell ange-
paßte Cooley-Tukey-FFT-Variante1 entwickelt, die sowohl für Vektorlängen der Form
N = 2k als auch für allgemeinere Problemgrößen anwendbar ist.

Die neuentwickelte Methode wurde als Erweiterung für Spiral
2 und Fftw

3, die
derzeitigen Top-Systeme im Bereich der automatischen Leistungsoptimierung für dis-
krete lineare Transformationen, getestet. Sie erlaubt es, extrem schnelle Programme
zur Berechnung der DFT zu erzeugen, welche die derzeit schnellsten Programme zur
Berechnung der DFT auf Intel-Prozessoren mit den Multimedia-Vektorerweiterungen
“Streaming SIMD Extensions” (SSE und SSE 2) sind. Sie sind schneller als die ent-
sprechenden Programme aus der manuell optimierten Intel-Softwarebibliothek MKL
(Math Kernel Library). Zusätzlich wurden die bisher ersten und einzigen automatisch
leistungsoptimierten Programme zur Berechnung der Walsh-Hadamard-Transformation
und für zwei-dimensionale Kosinus-Transformationen erzeugt.

Wichtige Resultate dieser Dissertation sind: (i) Die Vektorisierung von diskreten
linearen Transformationen für Multimedia-Vektorerweiterungen erfordert nichttriviale
strukturelle Änderungen, wenn automatische Leistungsoptimierung durchgeführt wer-
den soll. (ii) Leistungsportabilität über verschiedene Plattformen und Prozessorgene-
rationen ist besonders schwierig bei Prozessoren mit Multimedia-Vektorerweiterungen
zu erreichen. (iii) Aufgrund der Komplexität der Algorithmen für diskrete lineare
Transformationen können vektorisierende Compiler keine Programme erzeugen, die ei-
ne zufriedenstellende Gleitpunktleistung aufweisen. (iv) Aufgrund anderer Designzie-
le können Software-Bibliotheken für klassische Vektorcomputer auf Prozessoren mit
Multimedia-Vektorerweiterungen nicht effizient eingesetzt werden.

Die in dieser Dissertation entwickelte Methode basiert auf dem Kronecker-Produkt-
Formalismus, angewendet auf diskrete lineare Transformationen (Van Loan [90], Moura
et al. [72]). Die numerischen Experimente wurden mit neuentwickelten Erweiterungen
zu Fftw (Frigo und Johnson [33]) und Spiral (Moura et al. [72]) durchgeführt. Resul-
tate dieser Dissertation wurden in Franchetti et al. [24, 25, 27, 28, 29, 30] veröffentlicht.

1FFT ist die Abkürzung von “fast Fourier transform” (Schnelle Fourier-Transformation)
2
Spiral ist die Abkürzung von “signal processing algorithms implementation research for

adaptive libraries” (Implementierungsforschung an Signalverarbeitungsalgorithmen für adaptive
Software)

3
Fftw ist die Abkürzung von “Fastest Fourier Transform in the West” (Schnellste Fourier-

Transformation des Westens)
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Summary

This thesis provides a mathematical framework for automatic performance tuning of
discrete linear transform codes targeted at computers with processors featuring short
vector SIMD extensions. Strong emphasis is placed on the discrete Fourier transform
(DFT). The mathematical framework of this thesis is based on the Kronecker product
approach to describe linear transforms. This approach has been extended to express
the specific features of all current short vector SIMD extensions. A special short vector
Cooley-Tukey FFT4 is introduced.

The methods developed in this thesis are applicable as extensions to Spiral
5 and

Fftw
6, the current state-of-the-art systems using automatic performance tuning in the

field of discrete linear transforms. Application of the new method leads to extremely
fast implementations of DFTs on most current short vector SIMD architectures for
both non-powers and powers of two.

The automatically generated and optimized codes are currently the fastest codes
for Intel machines featuring streaming SIMD extensions (SSE and SSE 2). These
codes are faster than Intel’s hand tuned math library (MKL) and of course faster
than all other implementations freely available for these machines. The codes of this
thesis are the first n-way short vector FFTs for both non-powers and powers of two.
Moreover, the thesis presents the first automatically performance tuned short vector
SIMD implementations for other transforms like Walsh-Hadamard transforms or two-
dimensional cosine transforms.

This thesis points out the following major issues: (i) SIMD vectorization cannot be
achieved easily. Nontrivial mathematical transformation rules are required to obtain
automatic performance tuning and thus satisfactory performance for processors fea-
turing SIMD extensions. (ii) Performance portability across platforms and processor
generations is not a straightforward matter, especially in the case of short vector SIMD
extensions. Even the members of a family of binary compatible processors featuring
the same short vector SIMD extension are different and adaptation is required to uti-
lize them satisfactorily. (iii) Vectorizing compilers are not able to deliver competitive
performance due to the structural complexity of discrete linear transforms algorithms.
(iv) Conventional vector computer libraries optimized for dealing with long vector
lengths do not achieve satisfactory performance on short vector SIMD extensions.

The framework introduced in this thesis is based on the Kronecker product approach
as used in Van Loan [90] and Moura et al. [72]. The experimental results were obtained
by extending Fftw (Frigo and Johnson [33]) and Spiral (Moura et al. [72]). Some
results of this thesis are presented in Franchetti et al. [24, 25, 27, 28, 29, 30].

4FFT is the abbreviation of fast Fourier transform.
5
Spiral is the abbreviation of “signal processing algorithms implementation research for

adaptive libraries”.
6
Fftw is the abbreviation of “Fastest Fourier Transform in the West”
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Introduction

The discrete Fourier transform (DFT) plays a central role in the field of scientific
computing because DFT methods are an extremely powerful tool to solve various
scientific and engineering problems. For example, the DFT is essential for the
digital processing of signals or for solving partial differential equations. Other
practical uses of DFT methods include geophysical research, vibration analysis,
radar and sonar signal processing, speech recognition and synthesis, as well as
image processing.

Discrete linear transforms, including the discrete Fourier transform (DFT),
the Walsh-Hadamard transform (WHT), and the family of discrete sine and co-
sine transforms (DSTs, DCTs) are—despite numerical linear algebra algorithms—
at the core of most computationally intensive algorithms. Thus, discrete linear
transforms are in the center of small scale applications with stringent time con-
straints (for instance, real time) as well as large scale simulations running on the
world’s largest supercomputers.

All these transforms are structurally complex and thus lead to complicated
algorithms which make it a challenging task to map them to standard hardware
efficiently and an even harder problem to exploit special processor features satis-
factorily. The unprecedent complexity of today’s computer systems implies that
performance portable software—software that performs satisfactorily across plat-
forms and hardware generations—can only be achieved by means of automatic
empirical performance tuning. It is necessary to apply search techniques to find
the best implementation for a given target machine. These search techniques
have to apply actual run time as cost function, since modelling the machine’s
behavior accurately enough is impossible on today’s computers.

A few years ago major vendors of general purpose microprocessors have started
to include short vector SIMD (single instruction, multiple data) extensions into
their instruction set architecture (ISA) primarily to improve the performance
of multi-media applications. Examples of SIMD extensions supporting both in-
teger and floating-point operations include Intel’s streaming SIMD extensions
(SSE and SSE 2), AMD’s 3DNow! as well as its extensions “enhanced 3DNow!”
and “3DNow! professional”, Motorola’s AltiVec extension, and last but not least
IBM’s Double Hummer floating-point unit for BG/L machines. Each of these
ISA extensions is based on the packing of large registers (64 bits or 128 bits) with
smaller data types and providing instructions for the parallel operation on these
subwords within one register.

SIMD extensions have the potential to speed up implementations in all areas
where (i) performance is crucial and (ii) the relevant algorithms exhibit fine grain
parallelism.

Processors featuring short vector SIMD instructions are completely different

7



8 Introduction

from conventional vector computers. Thus, solutions developed for traditional
vector computers are not directly applicable to today’s processors featuring short
vector SIMD extensions.

By introducing double-precision short vector SIMD extensions, this technol-
ogy became a major determinant in scientific computing. Conventional scalar
code becomes more and more obsolete on machines featuring these extensions
as such codes utilize only a fraction of the potential performance. For instance,
Intel’s Pentium 4 processor featuring the two-way double-precision short vector
SIMD extension SSE 2 is currently the processor with the highest peak perfor-
mance (over 6 Gflop/s for double precision and over 12 Gflop/s for single pre-
cision) and has become the standard processor in commodity clusters. On the
other end of the spectrum, the processors of IBM’s BG/L machine—a candidate
for the leading position in the Top 500 list—also features a two-way double-
precision short vector SIMD extension.

This thesis provides a framework for automatic performance tuning of discrete
linear transform codes targeted at computers with processors featuring short vec-
tor SIMD extensions, with strong emphasis placed on the discrete Fourier trans-
form.

Synopsis

Chapter 1 introduces discrete linear transforms and discusses he reasons why it is
hard to achieve high performance implementations of such algorithms on current
computer architectures. The two major automatic performance tuning systems
for discrete linear transforms—Spiral and Fftw—are introduced.

In Chapter 2 current hardware trends and advanced hardware features are
discussed. The main focus is on CPUs and memory hierarchies.

Chapter 3 discusses current short vector SIMD extensions and available pro-
gramming interfaces.

Chapter 4 summarizes the mathematical framework required to express the
results presented in this thesis. The Kronecker product formalism and its con-
nection to programs for discrete linear transforms is discussed. The translation
of complex arithmetic into real arithmetic within this framework is introduced.

Chapter 5 introduces fast algorithms for discrete linear transforms, i. e.,
matrix-vector products with structured matrices. The special case of the discrete
Fourier transform is discussed in detail. Classical iterative and modern recursive
algorithms are summarized. The mathematical approach of Spiral and Fftw

is presented.
In Chapter 6 a portable SIMD API is introduced as a prerequisite for the

implementation of the short vector algorithms presented in this thesis.
In Chapter 7 a method for formula-based vectorization of discrete linear trans-

forms is introduced. A large class of discrete linear transforms can be fully vec-
torized, the remaining transforms can be vectorized at least partially. Various
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methods to obtain short vector SIMD implementations of DFTs are discussed
and the short vector Cooley-Tukey rule set is developed which enables high per-
formance short vector SIMD implementations of DFTs.

Chapter 8 shows a number of experimental results. The newly developed
formal methods are included into Spiral and Fftw using the portable SIMD
API and are tested on various short vector SIMD extensions and architectures.
Experimental evidence for the superior performance achievable by using the newly
introduced methods is given.

Appendix A discusses the performance assessment of scientific software. Ap-
pendix B summarizes the relevant parts of short vector SIMD instruction sets
and Appendix C shows the implementation of the portable SIMD API required
for the numerical experiments presented in this thesis. Appendix D displays ex-
ample code obtained using the newly developed short vector SIMD extension for
Spiral and Appendix E displays codelet examples taken from the short vector
SIMD version of Fftw.



Chapter 1

Hardware vs. Algorithms

The fast evolving microprocessor technology, following Moore’s law, has turned
standard, single processor off-the-shelf desktop computers into powerful com-
puting devices with peak performances of, at present, several gigaflop/s. Thus,
scientific problems that a decade ago required powerful parallel supercomputers,
are now solvable on a PC. On a smaller scale, many applications can now be
performed under more stringent performance constraints, e. g., in real time.

Unfortunately, there are several problems inherent to this development on
the hardware side that make the development of top performance software an
increasingly difficult task feasible only for expert programmers.

(i) Due to the memory-processor bottleneck the performance of applications
depends more on the pattern, e. g., locality of data access rather than on the mere
number of arithmetic operations.

(ii) Complex architectures make a performance prediction of algorithms a
difficult, if not impossible task.

(iii) Most of the modern microprocessors introduce special instructions like
FMA (fused multiply-add), or short vector SIMD instructions (like SSE on Pen-
tium processors). These instructions provide superior potential speed-up but are
difficult to utilize.

(iv) High-performance code, hand-tuned to a given platform, becomes obsolete
as the next generation (in cycles of typically about two years) of microprocessors
comes onto the market.

As a consequence, the development of top performance software, portable
across architectures and time, has become one of the key challenges associated
with Moore’s law. As a result there has been a number of efforts recently, col-
lectively referred to as automatic performance tuning , to automate the process
of implementation and optimization for given computing platforms. Important
examples include Fftw by Frigo and Johnson [32], Atlas by Whaley et al. [94],
and Spiral by Püschel et al. [80].

1.1 Discrete Linear Transforms

The discrete Fourier transform (DFT) is one of the principal algorithmic tools in
the field of scientific computing. For example, the DFT is essential in the digital
processing of analogous signals. DFT methods are also used in many fields of the
computational mathematics, for instance, to solve partial differential equations.

10



1.1 Discrete Linear Transforms 11

DFT methods are important mathematical tools in geophysical research, vibra-
tion analysis, radar and sonar signal processing, speech recognition and synthesis,
as well as image processing.

The arithmetic complexity of the DFT was long thought to be 2N2 since
the DFT boils down to the evaluation of a special matrix-vector product. In
1965 Cooley and Tukey [13] published the fast Fourier transform (FFT) algo-
rithm, which reduced the computational complexity of the DFT to 5N log N .

The discrete Fourier transform is the most important discrete linear transform.
Other examples of discrete linear transforms are the discrete sine and cosine
transforms, the wavelet transforms, and the Walsh-Hadamard transform.

1.1.1 Applications

The field of applications for the FFT and the other linear transforms is vast.
Several areas where methods based on these transforms play a central role are
outlined in this section.

Seismic Observation

The oil and gas industry uses the FFT as a fundamental exploration tool. Us-
ing the so-called “seismic reflection method” it is possible to map sub-surface
sedimentary rock layers.

A meanwhile historic application of the discrete Fourier transform was to find
out, whether a seismic activity was caused by an earthquake or by a nuclear
bomb. These events can be distinguished in the frequency domain, because the
respective spectra have strongly differing characteristics.

Filtering

Filters are used to attenuate or enhance certain frequency components of a given
signal. The most important types are low pass, high pass and band pass fil-
ters. But there are even more filter issues that can be addressed with FFTs, for
example the complexity reduction of finite impulse responses by providing filter
convolution.

Image Processing

Filters can also be applied to two- and more-dimensional digital signals like pic-
tures or movies. They can be smoothed, sharp edges can be enhanced as well
as disturbing background noise can be reduced. Especially for highly perturbed
medical images (like some X-ray pictures) the FFT can be used to enhance the
visibility of certain objects. Furthermore, the spectral representation of a digital
picture can be used to gain valuable information for pattern recognition purposes.
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The discrete cosine transform (DCT) is a very important transform in image
processing. DCTs are used for image compression in the MPEG standards, for
motion detection and virtually in any advanced image processing algorithm.

New types of filters are wavelet based and new compression techniques, as
introduced in the JPEG2000 standard, utilize the wavelet transform.

Data Communication

The FFT is usually associated with low level aspects of communication, for in-
stance, to understand how a signal behaves when sent through communication
channels, amplifiers etc. Especially the degree of distortion can be modelled eas-
ily knowing the bandwidth of the channel and the spectrum of the signal. For
example, if a signal is composed of certain frequency components but only part
of them passes through the channel, adding up only those components passing
results in a good approximation of the distorted signal.

Astronomy

Sometimes it is not possible to get all the required information from a “normal”
telescope (based on visible light). Radio waves or radar have to be used instead of
light. Radio and radar signals are treated just like any other time varying signal
and can be processed digitally. For example, the satellite Magellan released in
1989 and sent to earth’s closest planet, Venus, was equipped with modern radar
and digital signal processing capabilities and provided excellent data that made
possible a computer-generated virtual flight above Venus.

Optics

In optical theory the signal is the oscillatory electric field at a point in space where
light passes by. The Fourier transform of the signal is equivalent to breaking up
the light into its components by using a prism. The Fourier transform is also
used to calculate the diffracted intensity with the experiments of light passing
through narrow slits. Even Young’s famous double slit experiment made use of
the Fourier transform. These ideas can be applied to all kinds of wave analysis
applications like acoustic, X-ray, and microwave diffraction.

Speech Recognition

The field of digital speech processing and recognition is a multi-million Euro
business by now. Advances in computational speed and new language models
have made speech recognition possible on average PCs.

Speech recognition is a very wide field, consisting of isolated word recognition
for specialized fields as medicine as well as connected word and even conversa-
tional speech recognition.
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Speech recognition is investigated for many reasons like the development of
automatic typewriters. The simplicity of use of a speech recognition system and
its possible speed as compared with other information input are worth mentioning.
Speech is rather independent from other activities involving hands or legs. Many
tasks could be performed by computers, if the recognition process was reliable
and cheap. For achieving both goals the FFT is an important tool.

FFTs are used to transform the signal, usually after a first filtering process,
into the frequency domain to obtain its spectrum. Critical features for perceiving
speech by the human ear are mainly included in the spectral information, while
the phase information does not play a crucial role.

Not only can the FFT bring the signal into an easier-to-handle form, it is even
cheap in time and makes real-time recognition economically affordable.

Further Topics

The discrete Fourier transform is also used for solving partial differential equa-
tions and is therefore essential, for example, in computational fluid dynamics.
Beside numerical linear algebra the FFT is accounting for most processor cycles.
Many large scale applications use the FFT. For instance, climate simulations as
conducted on the currently fastest supercomputer—Japan’s Earth Simulator—
are FFT based.

1.2 Current Hardware Trends

The gap between processor performance, memory bandwidth and network link
bandwidth is constantly widening. Processor power grows by approximately 60 %
per year while memory bandwidth is growing by a relatively modest 6 % per year.
Although the overall sum of the available network bandwidth is doubling every
year, the sustained bandwidth per link is only growing by less than 6 % per year.
Thus, it is getting more and more complicated to build algorithms that are able
to utilize modern (serial or parallel) computer systems to a satisfactory degree.

Only the use of sophisticated techniques both in hardware architecture and
software development allows to overcome these difficulties. Algorithms which
were optimized for a specific architecture several years ago, fail to perform well
on current and emerging architectures. Due to the fast product cycles in hardware
development and the complexity of today’s execution environments, it is of utmost
importance to provide users with easy-to-use self-adapting numerical software.

The development of algorithms for modern high-performance computers is
getting more and more complicated due to the following facts. (i) The perfor-
mance gap between CPUs, memories, and networks is widening. (ii) Hardware
tricks partially hide this performance gap. (iii) Performance modelling of pro-
grams running on current and future hardware is getting more and more difficult.
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(iv) Non-standard processor extensions complicate the development of programs
with satisfactory performance characteristics.

In the remainder of this section, these difficulties are outlined in detail.

Computing Cores

Computing power increases at an undiminished rate according to Moore’s law.
This permanent performance increase is primarily due to the fact that more
and more non-standard computing units are incorporated into microprocessors.
For instance, the introduction of fused multiply add (FMA) operations doubled
the floating-point peak performance. The introduction of short vector SIMD
extensions (e. g., Intel’s SSE or Motorola’s AltiVec) enabled the increase of the
peak performance by another factor of 2 or 4.

Using standard algorithms and general purpose compiler technology, it is not
possible to utilize these recently introduced hardware extensions to a satisfactory
degree. Special algorithms have to be developed for high-performance numerical
software to achieve an efficient utilization of modern processors.

Memory Subsystems

Memory access is getting more and more expensive relatively to computation
speed. Caching techniques try to hide latency and the lack of satisfactory memory
bandwidth but require locality in the algorithm’s memory access patterns. Deep
memory hierarchies, cache associativity and size, transaction lookaside buffers
(TLBs), and automatic prefetching introduce another level of complexity. The
parameters of these facilities even vary within a given computer architecture
leading to an intrinsic problem for algorithm developers who try to optimize
floating-point performance for a set of architectures.

Symmetrical multiprocessing introduces the problem of cache sharing as well
as cache coherency and the limited memory bandwidth becomes an even more
limiting factor. Non-uniform memory access on some architectures hides the
complexity of distributed memory at the cost of higher latencies for some memory
blocks.

1.2.1 Performance Modelling

For modern computer architectures, modelling of system characteristics and per-
formance characterization of numerical algorithms is extremely complicated. The
number of floating-point operations is no longer an adequate measure for predict-
ing the required run time.

The following features of current hardware prevent the accurate modelling and
invalidate current performance measures for a modern processor: (i) Pipelining
and multiple functional units, (ii) super-scalar processors and VLIW processors,
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(iii) fused multiply-add (FMA) instructions, (iv) short vector SIMD extensions,
(v) branch prediction, (vi) virtual registers, (vii) multi-level set-associative caches
as well as shared caches, and (viii) transaction lookaside buffers (TLBs).

As modelling of algorithms with respect to their actual run time is not pos-
sible to a satisfactory degree, the only reasonable performance assessment is an
empirical run time study carried out for given problems.

Chapter 2 explains performance relevant processor features and the respec-
tive techniques in detail. Appendix A explains the methodology of run time
measurement and performance assessment.

1.3 Performance Implications

This section exemplary shows the drawback of the standard approach of optimiz-
ing software to a given platform and shows that the asymptotic complexity and
even the actual number of operations is no adequate performance measure.

The standard approach to obtain an optimized implementation for a given
algorithm is summarized as follows.

• The algorithm is adapted to the hardware characteristics by hand, focussing,
e. g., on the memory hierarchy and/or processor features.

• The adapted algorithm is coded using a high-level language to achieve porta-
bility and make the programming manageable.

• Key portions of the code may be coded by hand in assembly language to
improve performance.

The complexity of current hardware and the pace of development make it impos-
sible to produce optimized implementations which are available at or shortly after
a processor’s release date. This section shows the run time differences resulting
from the intrinsic problems.

1.3.1 Run Time vs. Complexity

For all Cooley-Tukey FFT algorithms the asymptotic complexity is O(N log N)
with N being the length of the vector to be transformed. Even the constant is
nearly the same for all algorithms (see the normalized complexity as function of
the problem size in Figure 5.3 on page 91). However, Table 1.1 shows that the
run times of the corresponding programs vary tremendously. It is a summary
of experiments described in Auer et al. [9] where the performance of many FFT
routines was measured on various computer systems.

For instance, on one processor of an SGI Power Challenge XL, for a transform
length N = 25 the function c60fcf of the NAG library is 11.6 times slower than
the fastest implementation, Fftw.
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FFT Program Vector Length N

25 210 215 220

NAG/c60fcf 11.6 6.0 3.3 2.6
Imsl/dfftcf 2.0 1.7 2.7 3.9
Numerical Recipes/four1 2.6 2.1 2.2 3.9
Fftpack/cfftf 1.4 1.0 2.1 4.0
Green’s FFT 1.6 1.1 1.0 –
Fftw 2.1.3 1.0 1.1 1.1 1.0

Table 1.1: Slow-down factors of various FFT routines relative to the run time of the
best performing routine. Performance data were obtained on one processor of an SGI
Power Challenge XL (Auer et al. [9]).

For N = 210 cfftf of Fftpack is the fastest program and c60fcf is six times
slower while Fftw is a moderate 10 % slower.

For N = 220
Fftw is again the fastest program. c60fcf is 2.6 times slower

and cfftf of Fftpack is four times slower than Fftw.
This assessment study shows that (i) the performance behavior of FFT pro-

grams depends strongly on the problem size, and (ii) architecture adaptive FFTs
are within 10 % of the best performance for all problem sizes.

The arguments in favor of architecture adaptive software become even more
striking by extending this study to machines featuring short vector SIMD exten-
sions.

Figure 1.1 shows the performance of single-precision FFT routines on an Intel
Pentium 4 running at 2.53 GHz. The Pentium 4 features a four-way short vector
SIMD extension called streaming SIMD extension (SSE).

SPIRAL-SIMD is an extension of Spiral, an architecture adaptive library
generator for discrete linear transforms, that generates and optimizes short
vector SIMD code. Spiral-SIMD is a result of this thesis. The automat-
ically optimized programs generated by Spiral-SIMD are currently the
fastest FFT codes on an Intel Pentium 4 (apart from N = 211).

Intel MKL (math kernel library) is the hand optimized vendor library for Pen-
tium 4 processors. It utilizes prefetching and SSE.

SIMD-FFT is a short vector SIMD implementation by Rodriguez [82]. Perfor-
mance has been reported on a Pentium 4 running at 1.4 GHz. As the source
code is not publicly available, the performance for 2.53 GHz was estimated
by scaling up the reported results. The scaled performance data are an
estimate for an upper bound.

SPIRAL with Vectorizing Compiler. The vectorization mode of the Intel



1.3 Performance Implications 17

Fftpack

Fftw 2.1.3
Spiral vect. comp.

SIMD-FFT
Intel MKL 5.1
Spiral-SIMD

Floating-Point Performance

Vector Length

Gflop/s

214212210282624

10

8

6

4

2

0

Figure 1.1: Performance of single-precision FFT programs on an Intel Pentium 4 running
at 2.53 GHz. Performance is given in pseudo Gflop/s (Frigo and Johnson [33]) expressing a
weighted inverse of run time that preserves run time relations.

C++ Compiler was activated and applied to the Spiral system. See Sec-
tion 8.2.6 for details.

FFTW 2.1.3 is the current standard distribution of Fftw. It does not feature
any support for short vector SIMD extensions.

The scalar Spiral system delivers the same performance as Fftw 2.1.3 on
the Pentium 4. For scalar implementations, Fftw and Spiral are currently
the fastest publicly available FFT programs. Both of them are as fast as
FFT programs specifically optimized for a given architecture. Thus, Fftw

may serve as the baseline in Figure 1.1.

FFTPACK. The function cfftf of the heavily used Fftpack served in this
experiment as the non-adaptive standard.

The numerical experiment summarized in Figure 1.1 shows that the architecture
adaptive system Spiral-SIMD with support for SSE is most of the time faster
than the vendor library. Compiler vectorization accelerates scalar code generated
by Spiral significantly but does not deliver top performance. Hand-tuning for
SSE as carried out in Simd-Fft leads to good performance behavior but is far
from optimum. The industry standard routine cfftf of Fftpack is about six
times slower than the currently fastest program.

The experiments summarized in Auer et al. [9] show that Fftpack is among
the fastest scalar programs in the group of publicly available FFT implementa-
tions. This gives an impression of how much performance can be gained by using
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automatic performance tuning and utilizing special processor features as short
vector SIMD extensions.

1.4 Automatic Performance Tuning

Automatic performance tuning is a step beyond standard compiler optimization.
It is required to overcome the problem that today’s compilers on current machines
cannot produce high performance code any more as outlined in the previous
section.

Automatic performance tuning is a problem specific approach and thus is able
to achieve much more than general purpose compilers are capable of. For instance,
Atlas’ search for the correct loop tiling for carrying out a matrix-matrix product
is a loop transformation a compiler could in principle do (and some compilers try
to), if the compiler would have an accurate machine model to deduce the correct
tiling. But compilers do not reach Atlas’ performance. The same phenomenon
occurs with the source code scheduling done by Spiral and Fftw for straight
line code, which should be done satisfactorily by the target compiler.

1.4.1 Compiler Optimization

Modern compilers make extensive use of optimization techniques to improve the
program’s performance. The application of a particular optimization technique
largely depends on a static program analysis based on simplified machine models.
Optimization techniques include high level loop transformations, such as loop
unrolling and tiling. These techniques have been extensively studied for over 30
years and have produced, in many cases, good results. However, the machine
models used are inherently inaccurate, and transformations are not independent
in their effect on performance making the compiler’s task of deciding the best
sequence of transformations difficult (Aho et al. [1]).

Typically, compilers use heuristics that are based on averaging observed be-
havior for a small set of benchmarks. Furthermore, while the processor and
memory hierarchy is typically modelled by static analysis, this does not account
for the behavior of the entire system. For instance, the register allocation policy
and strategy for introducing spill code in the backend of the compiler may have
a significant impact on performance. Thus static analysis can improve program
performance but is limited by compile-time decidability.

1.4.2 The Program Generator Approach

A method of source code adaptation at compile-time is code generation. In code
generation, a code generator (i. e., a program that produces other programs) is
used. The code generator takes as parameters the various source code adaptations
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to be made, e. g., instruction cache size, choice of combined or separate multiply
and add instructions, length of floating-point and fetch pipelines, and so on.
Depending on the parameters, the code generator produces source code having
the desired characteristics.

Example 1.1 (Parameters for Code Generators) In genfft, the codelet generator of
Fftw, the generation of FMA specific code can be activated using the -magic-enable-fma
switch. Calling genfft using

genfft 4 -notwiddle -magic-enable-fma

results in the generation of a no-twiddle codelet of size four which is optimized for FMA archi-
tectures.

1.4.3 Compile-Time Adaptive Algorithms
Using Feedback-Information

Not all important architectural variables can be handled by parameterized com-
pile-time adaptation since varying them actually requires changing the underlying
source code. This brings in the need for the second method of software adapta-
tion, compile-time adaptation by feedback directed code generation, which involves
actually generating different implementations of the same operation and selecting
the best performing one.

There are at least two different ways to proceed:

(i) The simplest approach is to get the programmer to supply various hand-tuned
implementations, and then to choose a suitable one.

(ii) The second method is based on automatic code generation. In this ap-
proach, parameterized code generators are used. Performance optimization with
respect to a particular hardware platform is achieved by searching, i. e., varying
the generator’s parameters, benchmarking the resulting routines, and selecting
the fastest implementation. This approach is also known as automated empirical
optimization of software (AEOS) (Whaley et al. [94]).

In the remainder of this section the existing approaches are introduced briefly.

PHiPAC

Portable high-performance ANSI C (PHiPAC) was the first system which im-
plemented the “generate and search” methodology (Bilmes et al. [12]). Its code
generator produces matrix multiply implementations with various loop unrolling
depths, varying register and L1- and L2-cache tile sizes, different software pipelin-
ing strategies, and enables other options. The output of the generator is C code,
both to make the system portable and to allow the compiler to perform the final
register allocation and instruction scheduling. The search phase benchmarks code
produced by the generator under various options to select the best performing
implementation.
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ATLAS

The automatically tuned linear algebra software (Atlas) project is an ongoing
research effort (at the University of Tennessee, Knoxville) focusing on empirical
techniques in order to produce software having portable performance. Initially,
the goal of the Atlas project was to provide a portably efficient implementation
of the Blas. Now Atlas provides at least some level of support for all of the
Blas, and first tentative extensions beyond this level have been taken.

While originally the Atlas project’s principle objective was to develop an
efficient library, today the field of investigation has been extended. Within a
couple of years new methodologies to develop self-adapting programs have become
established, the AEOS approach has been established which forms a new sector in
software evolution. Atlas’ adaptation approaches are typical AEOS methods;
even the concept of “AEOS” was coined by Atlas’ developers (Whaley et al.
[94]). In this manner, the second main goal of the Atlas project is the general
investigation in program adaptation using AEOS methodology.

Atlas uses automatic code generators in order to provide different implemen-
tations of a given operation, and involves sophisticated search scripts and robust
timing mechanisms in order to find the best way of performing this operation on
a given architecture.

The remainder of this chapter introduces the two leading projects dealing with
architecture adaptive implementations of discrete linear transforms, Spiral and
Fftw. One result of this thesis is the extension of these systems with the
newly developed short vector SIMD vectorization. In cooperation with these two
projects the worldwide fastest FFT implementations for Intel processors and very
fast implementations for the other short vector SIMD extensions were achieved.

FFTW

Fftw (fastest Fourier transform in the west) was the first effort to automatically
generate FFT code using a special purpose compiler and use to the actual run
time as optimization criterion (Frigo [31], Frigo and Johnson [32]). Typically,
Fftw performs faster than publicly available FFT codes and faster to equal with
hand optimized vendor-supplied libraries across different machines. It provides
comparable performance to Spiral). Several extensions to Fftw exist, including
the AC Fftw package and the UHFFT library. Currently, Fftw is the most
popular portable high performance FFT library that is publicly available.

Fftw provides a recursive implementation of the Cooley-Tukey FFT algo-
rithm. The actual computation is done by automatically generated routines called
codelets which restrict the computation to specially structured algorithms called
right expanded trees (see Section 5.1 and Haentjens [40]). The recursion stops
when the remaining right subproblem is solved using a codelet. For a given prob-
lem size there are many different ways of solving the problem with potentially
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very different run times. Fftw uses dynamic programming with the actual run
time of problems as cost function to find a fast implementation for a given DFTN

on a given machine. Fftw consists of the following fundamental parts. Details
about Fftw can be found in Frigo and Johnson [33].

The Planner. At run time but as a one time operation during the initialization
phase, the planner uses dynamic programming to find a good decomposition
of the problem size into a tree of computations according to the Cooley-Tukey
recursion called plan.

The Executor. When solving a problem, the executor interprets the plan as
generated by the planner and calls the appropriate codelets with the respective
parameters as required by the plan. This leads to data access patterns which
respect memory access locality.

The Codelets. The actual computation of the FFT subproblems is done within
the codelets. These small routines come in two flavors, (i) twiddle codelets which
are used for the left subproblems and additionally handle the twiddle matrix,
and (ii) no-twiddle codelets which are used in the leaf of the recursion and which
additionally handle the stride permutations. Within a larger variety of FFT algo-
rithms is used, including the Cooley-Tukey algorithm, the split-radix algorithm,
the prime factor algorithm, and the Rader algorithm (Van Loan [90]).

The Codelet Generator genfft. At install time, all codelets are generated by
a special purpose compiler called the codelet generator genfft. As an alternative
the preponderated codelet library can be downloaded as well. In the standard
distribution, codelets of sizes up to 64 (not restricted to powers of two) are in-
cluded. But if special transform sizes are required, the required codelets can be
generated.

SPIRAL

Spiral (signal processing algorithms implementation research for adaptive li-
braries) is a generator for high performance code for discrete linear transforms
like the DFT, the discrete cosine transforms (DCTs), and many others by Moura
et al. [72]. Spiral uses a mathematical approach that translates the implementa-
tion problem of discrete linear transforms into a search in the space of structurally
different algorithms and their possible implementations to generate code that is
adapted to the given computing platform. Spiral’s approach is to represent the
many different algorithms for a transform as formulas in a concise mathematical
language. These formula are automatically generated and automatically trans-
lated into code, thus enabling an automated search. Chapter 5 summarizes the
discrete linear transforms and Chapter 4 summarizes the mathematical frame-
work. More specifically, Spiral is based on the following observations.
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• For every discrete linear transform transform there exists a very large num-
ber of different fast algorithms. These algorithms differ in dataflow but are
essentially equal in the number of arithmetic operations.

• A fast algorithm for a discrete linear transform can be represented as a
formula in a concise mathematical notation using a small number of math-
ematical constructs and primitives (see Chapter 4).

• It is possible to automatically generate the alternative formulas, i. e., algo-
rithms, for a given discrete linear transform.

• A formula representing a fast discrete linear transform algorithm can be
mapped automatically into a program in a high-level language like C or
Fortran (see Section 4.7).
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Figure 1.2: Spiral’s architecture.

The architecture of Spiral is shown in Figure 1.2. The user specifies a trans-
form to be implemented, e. g., a DFT of size 1024. The formula generator expands
the transform into one (or several) formulas, i.e., algorithms, represented in the
Spiral proprietary language SPL (signal processing language). The formula
translator (also called SPL compiler) translates the formula into a C or Fortran
program. The run time of the generated program is fed back into a search engine
that controls the generation of the next formula and possible implementation
choices, such as the degree of loop unrolling. Iteration of this process yields a
platform-adapted implementation. Search methods in Spiral include dynamic
programming and evolutionary algorithms. By including the mathematics in
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the system, Spiral can optimize, akin to a human expert programmer, on the
implementation level and the algorithmic level to find the best match to the
given platform. Further information on Spiral can be found in Püschel et al.
[79], Singer and Veloso [84], Xiong et al. [95].

GAP and AREP. Spiral’s formula generator uses Arep, a package by Egner
and Püeschel [22] implemented in the language Gap [88] which is a computer
algebra system for computational group theory. The goal of Arep was to cre-
ate a package for computing with group representations up to equality, not up
to equivalence, hence, Arep provides the data types and the infrastructure to
do efficient symbolic computation with representations and structured matrices
which arise from the decomposition of representations.

Algorithms represented as formulas are written in mathematical terms of ma-
trices and vectors which are specified and composed symbolically in the Arep

notation. Various standard matrices and matrix types are supported such as
many algebraic operations, like DFT and diagonal matrices, and the Kronecker
product formalism.

One result of the work presented in this thesis will be extensions to both Fftw

and Spiral to support all current short vector SIMD extensions in their auto-
matic performance tuning process.



Chapter 2

Standard Hardware

This chapter gives an overview over standard features of single processor systems
relevant for the computation of discrete linear transforms, i. e., microprocessors
and the associated memory subsystem. Sections 2.1 and 2.2 discuss the features
on the processor level while Section 2.3 focusses on the memory hierarchy.

Further details can be found, for example, in Gansterer and Ueberhuber [36]
or Hlavacs and Ueberhuber [41].

2.1 Processors

Due to packaging with increased density and architectural concepts like RISC, the
peak performance of processors has been increased by about 60 percent each year
(see Figure 2.1). This annual growth rate is likely to continue for at least another
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Figure 2.1: Clock rate trend for off-the-shelf CPUs.

decade. Then physical limitations like Heisenberg’s principle of uncertainty will
impede package density to grow.

24
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2.1.1 CISC Processors

The term CISC is an acronym for complex instruction set computer , whereas
RISC is an acronym for reduced instruction set computer . Until the 1980s, prac-
tically all processors were of CISC type. Today, the CISC concept is quite out-
of-date, though most existing processors are designed to understand CISC in-
struction sets (like Intel x86 compatibles). Sixth and seventh generation x86
compatible processors (Intel’s Pentium II, III, and 4, and AMD’s Athlon line)
internally use advanced RISC techniques to achieve performance gains. As these
processors still must understand the x86 instruction set, they cut complex in-
structions into simpler ones and feed them into their multiple pipelines and other
functional units.

Microcode

When designing new processors, it is not always possible to implement instruc-
tions by means of transistors and resistors only. Instructions that are executed
directly by electrical components are called hardwired . Complex instructions,
however, often require too much effort to be hardwired. Instead, they are emu-
lated by simpler instructions inside the processor. The “program” of hardwired
instructions emulating complex instructions is called microcode. Microcode makes
it possible to emulate instruction sets of different architectures just by adding or
changing ROMs containing microcode information.

Compatibility with older computers also forces vendors to supply the same set
of instructions for decades, making modern processors to deal with old fashioned,
complex instructions instead of creating new, streamlined instruction sets to fit
onto RISC architectures.

Example 2.1 (Microcode) Intel’s Pentium 4, and AMD’s Athlon XP dynamically translate
complex CISC instructions into one or more equivalent RISC instructions. Each CISC instruc-
tion thus is represented by a microprogram containing optimized RISC instructions.

2.1.2 RISC Processors

Two major developments paved the road to RISC processors.

High Level Languages. Due to portability and for faster and affordable soft-
ware development high level languages are used instead of native assembly.
Thus, optimizing compilers are needed that can create executables having
an efficiency comparable to programs written in assembly language. Com-
pilers prefer small and simple instructions which can be moved around more
easily than complex instructions with more dependencies.

Performance. Highest performance has to be delivered at any cost. This goal
is achieved by either increasing the packaging density, by increasing the
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clock rate or by reducing the cycles per instruction (CPI) count. The lat-
ter is impossible when using ordinary CISC designs. On RISC machines,
instructions are supposed to take only one cycle, yet several stages were
needed for their execution. The answer is a special kind of parallelism:
pipelining . Due to the availability of cheap memory it is possible to design
fixed length instruction sets, the most important precondition for smooth
pipelining. Also, cheaper SRAMs are available as caches, thus providing
enough memory-processor bandwidth for feeding data to faster CPUs.

RISC processors are characterized by the following features: (i) pipelining, (ii)
uniform instruction length, (iii) simple addressing modes, (iv) load/store archi-
tecture, and (v) more registers.

Additionally, modern RISC implementations use special techniques to improve
the instruction throughput and to avoid pipeline stalls (see Section 2.2): (i) low
grain functional parallelism, (ii) register bypassing, and (iii) optimized branches.
As current processors understanding the x86 CISC instruction set feature internal
RISC cores, these advanced technologies are used in x86 compatible processors
as well.

In the remainder of this section the features are discussed in more detail.

2.1.3 Pipelines

Pipelines consist of several stages which carry out a small part of the whole
operation. The more complex the function is that a pipeline stage has to perform,
the more time it needs and the slower the clock has to tick in order to guarantee
the completion of one operation each cycle. Thus, designers face a trade-off
between the complexity of pipeline stages and the smallest possible clock cycle.
As pipelines can be made arbitrarily long, one can break complex stages into two
or more separated simple ones that operate faster. Resulting pipelines can consist
of ten or more stages, enabling higher clock rates. Longer pipelines, however, need
more cycles to be refilled after a pipeline hazard or a context switch. Smaller clock
cycles, however, reduce this additional overhead significantly.

Processors containing pipelines of ten or more stages are called superpipelined.

Example 2.2 (Superpipeline) The Intel Pentium 4 processor core contains pipelines of up
to 20 stages. As each stage needs only simple circuitry, processors containing this core are able
to run at more than 3 GHz.

2.1.4 VLIW Processors

When trying to issue more than one instruction per clock cycle, processors have to
contain several pipelines that can operate independently. In very long instruction
word (VLIW) processors, instruction words consist of several different operations
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without interdependence. At run time, these basic instructions can be brought
to different units where they are executed in parallel.

The task of scheduling independent instructions to different functional units
is done by the compiler at compile time. Typically, such compilers try to find
a good mixture of both integer and floating-point instructions to form up long
instruction words.

Example 2.3 (VLIW Processor) The digital signal processors (DSPs) VelociTI from TI,
Trimedia-1000 from Philips and FR500 from Fujitsu are able to execute long instruction words.

The 64 bit Itanium processor family (IPF, formerly called IA-64) developed in a cooperation
between Intel and HP, follows the VLIW paradigm. This architecture is also called EPIC
(explicit parallel instruction computing).

It is very difficult to build compilers capable of finding independent integer, mem-
ory, and floating-point operations for each instruction. If no floating-point opera-
tions are needed or if there are much more integer operations than floating-point
operations, for example, much of this kind of parallelism is wasted. Only programs
consisting of about the same number of integer and floating-point operations can
exploit VLIW processors efficiently.

2.1.5 Superscalar Processors

Like long instruction word processors, superscalar processors contain several in-
dependent functional units and pipelines. Superscalar processors, however, are
capable of scheduling independent instructions to different units dynamically at
run time. Therefore, such processors must be able to detect instruction depen-
dencies. They have to ensure that dependent instructions are executed in the
same order they appeared in the instruction stream.

Modern superscalar RISC processors belong to the most complex processors
ever built. To feed their multiple pipelines, several instructions must be fetched
from memory at once, thus making fast and large caches inevitable. Also, so-
phisticated compilers are needed to provide a well balanced mix of independent
integer and floating-point instructions to ensure that all pipelines are kept busy
during execution. Because of the complexity of superscalar processors their clock
cycles cannot be shortened to the same extent than in simpler processors.

Example 2.4 (Superscalar Processor) The IBM Power 4 is capable of issuing up to 8 in-
structions per cycle, with a sustained completion rate of five instructions. As its stages are very
complex, it runs at only 1.30 GHz.

The AMD Athlon XP 2100+ processor running at 1733 MHz features a floating-point adder
and a floating-point multiplier both capable of issuing one two-way vector operation per cycle.

2.2 Advanced Architectural Features

Superscalar processors dynamically schedule instructions to multiple pipelines
and other functional units. As performance is the top-most goal, all pipelines and
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execution units must be kept busy in order to achieve maximum performance.
Dependencies among instructions can hinder the pipeline from running smoothly,
advanced features have to be designed to detect and resolve dependencies. Other
design features have to make sure that the instructions are executed in the same
order they entered the processor.

2.2.1 Functional Parallelism

As was said before, superscalar RISC processors contain several execution units
and pipelines that can execute instructions in parallel. To keep all units busy as
long as possible, it must be assured that there are always instructions to execute,
waiting in buffers. Such buffers are called reservation stations or queues . Every
execution unit can have a reservation station of its own or get the instructions
from one global queue. Also, for each instruction leaving such a station, another
one should be brought from memory. Thus, memory and caches have to deliver
several instructions each cycle.

Depending on the depths of the used pipelines, some operations might take
longer than others. It is therefore possible that instruction i+1 is finished, while
instruction i is still being processed in a pipeline. Also, an integer pipeline may
get idle, while the floating-point unit is still busy. Thus, if instruction i + 1 is an
integer operation, while instruction i is a floating-point operation, i + 1 might be
put into the integer pipeline, before i can enter the floating-point unit. This is
called out-of-order execution. The instruction stream leaving the execution units
will often differ from the original instruction stream. Thus, earlier instructions
must wait in a reorder buffer for all prior instructions to finish, before their results
are written back.

2.2.2 Registers

Registers obviously introduce some kind of bottleneck, if too many values have
to be stored in registers within a short piece of code. The number of existing reg-
isters depends on the designs of the underlying architecture. The set of registers
known to compilers and programs is called the logical register file. To guarantee
software compatibility with predecessors, the number of logical registers cannot
be increased within the same processor family. Programs being compiled for new
processors having more registers could not run on older versions with a smaller
number of registers. However, it is possible to increase the number of physi-
cal registers existing within the processor and to use them to store intermediate
values.
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Register Renaming

One way to increase the number of registers within a processor family is to increase
the number of physical registers while keeping the old number of logical ones.
This means that programs still use, for instance, only 32 integer registers, while
internally, 64 integer registers are available. If several instructions use the same
logical register, special circuitry assigns different physical registers to be used
instead of the logical one. This technique is called register renaming .

Example 2.5 (Register Renaming) The MIPS R10000 is an upgrade of MIPS R6000 pro-
cessors that had 32 integer and 32 floating-point registers, each 64 bits wide. The R10000
contains 64 integer and 64 floating-point registers that can dynamically be renamed to any of
the 32 logical ones.

To do this, the processor internally must maintain a list containing already re-
named registers and a list of free registers that can be mapped to any logical
register.

Register Bypassing

Competition for registers can stall pipelines and execution units. A technique
called register bypassing or register forwarding enables the forwarding of recently
calculated results directly to other execution unit without temporarily storing
them in the register file.

Register Windows

A context switch is an expensive operation as the current state has to be stored
and another state has to be loaded. As the contents of registers also represent the
current program state, their contents are stored in memory as well. Constantly
storing and loading the contents of a large number of registers takes some time,
thus, the idea of register windows has emerged. Here, additional register files
are used to hold the information of several processes. Instead of loading the
whole register file from memory in case of a context switch, the CPU elects the
corresponding register window to be the current file and keeps the old one as a
back up of the last process.

Example 2.6 (Register Windows) The SPARC architecture is a RISC architecture using
register windows. Instead of 32 basic registers, this architecture offers eight overlapping windows
of 24 registers each.

Register windows have severe drawbacks. On modern computers, dozens or even
hundreds of processes are likely to be executed. Implementing hundreds of register
windows would cost too much, a few windows, however, will not improve the
system’s performance significantly. Thus, the possible speed-up would not pay
off the additional effort in designing register windows.
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2.2.3 Branch Optimization

Conditional branches are responsible for most pipeline hazards. Whenever a con-
ditional branch enters an instruction pipeline, there is a chance of jumping to a
new memory location, yet this cannot be known until the branch instruction is ex-
ecuted. Thus, if the branch is taken, all succeeding instructions that have entered
the pipeline are obsolete and must be thrown away. Restarting the pipeline at ev-
ery conditional branch reduces the system’s performance significantly. Therefore,
mechanisms for reducing branch penalties had to be found.

Branch Delay Slots

Early pipelined processors used instructions that had been inserted after the
branch by the compiler and that were executed in any case whether the branch
was taken or not. Such instructions are called branch delay slots . However, it is
very difficult to find even one useful instruction that can be executed in either
branch, to find more than one is almost impossible. As modern superscalar
processors issue four or more instructions per cycle, finding four branch delay
slots is not practicable.

Speculative Execution

Another way of improving the trouble with conditional branches is to guess
whether the branch will be taken or not. In either case, new instructions can
be brought from cache or main memory early enough to prevent execution units
from stalling. If the guess is correct for most of the branches, the penalty for
wrong guesses can be neglected. This idea is extended to predication used in the
Itanium processor family.

To implement this idea, a small cache called branch target buffer is used
storing pairs of previously taken branches and the instructions found there. This
way, instructions can be brought quickly to execution units. Branches that are
scarcely taken do not reside in this buffer, while branches that are often taken
and thus have a high probability to be taken again are stored there.

Instructions that have entered execution units based on branch guesses, of
course, must not be allowed to be completed until the branch has been resolved.
Instead, they must wait in the reorder buffer.

Static Branch Prediction

Another approach uses static information known at compile time for making a
guess. Conditional branches often occur at the end of loops, where it is tested
whether the loop is executed once more. As loops are often executed thousands or
even millions of times, it is highly probable that the branch is taken. Monitoring
shows that 90 % of all backward branches and 50 % of all forward branches are
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taken. Thus, branches that jump back are predicted to be taken while forward
branches are not. The information, whether the branch jumps back or forth is
often provided by the compiler by setting or clearing a hint-bit .

Additionally, in some cases, conditional branches can be resolved by early
pipeline stages such as the prefetch logic itself. If, for example, the branch de-
pends on a register to be set to zero, the branch can be resolved earlier.

Example 2.7 (Static Branch Prediction) The Intel Itanium processors use static branch
prediction, thus depending on optimized compilers to predict which branch is likely to be taken.

Dynamic Branch Prediction

More sophisticated designs change their predictions dynamically at run time.
The PowerPC 604, for example, uses a 512-entry, direct mapped branch history
table (BHT) mapping four branch-prediction states: strong taken, weak taken,
weak not-taken and strong not-taken. The predicted state of a particular branch
instruction is set and modified based on the history of the instruction.

The BHT feeds the branch target address cache (BTAC) with both the address
of a branch instruction and the target address of the branch. The BTAC—
a fully associative, 64-entry cache—stores both the address and the target of
previously executed branch instructions. During the fetch stage, this cache is
accessed by the fetch logic. If the current fetch address—the address used to get
the next instruction from the cache—matches an address in the BTAC then the
branch target address associated with the fetch address is used instead of the
fetch address to fetch instructions from the cache (Ryan [83]).

Example 2.8 (Dynamic Branch Prediction) The Cyrix 6x86 (M1), Sun UltraSPARC and
MIPS R10000 processors use two history bits for branch prediction. Here, the dominant di-
rection is stored, resulting in only one misprediction per branch. Monitoring shows a 86 % hit
ratio of this prediction type. The Intel Pentium III uses the more sophisticated Yeh-algorithm
requiring 4 bits per entry. This is due to the fact that a mispredicted branch will result in a 13
cycle penalty (in contrast to 3 cycles in the M1). This algorithm achieves a hit ratio between
90 % and 95 %.

2.2.4 Fused Multiply-Add Instructions

In current microprocessors equipped with fused multiply-add (FMA) instructions,
the floating-point hardware is designed to accept up to three operands for exe-
cuting FMA operations, while other floating-point instructions requiring fewer
operands may utilize the same hardware by forcing constants into the unused
operands. In general, FPUs with FMA instructions use a multiply unit to com-
pute a × b, followed by an adder to compute a × b + c.

FMA operations have been implemented in the floating-point units, e. g., of
the HP PA-8700+, IBM Power 4, Intel IA-64 and Motorola PowerPC mi-
croprocessors. In the Motorola PowerPC, FMA instructions have been imple-
mented by chaining the multiplier output into the adder input requiring rounding
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between them. On the contrary, processors like the IBM Power 4 implement the
FMA instruction by integrating the multiplier and the adder into one multiply-
add FPU. Therefore in the Power 4 processor, the FMA operation has the same
latency (two cycles) as an individual multiplication or addition operation. The
FMA instruction has one other interesting property: It is performed with one
round-off error. In other words, in a = b×c+d, b×c is first computed to quadru-
ple (128 bit) precision, if b and c are double (64 bit) precision, then d is added,
and the sum rounded to a. This use of very high precision is used by IBM’s
RS6000 to implement division, which still takes about 19 times longer then either
multiply or add. The FMA instruction may be used to simulate higher precision
cheaply.

2.2.5 Short Vector SIMD Extensions

A recent trend in general purpose microprocessors is to include short vector SIMD
extensions. Although initially developed for the acceleration of multi-media appli-
cations, these extensions have the potential to speed up digital signal processing
kernels, especially discrete linear transforms. The range of general purpose pro-
cessors featuring short vector SIMD extensions starts with the Motorola MPC G4
(featuring the AltiVec extension), [70] used in embedded computing and by Apple.
It continues with Intel processors featuring SSE and SSE 2 (Pentium III and 4,
Itanium and Itanium 2) [52] and AMD processors featuring different 3DNow! ver-
sions (Athlon and successors) [2]. These processors are used in desktop machines
and commodity clusters. But short vector SIMD extensions are even included into
the next generation of supercomputers like the IBM BG/L machine currently in
development.

All these processors feature two-way or four-way floating-point short vector
SIMD extensions. These extensions operate on a vector of ν floating-point num-
bers in parallel (where ν denotes the extension’s vector length) and feature con-
strained memory access: only naturally aligned vectors of ν floating-point num-
bers can be loaded and stored efficiently. These extensions offer a high potential
speed-up (factors of up to two or four) but are difficult to use: (i) vectorizing
compilers cannot generate satisfactorily code for problems with more advanced
structure (as discrete linear transforms are), (ii) direct use is beyond standard
programming, and (iii) programs are not portable across the different extensions.

The efficient utilization of short vector SIMD extensions for discrete linear
transforms in a performance portable way is the core of this thesis. Details about
short vector SIMD extensions are given in Chapter 3.
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2.3 The Memory Hierarchy

Processor technology has improved dramatically over the last years. Empirical
observation shows that processor performance annually increases by 60 %. RISC
design goals will dominate microprocessor development in the future, allowing
pipelining and the out-of-order execution of up to 6 instructions per clock cycle.
Exponential performance improvements are here to stay for at least 10 years.
Unfortunately, other important computer components like main memory chips
could not hold pace and introduce severe bottlenecks hindering modern processors
to fully exploit their power.

Memory chips have only developed slowly. Though fast static RAM (SRAM)
chips are available, they are much more expensive than their slower dynamic
RAM (DRAM) counterparts. One reason for the slow increase in DRAM speed
is the fact that during the last decade, the main focus in memory chip design was
primarily to increase the number of transistors per chip and therefore the number
of bits that can be stored on one single chip.

When cutting the size of transistors in halve, the number of transistors per
chip is quadrupled. In the past few years, this raising was observed within a period
of three years, thus increasing the capacity of memory chips at an annual rate
of 60 % which corresponds exactly to the growth rate of processor performance.
Yet, due to the increasing address space, address decoding is becoming more
complicated and finally will nullify any speed-up achieved with smaller transistors.
Thus, memory latency can be reduced only at a rate of 6 percent per year. The
divergence of processor performance and DRAM development currently doubles
every six years.

In modern computers memory is divided into several stages, yielding a memory
hierarchy . The higher a particular memory level is placed within this hierarchy,
the faster and more expensive (and thus smaller) it is. Figure 2.2 shows a typical
memory hierarchy

The fastest parts belong to the processor itself. The register file contains
several processor registers that are used for arithmetic tasks. The next stages
are the primary or L1-cache (built into the processor) and the secondary or L2-
cache (on extra chips near the processor). Primary caches are usually fast but
small. They directly access the secondary cache which is usually larger but slower.
The secondary cache accesses main memory which—on architectures with virtual
memory—exchanges data with disk storage. Some microprocessors of the seventh
generation hold both L1- and L2-cache on chip, and have an L3-cache near the
processor.

Example 2.9 (L2-Cache on Chip) Intel’s Itanium processors hold both L1- and L2-cache
on chip. The 2 MB large L3-cache is put into the processor cartridge near the processor.
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Figure 2.2: The memory hierarchy of a modern computer.

2.3.1 Cache Memory

To prevent the processor from waiting most of the time for data from main
memory, caches were introduced. A cache is a fast, but small memory chip
placed between the processor and main memory. Typical cache sizes vary between
128 KB and 8 MB.

Data can be moved to and from the processor within a few clock cycles. If the
processor needs data that is not currently in the cache, the main memory has to
send it, thus decreasing the processor’s performance. The question arises whether
caches can effectively reduce main memory traffic. Two principles of locality that
have been observed by most computer programs support the usage of caches:

Temporal Locality: If a program has accessed a certain data element in mem-
ory, it is likely to access this element again within a short period of time.

Spatial Locality: If a program has accessed a data element, it is likely to access
other elements located closely to the first one.

Program monitoring has shown that 90 % of a program’s work is done by only
10 % of the code. Thus data and instructions can effectively be buffered within
small, fast caches, as they are likely to be accessed again and again. Modern RISC
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processors would not work without effective caches, as main memory could not
deliver data to them in time. Therefore, RISC processors have built-in caches,
so-called primary or on-chip caches . Many RISC processors also provide the
possibility to connect to them extra cache chips forming secondary caches . The
current generation of processors even contains this secondary cache on chip and
some processors are connected to an external tertiary cache. Typical caches show
latencies of only a few clock cycles. State-of-the-art superscalar RISC processors
like IBM’s Power 4 architecture have caches that can deliver several different
data items per clock cycle. Moreover, the on-chip cache is often split into data
cache and instruction cache, yielding the so-called Harvard architecture.

Cache Misses

If an instruction cache miss is detected, the whole processor pipeline has to wait
until the requested instruction is supplied. This is called a stall . Modern proces-
sors can handle more than one outstanding load , i. e., they can continue execution
of other instructions while waiting for some data items brought in from cache or
memory. But cache misses are very expensive events and can cost several tens of
cycles.

Prefetching

One aspect of cache design is to try to keep miss rates low by providing data
items when they are needed. One way to achieve this goal is to try to guess,
which items are likely to be needed soon and to fetch them from main memory
in advance. This technique is called prefetching , whereas standard fetching on
demand of the processor is called demand fetching .

As the flow of machine instructions from memory to the processor is mostly
sequential and usually regular data access patterns occur, prefetching can improve
the performance of fast RISC processors in an impressive way.

Several multi-media extensions to current processors feature streaming mem-
ory access and support for software initiated prefetching .

Transaction Lookaside Buffer

On all current computer systems in the scope of this thesis, virtual memory is
used. Translating virtual addresses by using tables results in two to three table
lookups per translation. By recalling the principles of locality, another feature will
make translations much faster: the so-called translation lookaside buffer (TLB),
resembling a translation cache. TLBs contain a number of recently used transla-
tions from virtual to physical memory. Thus, the memory management will first
try to find a specified virtual address in the TLB. On a TLB miss , the manage-
ment has consult the virtual page table which is stored in memory. This memory
access may lead to cache misses and—in the worst case—page faults.



Chapter 3

Short Vector Hardware

Major vendors of general purpose microprocessors have included single instruc-
tion, multiple data (SIMD) extensions to their instruction set architectures (ISA)
to improve the performance of multi-media applications by exploiting the subword
level parallelism available in most multi-media kernels.

All current SIMD extensions are based on the packing of large registers with
smaller datatypes (usually of 8, 16, 32, or 64 bits). Once packed into the larger
register, operations are performed in parallel on the separate data items within the
vector register. Although initially the new data types did not include floating-
point numbers, more recently, new instructions have been added to deal with
floating-point SIMD parallelism. For example, Motorola’s AltiVec and Intel’s
streaming SIMD extensions (SSE) operate on four single-precision floating-point
numbers in parallel. IBM’s Double Hummer extension and Intel’s SSE 2 can
operate on two double-precision numbers in parallel.

The Double Hummer extension which is part of IBM’s Blue Gene initiative
and will be implemented in BG/L processors is still classified and will therefore be
excluded from the following discussion. However, this particular SIMD extension
will be a major target for the technology presented in this thesis.

By introducing double-precision short vector SIMD extensions this technol-
ogy entered scientific computing. Conventional scalar codes become obsolete on
machines featuring these extensions as such codes utilize only a fraction of the
potential performance. However, SIMD extensions have strong implications on
algorithm development as their efficient utilization is not straightforward.

The most important restriction of all SIMD extensions is the fact that only
naturally aligned vectors can be accessed efficiently. Although, loading subvectors
or accessing unaligned vectors is supported by some extensions, these operations
are more costly than aligned vector access. On some SIMD extensions these
operations feature prohibitive performance characteristics. This negative effect
has been the major driving force behind the work presented in this thesis.

The intra-vector parallelism of SIMD extensions is contrary to the inter-vector
parallelism of processors in vector supercomputers like those of Cray Research,
Inc., Fujitsu or NEC. Vector sizes in such machines range to hundreds of elements.
For example, Cray SV1 vector registers contain 64 elements, and Cray T90 vector
registers hold 128 elements. The most recent members of this type of vector
machines are the NEC SX-6 and the Earth Simulator.

36
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3.1 Short Vector Extensions

The various short vector SIMD extensions have many similarities, with some no-
table differences. The basic similarity is that all these instructions are operating
in parallel on lower precision data packed into higher precision words. The opera-
tions are performed on multiple data elements by single instructions. Accordingly,
this approach is often referred to as short vector SIMD parallel processing. This
technique also differs from the parallelism achieved through multiple pipelined
parallel execution units in superscalar RISC processors in that the programmer
explicitly specifies parallel operations using special instructions.

Two classes of processors supporting SIMD extensions can be distinguished:
(i) Processors supporting only integer SIMD instructions, and (ii) processors
supporting both integer and floating-point SIMD instructions.

The vector length of a short vector SIMD architecture is denoted by ν.

3.1.1 Integer SIMD Extensions

MAX-1. With the PA-7100LC, Hewlett-Packard introduced a small set of multi-
media acceleration extensions, MAX-1, which performed parallel subword arith-
metic. Though the design goal was to support all forms of multi-media applica-
tions, the single application that best illustrated its performance was real-time
MPEG-1, which was achieved with C codes using macros to directly invoke MAX-
1 instructions.

VIS. Next, Sun introduced VIS, a large set of multi-media extensions for Ultra-
Sparc processors. In addition to parallel arithmetic instructions, VIS provides
novel instructions specifically designed to achieve memory latency reductions for
algorithms that manipulate visual data. In addition, it includes a special-purpose
instruction that computes the sum of absolute differences of eight pairs of pixels,
similar to that found in media coprocessors such as Philips’ Trimedia.

MAX-2. Then, Hewlett-Packard introduced MAX-2 with its 64 bit PA-RISC 2.0
microprocessors. MAX-2 added a few new instructions to MAX-1 for subword
data alignment and rearrangement to further support subword parallelism.

MMX. Intel’s MMX technology is a set of multi-media extensions for the x86
family of processors. It lies between MAX-2 and VIS in terms of both the number
and complexity of new instructions. MMX integrates a useful set of multi-media
instructions into the somewhat constrained register structure of the x86 archi-
tecture. MMX shares some characteristics of both MAX-2 and VIS, and also
includes new instructions like parallel 16 bit multiply-accumulate instruction.

VIS, MAX-2, and MMX all have the same basic goal. They provide high-
performance multi-media processing on general-purpose microprocessors. All
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three of them support a full set of subword parallel instructions on 16 bit sub-
words. Four subwords per 64 bit register word are dealt with in parallel. Differ-
ences exist in the type and amount of support they provide driven by the needs of
the target markets. For example, support is provided for 8 bit subwords when tar-
get markets include lower end multi-media applications (like games) whereas high
quality multi-media applications (like medical imaging) require the processing of
larger subwords.

3.1.2 Floating-Point SIMD Extensions

Floating-point computation is the heart of each numerical algorithm. Thus,
speeding up floating-point computation is essential to overall performance.

AltiVec. Motorola’s AltiVec SIMD architecture extends the recent MPC74xx
G4 generation of the Motorola PowerPC microprocessor line—starting with the
MPC7400—through the addition of a 128 bit vector execution unit. This short
vector SIMD unit operates concurrently with the existing integer and floating-
point units. This new execution unit provides for highly parallel operations,
allowing for the simultaneous execution of four arithmetic operations in a single
clock cycle for single-precision floating-point data.

Technical details are given in the Motorola AltiVec manuals [70, 71]. The
features relevant for this thesis are summarized in Appendix B.3.

SSE. In the Pentium III streaming SIMD Extension (SSE) Intel added 70 new
instructions to the IA-32 architecture.

The SSE instructions of the Pentium III processor introduced new general
purpose floating-point instructions, which operate on a new set of eight 128 bit
SSE registers. In addition to the new floating-point instructions, SSE technology
also provides new instructions to control cacheability of all data types. SSE
includes the ability to stream data into the processor while minimizing pollution
of the caches and the ability to prefetch data before it is actually used. Both
64 bit integer and packed floating-point data can be streamed to memory.

Technical details are given in Intel’s architecture manuals [49, 50, 51] and the
C++ compiler manual [52]. The features relevant for this thesis are summarized
in Appendix B.1.

SSE 2. Intel’s Pentium 4 processor is the first member of a new family of pro-
cessors that are the successors to the Intel P6 family of processors, which include
the Intel Pentium Pro, Pentium II, and Pentium III processors. New SIMD in-
structions (SSE 2) are introduced in the Pentium 4 processor architecture and
include floating-point SIMD instructions, integer SIMD instructions, as well as
conversion of packed data between XMM registers and MMX registers.

The newly added floating-point SIMD instructions allow computations to be
performed on packed double-precision floating-point values (two double-precision
values per 128 bit XMM register). Both the single-precision and double-precision
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floating-point formats and the instructions that operate on them are fully com-
patible with the IEEE Standard 754 for binary floating-point arithmetic.

Technical details are given in Intel’s architecture manuals [49, 50, 51] and the
C++ compiler manual [52]. The features relevant for this thesis are summarized
in Appendix B.2.

IPF. Support for Intel’s SSE is maintained and extended in Intel’s and HP’s
new generation of Itanium processor family (IPF) processors when run in the
32 bit legacy mode. Native 64 bit instructions exist which split the double-
precision registers in a pair of single-precision registers with support of two-way
SIMD operations. In the software layer provided by Intel’s compilers these new
instructions are emulated by SSE instructions.

Technical details are given in Intel’s architecture manuals [54, 55, 56] and the
C++ compiler manual [52].

3DNow! Since AMD requires Intel x86 compatibility for business reasons, they
implemented the MMX extensions in their processors too. However, AMD specific
instructions were added, known as “3DNow!”.

AMD’s Athlon has instructions, similar to Intel’s SSE instructions, designed
for purposes such as digital signal processing. One important difference between
the Athlon extensions (Enhanced 3DNow!) and those on the Pentium III are that
no extra registers have been added in the Athlon design. The AMD Athlon XP
features the new 3DNow! professional extension which is compatible to both En-
hanced 3DNow! and SSE. AMD’s new 64 bit architecture x86-64 and the first
processor of this new line called Hammer supports a superset of all current x86
SIMD extensions including SSE 2.

Technical details can be found in the AMD 3DNow! manual [2] and in the
x86-64 manuals [6, 7].

Overview. Table 3.1 gives an overview over the SIMD floating-point capabilities
found in current microprocessors.

3.1.3 Data Streaming

One of the key features needed in fast multi-media applications is the efficient
streaming of data into and out of the processor. Multi-media programs such
as video decompression codes stress the data memory system in ways that the
multilevel cache hierarchies of many general-purpose processors cannot handle ef-
ficiently. These programs are data intensive with working sets bigger than many
first-level caches. Streaming memory systems and compiler optimizations aimed
at reducing memory latency (for example, via prefetching) have the potential to
improve these applications’ performance. Current research in data and compu-
tational transforms for parallel machines may provide for further gains in this
area.
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Vendor Name n-way Prec. Processor Compiler

Intel SSE 4-way single Pentium III MS Visual C++

Pentium 4 Intel C++ Compiler
Gnu C Compiler 3.0

Intel SSE 2 2-way double Pentium 4 MS Visual C++

Intel C++ Compiler
Gnu C Compiler 3.0

Intel IPF 2-way single Itanium Intel C++ Compiler

Itanium 2

AMD 3DNow! 2-way single K6, K6-II MS Visual C++

Gnu C Compiler 3.0

AMD Enhanced 2-way single Athlon (K7) MS Visual C++

3DNow! Gnu C Compiler 3.0

AMD 3DNow! 4-way single Athlon XP MS Visual C++

Professional Athlon MP Intel C++ Compiler
Gnu C Compiler 3.0

Motorola AltiVec 4-way single MPC74xx G4 Gnu C Compiler 3.0

Apple C Compiler 2.96

IBM Hummer2 2-way double BG/L processor IBM XLCentury

Table 3.1: Short vector SIMD extensions providing floating-point arithmetic found in general
purpose microprocessors.

3.1.4 Software Support

Currently, application developers have three common methods for accessing
multi-media hardware within in a general-purpose micro processor: (i) They
can invoke vendor-supplied libraries that utilize the new instructions, (ii) rewrite
key portions of the application in assembly language using the multi-media in-
structions, or (iii) code in a high-level language and use vendor-supplied macros
that make available the extended functionality through a simple function-call like
interface.

System Libraries. The simplest approach to improving application perfor-
mance is to rewrite the system libraries to employ the multi-media hardware.
The clear advantage of this approach is that existing applications can immedi-
ately take advantage of the new hardware without recompilation. However, the
restriction of multi-media hardware to the system libraries also limits potential
performance benefits. An application’s performance will not improve unless it in-
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vokes the appropriate system libraries, and the overheads inherent in the general
interfaces associated with system functions will limit application performance
improvements. Even so, this is the easiest approach for a system vendor, and
vendors have announced or plan to provide such enhanced libraries.

Assembly Language. At the other end of the programming spectrum, an
application developer can benefit from multi-media hardware by rewriting key
portions of an application in assembly language. Though this approach gives a
developer great flexibility, it is generally tedious and error prone. In addition,
it does not guarantee a performance improvement (over code produced by an
optimizing compiler), given the complexity of today’s microarchitectures.

Programming Language Abstractions. Recognizing the tedious and difficult
nature of assembly coding, most hardware vendors which have introduced multi-
media extensions have developed programming-language abstractions. These give
an application developer access to the newly introduced hardware without having
to actually write assembly language code. Typically, this approach results in
a function-call-like abstraction that represents one-to-one mapping between a
function call and a multi-media instruction.

There are several benefits of this approach. First, the compiler (not the de-
veloper) performs machine-specific optimizations such as register allocation and
instruction scheduling. Second, this method integrates multi-media operations
directly into the surrounding high-level code without an expensive procedure call
to a separate assembly language routine. Third, it provides a high degree of porta-
bility by isolating from the specifics of the underlying hardware implementation.
If the multi-media primitives do not exist in hardware on the particular target
machine, the compiler can replace the multi-media macro by a set of equivalent
operations.

The most common language extension supplying such primitives is to pro-
vide within the C programming language function-call like intrinsic (or built-in)
functions and new data types to mirror the instructions and vector registers. For
most SIMD extensions, at least one compiler featuring these language extensions
exists. Examples include C compilers for HP’s MAX-2, Intel’s MMX, SSE, and
SSE 2, Motorola’s AltiVec, and Sun’s VIS architecture as well as the Gnu C
compiler which supports a broad range of short vector SIMD extensions.

Each intrinsic directly translates to a single multi-media instruction, and the
compiler allocates registers and schedules instructions. This approach would be
even more attractive to application developers if the industry agreed upon a
common set of macros, rather than having a different set from each vendor. For
the AltiVec architecture, Motorola has defined such an interface. Under Windows
both the Intel C++ compiler and Microsoft’s Visual Studio compiler use the same
macros to access SSE and SSE 2 and the Intel C++ compiler for Linux uses
these macros as well. These two C extensions provide defacto standards on the
respective architectures.
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Vectorizing Compilers. While macros may be an acceptably efficient solu-
tion for invoking multi-media instructions within a high-level language, subword
parallelism could be further exploited with automatic compilation from high-level
languages to these instructions. Some vectorizing compilers for short vector SIMD
extensions exist, including the Intel C++ compiler, the PGI Fortran compiler and
the Vector C compiler. Vectorizing compilers are analyzed in Section 8.2.6.

In the remainder of this chapter the short vector SIMD extensions are discussed
in detail.

3.2 Intel’s Streaming SIMD Extensions

The Pentium III processor was Intel’s first processor featuring the streaming
SIMD extensions (SSE). SSE instructions are Intel’s floating-point and integer
SIMD extensions to the P6 core. They also support the integer SIMD operations
(MMX) introduced by it’s predecessor, the Pentium II processor.

Appendix B.1 lists all SSE instructions relevant in the context of this thesis
and Appendix B.2 lists all relevant SSE 2 instructions.

SSE offers general purpose floating-point instructions that operate on a set
of eight 128 bit SIMD floating-point registers. Each register is considered to
be a vector of four single-precision floating-point numbers. The SSE registers
are not aliased onto the floating-point registers as are the MMX registers. This
feature enables the programmer to develop algorithms that can utilize both SSE
and MMX instructions without penalty. SSE also provides new instructions to
control cacheability of MMX technology and IA-32 data types. These instructions
include the ability to load data from memory and store data to memory without
polluting the caches, and the ability to prefetch data before it is actually used.
These features are called data streaming . SSE provides the following extensions
to the IA-32 programming environment: (i) one new 128 bit packed floating-point
data type, (ii) 8 new 128 bit registers, and (iii) 70 new instructions.

The new data type is a vector of single-precision floating-point numbers, ca-
pable of holding exactly four single-precision floating-point numbers.

The new SIMD floating-point unit (FPU) can be used as a replacement for
the standard non-SIMD FPU. Unlike the MMX extensions, the new floating-point
SIMD unit can be used in parallel with the standard FPU.

The 8 new registers are each capable of holding exactly one 128 bit SSE data
type. Unlike the standard Intel FPU, the SSE FPU registers are not viewed as
register stack, but rather are directly accessible by the names XMM0 through XMM7.

Unlike the general purpose registers, the new registers operate only on data,
and can not be used to address memory (which is sensible since memory locations
are 32 bit addressable). The SSE control status register MXCSR provides the usual
information such as rounding modes, exception handling, for a vector as a whole,
but not for individual elements of a vector. Thus, if a floating-point exception is
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X1 (SP ) X 2 (SP) X3 (SP) X4 (SP)

Y 1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 opY1 (SP) X2 opY2 ( SP) X3 opY3 ( SP) X4 opY 4 (SP)

OPOPOPOP

Figure 3.1: Packed SSE operations.

raised after performing some operation, one may be aware of the exception, but
cannot tell where in the vector the exception applies to.

Through the introduction of new registers the Pentium III processor has oper-
ating system visible state and thus requires operating system support. The integer
SIMD (MMX) registers are aliased to the standard FPU’s registers, and thus do
not require operating system support. Operating system support is needed if on
a context switch the contents of the new registers are to be stored and loaded
properly.

3.2.1 The SSE Instructions

The 70 SSE instructions are mostly SIMD floating-point related, however, some
of them extend the integer SIMD extension MMX, and others relate to cache
control. There are: (i) data movement instructions, (ii) arithmetic instructions,
(iii) comparison instructions, (iv) conversion instructions, (v) logical instructions,
(vi) shuffle instructions, (vii) state management instructions, (viii) cacheability
control instructions, and (ix) additional MMX SIMD integer instructions. These
instructions operate on the MMX registers, and not on the SSE registers.

The SSE instructions operate on either all (see Figure 3.1) or the least signif-
icant (see Figure 3.2) pairs of packed data operands in parallel. In general, the
address of a memory operand has to be aligned on a 16 byte boundary for all
instructions.

The data movement instructions include pack/unpack instructions and data
shuffle instructions that enable to “mix” the indices in the vector operations.
The instruction SHUFPS (shuffle packed, single-precision, floating-point) is able
to shuffle any of the packed four single-precision, floating-point numbers from
one source operand to the lower two destination fields; the upper two destination
fields are generated from a shuffle of any of the four floating-point numbers from
the second source operand (Figure 3.3). By using the same register for both
sources, SHUFPS can return any combination of the four floating-point numbers
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X 1 (SP) X 2 (SP) X 3 (SP) X4 (SP)

Y1 (SP ) Y2 (SP) Y3 (SP ) Y4 (SP )

X1 (SP ) X2 (SP ) X3 (SP ) X4 opY4 ( SP)

OP

Figure 3.2: Scalar SSE operations.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

Figure 3.3: Packed shuffle SSE operations.

from this register.
When stored in memory, the floating-point numbers will occupy consecutive

memory addresses. Instructions exist which allow data to be loaded to and from
memory, in 128 bit, 64 bit, or 32 bit blocks, that is: (i) instructions for moving
all 4 elements to and from memory, (ii) instructions for moving the upper two
elements to and from memory, (ii) instructions for moving the lower two elements
to and from memory, and (iv) instructions for moving the lowest element to and
from memory.

Some important remarks about the SSE instruction set have to be made.

• The SSE instruction set offers no means for moving data between the stan-
dard FPU registers and the new SSE registers, as well as no provision for
moving data between the general purpose registers and the new registers
(without converting types).

• Memory access instructions, as well as instructions which use a memory
address as an operand like the arithmetic instruction MULPS (which can use
a memory address or a register as one of it’s operands) distinguish between
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16 byte aligned data and data not aligned on a 16 byte boundary. Instruc-
tions exist for moving aligned and unaligned data, however, instructions
which move unaligned data suffer a performance penalty of 9 to 12 extra
clock cycles. Instructions which are able to use a memory location for an
operand (such as MULPS) assume 16 byte alignment of data. If unaligned
data is accessed when aligned data is expected, a general protection error
is raised.

• The Pentium III SIMD FPU is a true 32 bit floating-point unit. It does all
computations using 32 bit floating-point numbers. The standard FPU on
the Intel IA-32 architecture defaults all internal computations to 80 bits
(IEEE 754 extended), and truncates the result if less than 80 bits is
needed. Thus, noticeable differences can be observed when comparing
single-precision output from the two units.

Documentation. The SSE instruction set is described in the IA-32 manu-
als [49, 50]. Further information on programming Intel’s SSE can be found in
the related application notes [44, 46] and the IA-32 optimization manual [47].
Further information on data alignment issues is given in [45].

3.2.2 The SSE 2 Instructions

The streaming SIMD extensions 2 (SSE 2) add 144 instructions to the IA-32
architecture and allow the Pentium 4 to process double-precision data using short
vector SIMD instructions. In addition, extra long integers are supported.

SSE 2 is based on the infrastructural changes already introduced with SSE.
In particular, the SSE registers are used for SSE 2, and all instructions appear
as two-way versions of the respective four-way SSE instructions. Thus, most
restrictions of the SSE instructions are mirrored by the SSE 2 instructions. Most
important, the memory access restriction is the same as in SSE: Only naturally
(16 byte) aligned vectors can be accessed efficiently. Even the same shuffle SSE
operations are implemented as two-way SSE 2 versions.

The SSE 2 arithmetic offers full IEEE 754 double-precision arithmetic and
thus is can be used in science and engineering applications. SSE 2 is designed
to replace the standard FPU. This can be achieved by utilizing scalar SSE 2
arithmetic operating on the lower word of the two-way vector. The main impact
is that floating-point code not utilizing the SSE 2 extension becomes obsolete and
again the complexity of high-performance programs is raised.

SSE 2 introduces the same data alignment issues as SSE. Efficient memory
access requires 16-byte aligned vector memory access.

Documentation. The SSE 2 instruction set is described in the IA-32 manu-
als [49, 50]. Further information on programming Intel’s SSE 2 can be found in
the IA-32 optimization manuals [47, 48]. Further information on data alignment
issues is given in [45].
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3.2.3 The Itanium Processor Family

Intel’s Itanium processor family (IPF, formerly called IA-64) is a VLIW processor
family (introducing the VLIW architecture called EPIC) developed in cooperation
with HP. It is targeted at workstations and servers, not necessarily desktop PCs.
The first processors of this line are the Itanium and the Itanium 2 processors.

IPF processors have many advanced processor features, including predication,
register windows, explicit parallelism, and a large register file. Details of these
features can be found in Section 2.2.

In the context of this thesis, the short vector SIMD operations provided by
the IPF are the most interesting ones. The IPF features two types of short vec-
tor SIMD operations: (i) Legacy SSE support, and (ii) two-way single-precision
SIMD support.

On the processors’ hardware, the 64 bit double-precision floating-point reg-
isters are split into two-way single-precision vector registers. Any supported
double-precision floating-point operation can be executed as a two-way single-
precision vector operation. Additionally, IPF hardware features exchange opera-
tions similar to the shuffle operations provided by SSE 2.

As IPF processors have to be able to run legacy IA-32 codes which may
contain SSE instructions, SSE is supported. But any SSE instruction is emulated
by IPF two-way operations. The only language extension to utilize the IPF two-
way SIMD operations is available through the Intel C++ SSE intrinsics which
are implemented using the IPF SIMD operations. Intel sees the SSE support not
as a high-performance API for the IPF SIMD instructions. Thus, currently no
native API exists to utilize these instructions from the source code level.

Documentation. IPF is described in the Itanium architecture manuals [54, 55,
56] and the model specific optimization manuals [53, 57]

3.3 Motorola’s AltiVec Technology

AltiVec is Motorola’s vector processing support that has been added to the
PowerPC architecture. The first PowerPC chip that included AltiVec is the
MPC 7400 G4. Motorola’s AltiVec technology expands the PowerPC archi-
tecture through the addition of a 128 bit vector execution unit, which operates
concurrently with the existing integer and floating-point units. This new engine
provides for highly parallel operations, allowing the simultaneous execution of
up to 16 operations in a single clock cycle. The currently newest member of
Motorola’s Power PC series featuring AltiVec is the MPC 7455 G4.

AltiVec technology offers support for:

• 16-way parallelism for 8 bit signed and unsigned integers and characters,

• 8-way parallelism for 16 bit signed and unsigned integers, and



3.4 AMD’s 3DNow! 47

• 4-way parallelism for 32 bit signed and unsigned integers and IEEE floating-
point numbers.

AltiVec technology also includes a separate register file containing 32 entries, each
128 bits wide. These 128 bit wide registers hold the data sources for the AltiVec
technology execution units. The registers are loaded and unloaded through vector
store and vector load instructions that transfer the contents of a single 128 bit
register to and from memory.

AltiVec defines over 160 new instructions. Each AltiVec instruction specifies
up to three source operands and a single destination operand. All operands
are vector registers, with the exception of the load and store instructions and
a few instruction types that provide operands from immediate fields within the
instruction.

In the G4 processor, data can not be moved directly between the vector regis-
ters and the integer or floating-point registers. Instructions are dispatched to the
vector unit in the same fashion as the integer and floating-point units. Since the
vector unit is broken down internally into two separate execution units, two Al-
tiVec instructions can be dispatched in the same clock cycle if one is an arithmetic
instruction and the other one is a permute instruction.

On AltiVec efficient memory access has to be vector memory access of 16 byte
aligned data. All other (unaligned) memory access operations result in high
penalties. Such operations have to built from multiple vector access operations
and permutations or using multiple expensive single element access operations.

Appendix B.3 describes the AltiVec instructions relevant in the context of this
thesis.

Technical details are given in the Motorola AltiVec manuals [70, 71].

3.4 AMD’s 3DNow!

AMD is Intel’s competitor in the field of x86 compatible processors. In response
to Intel’s MMX technology, AMD released the 3DNow! technology line which is
MMX compatible and additionally features two-way floating-point SIMD opera-
tion. In the first step, 21 instructions were included defining the original 3DNow!
extension. The original 3DNow! was released with the AMD K6-II processor.
Up to two 3DNow! instructions could be executed per clock cycle, including one
two-way addition and one two-way multiplication leading to a peak performance
of four floating-point operations per cycle.

With the introduction of the AMD Athlon processor, AMD has taken 3DNow!
technology to the next level of performance and functionality. The AMD Athlon
processor features an enhanced version of 3DNow! that adds 24 instructions to
the existing 21 original 3DNow! instructions. These 24 additional instructions
include: (i) 12 standard SIMD instructions, (ii) 7 streaming memory access in-
structions, and (iii) 5 special DSP instructions.
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AMD’s Athlon XP and Athlon MP processor line introduces SSE compatibility
by the introduction of 3DNow! professional. Thus, Athlon XP and Athlon MP
processors are both enhanced 3DNow! and SSE compatible.

The 3DNow! extension shares the FPU registers and features a very fast
switching between MMX and the FPU. Thus, no additional operating system
support is required. Information about the AMD 3DNow! extension family can
be found in the related manuals [3, 2, 5, 4]

With AMD’s next generation processor (codename Hammer [6, 7]), a new
64 bit architecture called x86-64 will be introduced. This architecture features
128 bit media instructions and 64 bit media programming . The new 64 bit instruc-
tion set will support a superset of all IA-32 SIMD extensions, thus supporting
MMX, all 3DNow! versions, SSE, and SSE 2.

3.5 Vector Computers vs. Short Vector

Hardware

Vector computers are supercomputers used for large scientific and engineering
problems, as many numerical algorithms allow those parts which consume the
majority of computation time to be expressed as vector operations. This holds
especially for almost all linear algebra algorithms (Golub and Van Loan [38],
Dongarra et al. [17]). It is therefore a straightforward strategy to improve the
performance of processors used for numerical data processing by providing an
instruction set tailor-made for vector operations as well as suitable hardware.

This idea materialized in vector architectures comprising specific vector in-
structions , which allow for componentwise addition, multiplication and/or divi-
sion of vectors as well as the multiplication of the vector components by a scalar.
Moreover, there are specific load and store instructions enabling the processor to
fetch all components of a vector from the main memory or to move them there.

The hardware counterparts of vector instructions are the matching vector reg-
isters and vector units . Vector registers are memory elements which can contain
vectors of a given maximum length. Vector units performing vector operations,
as mentioned above, usually require the operands to be stored in vector registers.

These systems are specialized machines not comparable to general purpose
processors featuring short vector SIMD extensions. The most obvious difference
on the vector extension level is the larger machine vector length, the support
for smaller vectors and non-unit memory access. In vector computers actually
multiple processing elements are processing vector data, while in short vector
SIMD extensions only a very short fixed vector length is supported.

Example 3.1 (Vector Computers) The Cray T90 multiprocessor uses Cray Research Inc.
custom silicon CPUs with a clock speed of 440 MHz, and each processor has a peak performance
of 1.7 Gflop/s. Each has 8 vector registers with 128 words (vector elements) of eight bytes
(64 bits) each.
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Current vector computers provided by NEC range from deskside systems (the NEC SX-6i
featuring one CPU and a peak performance of 8 Gflop/s) up to the currently most powerful
computer in the world: the Earth Simulator featuring 5120 vector CPUs running at 500 MHz
leading to a peak performance of 41 Tflop/s.

The high performance of floating-point operations in vector units is mainly due
to the concurrent execution of operations (as in a very deep pipeline).

There are further advantages of vector processors as compared with other
processors capable of executing overlayed floating-point operations.

• As vector components are usually stored contiguously in memory, the access
pattern to the data storage is known to be linear. Vector processors exploit
this fact using a very fast vector data fetch from a massively interleaved
main memory space.

• There are no memory delays for a vector operand which fits completely into
a vector register.

• There are no delays due to branch conditions as they might occur if the
vector operation were implemented in a loop.

In addition, vector processors may utilize the superscalar principle by executing
several vector operations per time unit (Dongarra et al. [18]).

Parallel Vector Computers

Most of the vector supercomputer manufacturers produce multiprocessor systems
based on their vector processors. Since a single node is so expensive and so finely
tuned to memory bandwidth and other architectural parameters, the multipro-
cessor configurations have only a few vector processing nodes.

Example 3.2 (Parallel Vector Computers) A NEC SX-5 multi node configuration can in-
clude up to 32 SX-5 single node systems for the SX-6A configuration.

However, the latest vector processors fit onto single chips. For instance, NEC SX-6 nodes
can be combined to form much lager systems in multiframe configuration (up to 1024 CPUs
are combined) or even the earth simulator with its 5120 CPUs.

3.5.1 Vectorizing Compilers

Vectorizing compilers were developed for the vector computers described above.
Using vectorizing compilers to produce short vector SIMD code for discrete lin-
ear transforms in the context of adaptive algorithms is not straightforward. As
the vectorizing compiler technology originates from completely different machines
and in the short vector SIMD extensions other and new restrictions are found,
the capabilities of these compilers are limited. Especially automatic performance
tuning poses additional challenges to vectorizing compilers as the codes are gen-
erated automatically and intelligent search is used which conflicts with some
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compiler optimization. Thus compiler vectorization and automatic performance
tuning cannot be combined easily. The two leading adaptive software systems
for discrete linear transforms cannot directly use compiler vectorization in their
code generation and adaptation process.

FFTW. Due to the recursive structure of Fftw and the fact that memory access
patterns are not known in advance, vectorizing compilers cannot prove alignment
and unit stride properties required for vectorization. Thus Fftw cannot be
vectorized automatically using compiler vectorization.

SPIRAL. The structure of code generated by Spiral implies that such code
cannot be vectorized directly by using vectorizing compilers without some hints
and changes in the generated code. A further difficulty is introduced by opti-
mizations carried out by Spiral. Vectorizing compilers only vectorize rather
large loops, as in the general case the additional cost for prologue and epilogue
has to be amortized by the vectorized loop. Vectorizing compilers require hints
about which loop to vectorize and to prove loop carried data dependencies. It
is required to guarantee the proper alignment. The requirement of a large num-
ber of loop iterations conflicts with the optimal code structure, as in discrete
linear transforms a small number (sometimes as small as the extension’s vector
length) turns out to be most efficient. In addition, straight line codes cannot be
vectorized.

In numerical experiments summarized in Section 8.2.6, a vectorizing compiler
was plugged into the Spiral system and the required changes were made. The
Spiral/vect system was able to speed up the generated code significantly. For
simpler codes, the performance achieved by the vectorizing compiler is close to
the results obtained using formula based vectorization as developed in the next
chapter (although still inferior). However, it is not possible to achieve the same
performance level as reached by the presented approach for more complicated
algorithms like FFTs.

3.5.2 Vector Computer Libraries

Traditional vector processors have typically vector lengths of 64 and more ele-
ments. They are able to load vectors at non-unit stride but feature a rather high
startup cost for vector operations (Johnson et al. [60]). Codes developed for such
machines do not match the requirements of modern short vector SIMD exten-
sions. Highly efficient implementations for DFT computation that are portable
across different conventional vector computers are not available. For instance,
high-performance implementations for Cray machines were optimized using as-
sembly language (Johnson et al. [59]). An example for such an library is Cray’s
proprietary Scilib which is also available as the Fortran version Sciport which
can be obtained via Netlib (Lamson [65]).



Chapter 4

The Mathematical Framework

This chapter introduces the formalisms of Kronecker products (tensor products)
and stride permutations, which are the foundations of most algorithms for discrete
linear transforms. This includes various FFT algorithms, the Walsh-Hadamard
transform, different sine and cosine transforms, wavelet transforms as well as all
multidimensional linear transform.

Kronecker products allow to derive and modify algorithms on the structural
level instead of using properties of index values in the derivation process. The
Kronecker product framework provides a rich algebraic structure which captures
most known algorithms for discrete linear transforms. Both iterative as well as
recursive algorithms are captured. Most proofs in this section are omitted. They
can be found in Van Loan [90].

The Kronecker product formalism has a long and well established history
in mathematics and physics, but until recently it has gone virtually unnoticed
by computer scientists. This is changing because of the strong connection be-
tween certain Kronecker product constructs and advanced computer architec-
tures (Johnson et al. [61]). Through this identification, the Kronecker product
formalism has emerged as a powerful tool for designing parallel algorithms.

In this chapter, Kronecker products and their algebraic properties are intro-
duced from a point of view well suited to algorithmic and programming needs.
It will be shown that mathematical formulas involving Kronecker product oper-
ations are easily translated into various programming constructs and how they
can be implemented on vector machines. The unifying approach is required to
allow automatic performance tuning for all discrete linear transforms.

In 1968, Pease [76] was the first who utilized Kronecker products for describing
FFT algorithms. So it was possible to express all required operations on the
matrix level and to obtain considerably clearer structures. Van Loan [90] used this
technique for a state-of-the-art presentation of FFT algorithms. In the twenty-
five years between the publications of Pease and Van Loan, only a few authors
used this powerful technique: Temperton [87] and Johnson et al. [60] for FFT
implementations on classic vector computers and Norton and Silberger [75] on
parallel computers with MIMD architecture. Gupta et al. [39] and Pitsianis [77]
used the Kronecker product formalism to synthesize FFT programs.

The Kronecker product approach to FFT algorithm design antiquates more
conventional techniques like signal flow graphs. Signal flow graphs rely on the
spatial symmetry of a graph representation of FFT algorithms, whereas the Kro-
necker product exploits matrix algebra. Following the idea of Johnson et al. [60],
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the Spiral project (Moura et al. [72] and Püschel et al. [79]) provides the first
automatic performance tuning system for the field of discrete linear transforms.
One foundation of Spiral is the work of Johnson et al. [60] which is extended to
cover general discrete linear transforms.

The Kronecker product approach makes it easy to modify a linear transform
algorithm by exploiting the underlying algebraic structure of its matrix represen-
tation. This is in contrast to the usual signal flow approach where no well defined
methodology for modifying linear transform algorithms is available.

4.1 Notation

The notational conventions introduced in the following are used throughout this
thesis. Integers denoting problem sizes are referred to by capital letters M , N ,
etc. Loop indices and counters are denoted by lowercase letters i, j, etc. General
integers are denoted by k, m, n, etc. as well as r, s, t, etc.

4.1.1 Vector and Matrix Notation

In this thesis, vectors of real or complex numbers will be referred to by lowercase
letters x, y, z, etc., while matrices appear as capital letters A, B, C, etc.

Parameterized matrices (where the size and/or the entries depend on the
actual parameters) are denoted by upright capital letters and their parameters.

Example 4.1 (Parameterized Matrices) L64
8 is a stride permutation matrix of size 64×64

with stride 8 (see Section 4.4), T8
2 is a complex diagonal matrix of size 8 × 8 whose entries are

given by the parameter “2” (see Section 4.5), and I4 is an identity matrix of size 4 × 4.

Discrete linear transform matrices are denoted by an abbreviation in upright
capital letters and a parameter that denotes the problem size.

Example 4.2 (Discrete Linear Transforms) WHTN denotes a Walsh-Hadamard trans-
form matrix of size N × N and DFTN denotes a discrete Fourier transform matrix of size
N × N (see Section 5.1).

Row and column indices of vectors and matrices start from zero unless otherwise
stated.

The vector space of complex n-vectors is denoted by C
n. Complex m-by-n

matrices are denoted by C
m×n.

Example 4.3 (Complex Matrix) The 2-by-3 complex matrix A ∈ C
2×3 is expressed as

A =
(

a00 a01 a02

a10 a11 a12

)
, a00, . . . , a12 ∈ C.

Rows and columns are indexed from zero.
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4.1.2 Submatrix Specification

Submatrices of A ∈ C
m×n are denoted by A(u, v), where u and v are index vectors

that define the rows and columns of A used to construct the respective submatrix.

Index vectors can be specified using the colon notation:

u = j : k ⇔ u = (j, j + 1, . . . , k), j ≤ k.

Example 4.4 (Submatrix) A(2 : 4, 3 : 7) ∈ C
3×5 is the 3-by-5 submatrix of A ∈ C

m×n (with
m ≥ 4 and n ≥ 7) defined by the rows 2, 3, and 4 and the columns 3, 4, 5, 6, and 7.

There are special notational conventions when all rows or columns are extracted
from their parent matrix. In particular, if A ∈ C

m×n, then

A(u, :) ⇔ A(u, 0 : n − 1),

A(:, v) ⇔ A(0 : m − 1, v).

Vectors with non-unit increments are specified by the notation

u = i : j : k ⇔ u = (i, i + k, . . . , j),

where k ∈ Z \ {0} denotes the increments. The number of elements specified by
this notation is

max

(⌊
j − i + k

k

⌋
, 0

)
.

Example 4.5 (Non-unit Increments) Let A ∈ C
m×n, then

A(0 : m − 1 : 2, :) ∈ C
�m+1

2 �×n

is the submatrix with the even-indexed rows of A, whereas A(:, n − 1 : 0 : −1) ∈ C
m×n is A

with its columns in reversed order.

4.1.3 Diagonal Matrices

If d ∈ C
n, then D = diag(d) = diag(d0, . . . , dn−1) ∈ C

n×n is the diagonal matrix

D =

⎛⎜⎜⎜⎝
d0 0

d1

. . .

0 dn−1

⎞⎟⎟⎟⎠ .

Example 4.6 (Identity Matrix) The n × n identity matrix In is a parameterized matrix
where the parameter n defines the size of the square matrix and is given by

In =

⎛⎜⎜⎜⎝
1 0

1
. . .

0 1

⎞⎟⎟⎟⎠ .
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4.1.4 Conjugation

If A ∈ C
n×n is an arbitrary matrix and P ∈ C

n×n is an invertible matrix then
the conjugation of A by P is defined as

AP = P−1AP.

In this thesis P is a permutation matrix in most cases.

Example 4.7 (Conjugation of a Matrix) The 2 × 2 diagonal matrix

A =
(

a0 0
0 a1

)
is conjugated by the 2 × 2 anti-diagonal

J2 =
(

0 1
1 0

)
leading to

AJ2 = J−1
2 A J2 =

(
a1 0
0 a0

)
.

Property 4.1 (Conjugation) For any A ∈ C
n×n and P ∈ C

n×n being an in-
vertible matrix it holds that

PAP = AP.

Property 4.2 (Conjugation) For any A ∈ C
n×n and P ∈ C

n×n being an in-
vertible matrix it holds that

AP P−1 = P−1A.

4.1.5 Direct Sum of Matrices

Definition 4.1 (Direct Sum of Matrices) The direct sum of two matrices A
and B is given by

A ⊕ B =

(
A 0
0 B

)
,

where the 0’s denote blocks of zeros of appropriate size.

Given n matrices A0, A1,. . . , An−1 being not necessarily of the same dimension,
their direct sum is defined as the block diagonal matrix

n−1⊕
i=0

Ai = A0 ⊕ A1 ⊕ · · · ⊕ An−1 =

⎛⎜⎜⎜⎝
A0 0

A1

. . .

0 An−1

⎞⎟⎟⎟⎠ .
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4.1.6 Direct Sum of Vectors

Vectors are usually regarded as elements of the vector space C
N and not as

matrices in C
N×1 or C

1×N . Thus the direct sum of vectors is a vector. The direct
sum of vectors can be used to decompose a vector into subvectors as required in
various algorithms.

Definition 4.2 (Direct Sum of Vectors) Let y be a vector of length N and
xi be n vectors of lengths mi:

y =

( u0
u1

...
uN−1

)
, x0 =

( u0
u1

...
um0−1

)
, x1 =

⎛⎝ um0
um0+1

...
um1−1

⎞⎠ , . . . , xn−1 =

⎛⎝ umn−2
umn−2+1

...
uN−1

⎞⎠ .

Then the direct sum of x0, x1, . . . , xn−1 is defined by

y =
n−1⊕
i=0

xi = x0 ⊕ x1 ⊕ . . . ⊕ xn−1 =

( u0
u1

...
uN−1

)
∈ C

N .

4.2 Extended Subvector Operations

Most identities introduced in this chapter can be formulated and proved easily
using the standard basis.

Definition 4.3 (Standard Basis) Let eN
0 , eN

1 , . . . , eN
N−1 denote the vectors in

C
N with a 1 in the component given by the subscript and 0 elsewhere. The set

{eN
i : i = 0, 1, . . . , N − 1} (4.1)

is the standard basis of C
N .

4.2.1 The Read/Write Notation

The read/write notation (RW notation) is used in mathematical formulas to rep-
resent operations like writes to or reads from a vector at a certain position. Using
RW notation it is possible to describe pseudo code on the basis of mathematical
formula interpretation without dealing with implementation details.

The prerequisite is the distributive law for matrix-vector products.

Property 4.3 (Distributivity)

k−1∑
i=0

(
Aix
)

=
(k−1∑

i=0

Ai

)
x.
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Definition 4.4 (Basic Read Operation) A basic read operation applied to a
vector of size N reads out a subvector of size n with stride s at base address b.

RN,n
b,s :=

⎛⎜⎜⎜⎜⎜⎜⎝
eNT

b

eN
b+s

T

...

eN
b+(n−1)s

T

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where eN
i ∈ C

N×1 is a vector of the standard basis (4.1).

Example 4.8 (Basic Read Operation) For x ∈ C
8, y ∈ C

4, y := R8,4
0,2 x is given by

y := R8,4
0,2 x =

⎛⎜⎜⎝
1 . . . . . . .
. . 1 . . . . .
. . . . 1 . . .
. . . . . . 1 .

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
x0

x2

x4

x6

⎞⎟⎟⎠

with the zeros represented by dots.

Definition 4.5 (Basic Write Operation) A basic write operation applied to
a vector of size N writes a subvector of size n with stride s to base address b:

WN,n
b,s :=

(
eN

b | eN
b+s | · · · | eN

b+(n−1)s

)
,

where eN
i ∈ C

N×1 is a vector of the standard basis (4.1).

Example 4.9 (Basic Write Operation) For x ∈ C
8, y ∈ C

4, y := W8,4
0,1 x is given by

y := W8,4
0,1 x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . .
. 1 . .
. . 1 .
. . . 1
. . . .
. . . .
. . . .
. . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
x0

x2

x4

x6

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x2

x4

x6

.

.

.

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the zeros represented by dots.

4.2.2 Algebraic Properties of Read and Write Operations

Read and write operations have the following algebraic properties.
When using a basic read operation to obtain an intermediate subvector and

then again using a read operation to obtain the final subvector, this operation
can be expressed by a single basic read operation.
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Property 4.4 (Read Multiplicativity)

RN1N2n,n
b1+b2s1,s1s2

= RN2n,n
b2,s2

RN1N2n,N2n
b1,s1

.

The same applies to two consecutive basic write operations.

Property 4.5 (Write Multiplicativity)

WN1N2n,n
b1+b2s1,s1s2

= WN1N2n,N2n
b1,s1

WN2n,n
b2,s2

.

Multiplication of read and write matrices yields an identity matrix.

Property 4.6 (Read Write Identity)

In = Rmn,n
b,s Wmn,n

b,s .

Property 4.7 (Read Write Identity)

Imn = Wmn,n
b,s Rmn,n

b,s .

Transposition of read matrices yields write matrices.

Property 4.8 (Read Write Transposition)

(Rmn,n
b,s )� = Rmn,n

b,s ,

(Wmn,n
b,s )� = Rmn,n

b,s .

4.3 Kronecker Products

Definition 4.6 (Kronecker or Tensor Product) The Kronecker product
(tensor product) of the matrices A ∈ C

M1×N1 and B ∈ C
M2×N2 is the block

structured matrix

A ⊗ B :=

⎛⎜⎝ a0,0B . . . a0,N1−1B
...

. . .
...

aM1−1,0B . . . aM1−1,N1−1B

⎞⎟⎠ ∈ C
M1M2×N1N2 .

Definition 4.7 (Tensor Basis) Set N = N1N2 and form the set of tensor prod-
ucts

eN1
i ⊗ eN2

j , i = 0, 1, . . . , N1 − 1, j = 0, 1, . . . , N2 − 1. (4.2)

This set is called tensor basis.
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Since any element eN
k of the standard basis (4.1) can be expressed as

eN
j+iN2

= eN1
i ⊗ eN2

j , i = 0, 1, . . . , N1 − 1, j = 0, 1, . . . , N2 − 1,

the tensor basis of Definition 4.7 ordered by choosing j to be the fastest running
parameter is the standard basis of C

N . In particular, the set of tensor products
of the form

xN1 ⊗ yN2

spans C
N , N = N1N2.

The following two special cases of Kronecker products involving identity matrices
are of high importance.

Definition 4.8 (Parallel Kronecker Products) Let A ∈ C
m×n be an arbi-

trary matrix and let Ik ∈ C
k×k be the identity matrix. The expression

Ik ⊗A =

⎛⎜⎜⎜⎝
A 0

A
. . .

0 A

⎞⎟⎟⎟⎠
is called parallel Kronecker product .

A parallel Kronecker product can be viewed as a parallel operation. Its action on
a vector x = x0 ⊕ x1 ⊕ · · · ⊕ xk−1 can be performed by computing the action of
A on each of the k consecutive segments xi of x independently.

Example 4.10 (Parallel Kronecker Product) Let A2 ∈ C
2×2 be an arbitrary matrix and

let I3 ∈ C
3×3 be the identity matrix. Then

y := (I3 ⊗A2)x

is given by ⎛⎜⎜⎜⎜⎜⎜⎝
y0

y1

y2

y3

y4

y5

⎞⎟⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎝
a0,0 a0,1

a1,0 a1,1

a0,0 a0,1

a1,0 a1,1

a0,0 a0,1

a1,0 a1,1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎠ .

This matrix-vector product can be realized by splitting up the input vector x ∈ C
6 into three

subvectors of length 2 and performing the respective matrix-vector products(
y0

y1

)
:=
(

a0,0 a0,1

a1,0 a1,1

)(
x0

x1

)
(

y2

y3

)
:=
(

a0,0 a0,1

a1,0 a1,1

)(
x2

x3

)
(

y4

y5

)
:=
(

a0,0 a0,1

a1,0 a1,1

)(
x4

x5

)
independently.
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Definition 4.9 (Vector Kronecker Products) Let A ∈ C
m×n be an arbi-

trary matrix and let Ik ∈ C
k×k be the identity matrix. The expression

A ⊗ Ik =

⎛⎜⎝ a0,0 Ik · · · a0,n−1 Ik
...

. . .
...

am−1,0 Ik · · · am−1,n−1 Ik

⎞⎟⎠
is called vector Kronecker product .

A vector Kronecker product can be viewed as a vector operation. To compute its
action on a vector x = x0 ⊕ x1 ⊕ · · · ⊕ xn−1, the n vector operations

ar,0x0 + ar,1x1 + · · · + ar,n−1xn−1, r = 0, 1, . . . , m − 1

are performed. Expressions of the form A⊗ Ik are called vector operations as the
operate on vectors of size k.

Example 4.11 (Vector Kronecker Product) Let A2 ∈ C
2×2 be an arbitrary matrix and

let I3 ∈ C
3×3 be the identity matrix. Then

y := (A2 ⊗ I3)x

is given by ⎛⎜⎜⎜⎜⎜⎜⎝
y0

y1

y2

y3

y4

y5

⎞⎟⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎝
a0,0 a0,1

a0,0 a0,1

a0,0 a0,1

a1,0 a1,1

a1,0 a1,1

a1,0 a1,1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎠ .

This matrix-vector product can be computed by splitting up the vector x ∈ C
6 into two sub-

vectors of length 3 and performing single scalar multiplications with these subvectors:⎛⎝ y0

y1

y2

⎞⎠ := a0,0

⎛⎝ x0

x1

x2

⎞⎠+ a0,1

⎛⎝ x3

x4

x5

⎞⎠
⎛⎝ y3

y4

y5

⎞⎠ := a1,0

⎛⎝ x0

x1

x2

⎞⎠+ a1,1

⎛⎝ x3

x4

x5

⎞⎠ .

4.3.1 Algebraic Properties of Kronecker Products

Most of the following Kronecker product identities can be demonstrated to hold
by computing the action of both sides on the tensor basis given by Definition 4.7.

Property 4.9 (Identity) If Im and In are identity matrices, then

Im ⊗ In = Imn .
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Property 4.10 (Identity) If Im and In are identity matrices, then

Im ⊕ In = Im+n .

Property 4.11 (Associativity) If A, B, C are arbitrary matrices, then

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Thus, the expression A ⊗ B ⊗ C is unambiguous.

Property 4.12 (Transposition) If A, B are arbitrary matrices, then

(A ⊗ B)� = A� ⊗ B�.

Property 4.13 (Inversion) If A and B are regular matrices, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

Property 4.14 (Mixed-Product Property) If A, B, C and D are arbitrary
matrices, then

(A ⊗ B) (C ⊗ D) = AC ⊗ B D,

provided the products AC and BD are defined.

A consequence of this property is the following factorization.

Corollary 4.1 (Decomposition) If A ∈ C
m1×n1 and B ∈ C

m2×n2 , then

A ⊗ B = A In1 ⊗ Im2 B = (A ⊗ Im2)(In1 ⊗B),

A ⊗ B = Im1 A ⊗ B In2 = (Im1 ⊗B)(A ⊗ In2).

The mixed-product property can be generalized in two different ways.

Corollary 4.2 (Generalized Mixed-Product Property) For k matrices of
appropriate sizes it holds that

(A1 ⊗ A2 ⊗ · · · ⊗ Ak)(B1 ⊗ B2 ⊗ · · · ⊗ Bk) = A1B1 ⊗ A2B2 · · · ⊗ AkBk,

and

(A1 ⊗ B1)(A2 ⊗ B2) · · · (Ak ⊗ Bk) = (A1A2 · · ·Ak) ⊗ (B1B2 · · ·Bk).

Property 4.15 (Distributive Law) If A, B, and C are arbitrary matrices,
then

(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C),

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C).
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The Kronecker product is not commutative. This non-commutativity is mainly
responsible for the richness of the Kronecker product algebra, and naturally leads
to a distinguished class of permutations, the stride permutations. An important
consequence of this lack of commutativity can be seen in the relationship between
Kronecker products and direct sums of matrices.

Property 4.16 (Left Distributive Law) It holds that

(A ⊕ B) ⊗ C = (A ⊗ C) ⊕ (B ⊗ C).

The right distributive law does not hold.

4.4 Stride Permutations

Definition 4.10 (Stride Permutation) For a vector x ∈ C
mn with

x =
mn−1∑
k=0

xke
mn
k with emn

k = en
i ⊗ em

j , and xk ∈ C,

the stride permutation Lmn
n is defined by its action on the tensor basis (4.2) of

C
mn.

Lmn
n (en

i ⊗ em
j ) = em

j ⊗ en
i .

The permutation operator Lmn
n sorts the components of x according to their index

modulo n. Thus, components with indices equal to 0 modn come first, followed
by the components with indices equal to 1 modn, and so on.

Corollary 4.3 (Stride Permutation) For a vector x ∈ C
mn the application of

the stride permutation Lmn
n results in

Lmn
n x :=

⎛⎜⎜⎜⎝
x(0 : (m − 1)n : n)

x(1 : (m − 1)n + 1 : n)
...

x(n − 1 : mn − 1 : n)

⎞⎟⎟⎟⎠ .

Definition 4.11 (Even-Odd Sort Permutation) The permutation Ln
2 , n be-

ing even, is called an even-odd sort permutation, because it groups the even-
indexed and odd-indexed components together.

Definition 4.12 (Perfect Shuffle Permutation) The permutation Ln
n/2, n

being even, is called a perfect shuffle permutation, since its action on a deck
of cards could be the shuffling of two equal piles of cards so that the cards are
interleaved one from each pile.

The perfect shuffle permutation Ln
n/2 is denoted in short by Πn.
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Mixed Kronecker Products

In this thesis combinations of tensor products and stride permutations are very
important. These constructs have both vector and parallel characteristics like
stride permutations and additionally feature arithmetic operations like parallel
and vector Kronecker products.

The factorization of these constructs is a major issue in this thesis and leads
to the short vector Cooley-Tukey FFT.

Definition 4.13 (Right Mixed Kronecker Product) Let A ∈ C
m×n be an

arbitrary matrix, Ik ∈ C
k×k be the identity matrix, and Lkm

k be a stride permu-
tation. An expression of the form

(Ik ⊗A) Lmk
k

is called right mixed Kronecker product .

Definition 4.14 (Left Mixed Kronecker Product) Let A ∈ C
m×n be an ar-

bitrary matrix, Ik ∈ C
k×k be the identity matrix, and Lmk

k be a stride permutation.
An expression of the form

Lmk
k (A ⊗ Ik)

is called left mixed Kronecker product .

4.4.1 Algebraic Properties of Stride Permutations

Property 4.17 (Identity)

Ln
1 = Ln

n = In

Property 4.18 (Inversion/Transposition) If N = mn the

(Lmn
m )−1 = (Lmn

m )� = Lmn
n .

Property 4.19 (Multiplication) If N = kmn then

Lkmn
k Lkmn

m = Lkmn
m Lkmn

k = Lkmn
km .

Example 4.12 (Inversion of the Perfect Shuffle Permutation) The inverse matrix of
L2i

2 is given by the perfect shuffle permutation:

(L2i

2 )−1 = L2i

2i−1 = Π2i .

As already mentioned, the Kronecker product is not commutative. However, with
the aid of stride permutations, the order of factors can be reverted.
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Theorem 4.1 (Commutation) If A ∈ C
m1×n1 and B ∈ C

m2×n2 then

Lm1m2
m1

(A ⊗ B) = (B ⊗ A) Ln1n2
n2

.

Proof : Johnson et al. [60].

Several special cases are worth noting.

Corollary 4.4 If A ∈ C
m×m and B ∈ C

n×n then

A ⊗ B = Lmn
m (B ⊗ A) Lmn

n = (B ⊗ A)Lmn
m .

Application of this relation leads to

Im ⊗B = Lmn
m (B ⊗ Im) Lmn

n = (B ⊗ Im)Lmn
n ,

A ⊗ In = Lmn
m (In ⊗A) Lmn

n = (In ⊗A)Lmn
n .

Stride permutations interchange parallel and vector Kronecker factors. The read-
dressing prescribed by Lmn

n on input and Lmn
m on output turns the vector Kro-

necker factor A ⊗ In into the parallel Kronecker factor In ⊗A and the parallel
Kronecker factor Im ⊗B into the vector Kronecker factor B⊗ Im. Continuing this
way, it is possible to write

A ⊗ B = (A ⊗ In)(Im ⊗B)

= Lmn
m (In ⊗A) Lmn

n (Im ⊗B), (4.3)

which can be used to compute the action of A ⊗ B as a sequence of two parallel
Kronecker factors. It also holds that

A ⊗ B = (A ⊗ In) Lmn
m (B ⊗ Im) Lmn

n , (4.4)

which can be used to compute the action of A ⊗ B as a sequence of two vector
Kronecker factors. The stride permutations intervene between computational
stages, providing a mathematical language for describing the readdressing.

Occasionally it will be necessary to permute the factors in a tensor product
of more than two factors.

Frequently used properties which can be traced back to those before are stated
in the following.

Property 4.20 If A ∈ C
m×m and B ∈ C

n×n then

A ⊗ B = Lnm
m (In ⊗A) Lmn

n (Im ⊗B).

Property 4.21 If N = kmn then

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗Lmn
n ).
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Property 4.22 If N = kmn then

Lkmn
km = (Ik ⊗Lmn

m )(Lkn
k ⊗ Im).

Property 4.23 If N = kmn then

(Lkm
m ⊗ In) = (Im ⊗Lkn

k ) Lkmn
mn .

Proof: Using Properties 4.18 and 4.22 lead to

(Lkm
m ⊗ In) = (Im ⊗Lkm

k )(Im ⊗Lkm
m )(Lkm

m ⊗ In) = (Im ⊗Lkn
k ) Lkmn

mn . �

Property 4.24 If N = kmn then

(Lkm
m ⊗ In)(Ik ⊗Lmn

m ) Lkmn
k = (Im ⊗Lkn

k )(Lmn
m ⊗ Ik) .

Proof: Using Property 4.23 leads to

(Im ⊗Lkn
k ) Lkmn

mn (Ik ⊗Lmn
m ) Lkmn

k = (Im ⊗Lkn
k )(Lmn

m ⊗ Ik). �

The following two properties show, how the mixed Kronecker product can be
decomposed. Property 4.25 shows the more general case and Property 4.26 shows
the full factorization.

Property 4.25

(Isk ⊗Ams×n) Lskn
sk =

(
Ik ⊗Lms2

s (Ams×n ⊗ Is)
) (

Lkn
k ⊗ Is

)
Property 4.26

(Isk ⊗Ams×n) Lskn
sk =

(
Ik ⊗ (Lms

s ⊗ Is)
(
Im ⊗Ls2

s

)
(Ams×n ⊗ Is)

) (
Lkn

k ⊗ Is
)

4.4.2 Digit Permutations

The following permutation generalizes the stride permutation.

Definition 4.15 (Digit Permutation) Let N = N1N2 · · ·Nk and let σ be a
permutation of the numbers 1, 2, . . . , k. Then the digit permutation is defined by

L(N1,...,Nk)
σ (eN1

i1
⊗ · · · ⊗ eNk

ik
) = (e

Nσ(1)

iσ(1)
⊗ · · · ⊗ e

Nσ(k)

iσ(k)
).

Theorem 4.2 (Permutation) Let A0, A1,. . . ,Ak be Ni × Ni matrices and let
σ be a permutation of the numbers 1, 2, . . . , k, then

A1 ⊗ · · · ⊗ Ak = (L(N1,...,Nk)
σ )−1(Aσ(1) ⊗ · · · ⊗ Aσ(k)) L(N1,...,Nk)

σ .
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Proof : Johnson et al. [60].

Digit reversal is a special permutation arising in FFT algorithms.

Definition 4.16 (Digit Reversal Matrix) The k-digit digit reversal permu-
tation matrix

R(N1,N2,...,Nk)

of size N = N1N2 · · ·Nk is defined by

R(N1,...,Nk)(eN1
i1

⊗ · · · ⊗ eNk
ik

) = eNk
ik

⊗ · · · ⊗ eN1
i1

.

The special case when N1 = N2 = · · · = Nk = p is denoted by Rpk .

Theorem 4.3 The digit reversal matrix Rpk satisfies recursion

Rpk =
k∏

i=2

(Ipk−i ⊗Lpi

p ).

Proof : Johnson et al. [60].

4.5 Twiddle Factors and Diagonal Matrices

An important class of matrices arising in FFT factorizations are diagonal matrices
whose diagonal elements are roots of unity. Such matrices are called twiddle factor
matrices.

This section collects useful properties of diagonal matrices, especially twiddle
factor matrices.

Definition 4.17 (Twiddle Factor Matrix) Let ωN = e2πi/N denote the Nth
root of unity. The twiddle factor matrix, denoted by Tmn

m , is a diagonal matrix
defined by

Tmn
m (em

i ⊗ en
j ) = ωij

mn(em
i ⊗ en

j ), i = 0, 1, . . . , m − 1, j = 0, 1, . . . , n − 1,

Tmn
m =

m−1⊕
i=0

n−1⊕
j=0

ωij
mn =

m−1⊕
i=0

Ωn,i(ωmn),

where Ωn,k(α) = diag(1, α, . . . , αn−1)k.

The following corollary shows how to conjugate diagonal matrices with a permu-
tation matrix. It holds for all diagonal matrices, but is particularly useful when
calculating twiddle factors in FFT algorithms.
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Corollary 4.5 (Conjugating Diagonal Matrices) Let

D = diag(d0, d1, . . . , dN−1)

be an arbitrary N ×N diagonal matrix and Pσ the permutation matrix according
to the permutation σ of (0, 1, . . . , N − 1). Conjugating D by Pσ results in a new
diagonal matrix whose diagonal elements are permuted by σ, i. e.,

DPσ = P−1
σ D Pσ = diag(dσ(0), dσ(1), . . . , dσ(N−1)) =

N−1⊕
i=0

dσ(i).

Corollary 4.6 (Conjugating Twiddle Factors) Conjugating Tmn
m by Lmn

m re-
sults in Tmn

n , i. e.,

(Tmn
m )Lmn

m = Tmn
n .

Tensor bases are a useful tool to compute the actual entries of conjugated twiddle
factor matrices.

Property 4.27 (Twiddle Factor Ir ⊗ Tmn
m )

(Ir ⊗Tmn
m )(er

i ⊗ em
j ⊗ en

k) = ωjk
mn(er

i ⊗ em
j ⊗ en

k),

Ir ⊗Tmn
m =

r−1⊕
i=0

m−1⊕
j=0

n−1⊕
k=0

ωjk
mn =

r−1⊕
i=0

m−1⊕
j=0

Ωn,j(ωmn)

(Ir ⊗Tmn
m )P is the form of twiddle factor matrices as found in FFT algorithms.

The following example shows how to compute with twiddle factors in this form.

Example 4.13 (Conjugation of Twiddle Factors) Consider the construct

(I4 ⊗T8
4)

L32
8 = L32

4 (I4 ⊗T8
4) L32

8 .

Thus, I4 ⊗T8
4 is conjugated by L32

8 . Computation of the result yields

(L32
4 (I4 ⊗T8

4) L32
8 )(e4

i ⊗ e4
j ⊗ e2

k) = (L32
4 (I4 ⊗T8

4))(e
4
j ⊗ e2

k ⊗ e4
i )

= L32
4 ωki

8 (e4
j ⊗ e2

k ⊗ e4
i )

= ωki
8 (e4

i ⊗ e4
j ⊗ e2

k)

L32
4 (I4 ⊗T8

4) L32
8 =

3⊕
i=0

3⊕
j=0

1⊕
k=0

ωik
8 =

3⊕
i=0

3⊕
j=0

Ω2,j(ω8)

= diag(1, 1, 1, ω8, 1, ω2
8 , 1, ω3

8 , 1, 1, 1, ω8, 1, ω2
8 , 1, ω3

8 ,

1, 1, 1, ω8, 1, ω2
8 , 1, ω3

8 , 1, 1, 1, ω8, 1, ω2
8 , 1, ω3

8).
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4.6 Complex Arithmetic as Real Arithmetic

The previous sections dealt with matrices featuring complex entries. In this thesis,
most operations are considered to be real, as conventional computer hardware can
only handle real numbers directly. Thus A ∈ C

m×n has to be transformed into
A ∈ R

2m×2n. This is especially required for vector instructions, as there alignment
and stride issues are crucial.

Vector instructions provide only real arithmetic of vectors with their elements
stored contiguously in memory. Thus, to map formulas to vector code, complex
formulas and matrices are to be translated into real ones. The most commonly
used data format is the interleaved complex format (alternately real and imaginary
part). It will be expressed formally as a mapping of formulas. The fact that the
complex multiplication (u + iv)× (y + iz) is equivalent to the real multiplication(

u −v
v u

) (
y
z

)
will be used. Thus, the complex matrix-vector multiplication M x ∈ C

n corre-
sponds to the real operation M x̃ ∈ R

2n, where M arises from M by replacing
every entry u + iv by the corresponding (2 × 2)-matrix above, and x̃ is in inter-
leaved complex format. To evaluate the bar operator ( ) of a formula, a set of
identities is needed which will be described in the next section.

Other complex data formats can also be expressed in this way. For instance, the
split complex format (where a complex vector is stored as a vector of real parts

followed by a vector of imaginary parts) can be expressed by an operator (̃ ) with

Ã = A
L2N

N .

4.6.1 Algebraic Properties of the Bar Operator

In this thesis the machine parameter ν denotes the vector length of a short vector
SIMD architecture (see Chapter 3).

Property 4.28 (Distribution) For a matrix product the bar operator dis-
tributes over the factors, i. e.,

AB = A B.

Property 4.29 (Real Matrix Property) If A is a real matrix, then

A = A ⊗ I2 .

Property 4.30 (Parallel Kronecker Product) In a parallel Kronecker prod-
uct, the bar operator can be removed from the identity matrix:

In ⊗Am = In ⊗Am.
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The distribution of the bar operator over vector Kronecker products leaves a
degree of freedom, which is crucial for the generation of fast vector code. The
next three properties show this degree of freedom.

Property 4.31 (General Vector Kronecker Product) In a vector Kro-
necker product, the bar operator can be removed from the identity matrix:

Am ⊗ In = (Am ⊗ In)(Im ⊗L2n
2 ).

Property 4.32 (Vector Kronecker Product) The bar operator can be re-
moved from the identity matrix:

Am ⊗ Iν = (Am ⊗ Iν)
(Im ⊗L2ν

2 ).

Property 4.33 (Vector Kronecker Product) For n being a multiple of ν,
the bar operator can be partly removed from the identity matrix:

Am ⊗ In = (Am ⊗ In
ν
⊗ Iν)

(
Imn

ν
⊗L2ν

2

)
.

Vector Diagonals

The application of the bar operator to complex diagonals does not feature the
same structure as vector Kronecker products. However, this vector Kronecker
structure is required by the target hardware. Applying the correct conjugation,
the vector Kronecker structure can be obtained.

Definition 4.18 (The Bar-Prime Operator) For a complex matrix

D = diag(c0, . . . , cν−1)

with ci = ai + ibi, the bar-prime operator ( )
′
is defined by

D
′
:= D

L2ν
ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a0 −b0

. . . . . .

aν−1 −bν−1

b0 a0

. . . . . .

bν−1 aν−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The construct D
′
has the same structure as

A ⊗ Iν

with A ∈ R
2×2—only the actual numbers vary—and thus is a vector operation

with vector length ν.
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Definition 4.19 (Vector Diagonals) For n being a multiple of ν, the complex
diagonal

D = diag(c0, . . . , cn−1)

with ci = ai + ibi is divided into n/ν diagonal matrices Di ∈ C
ν×ν :

D =

n
ν
−1⊕

i=0

Di.

The application of the the bar-prime operator ( )
′
is defined by

D
′
:=

n
ν
−1⊕

i=0

Di
′
= D

(
In

ν
⊗L2ν

ν

)
. (4.5)

A construct matching (4.5) is called vector diagonal.

The construct D
′
has the same structure as

(In
ν
⊗A) ⊗ Iν

with A ∈ R
2×2—(only the actual numbers vary), and thus is again a vector

operation with vector length ν.

Example 4.14 (Twiddle Matrix) To implement the complex twiddle diagonal

Tmn
n

it is divided into subdiagonals Di of length ν and Definition 4.19 is applied:

T
′mn

n := T
mn

n

(
I mn

ν
⊗L2ν

ν

)
=

mn
ν −1⊕
i=0

D
′
i, ν | mn. (4.6)

4.7 Kronecker Product Code Generation

Kronecker products and direct sums have a natural interpretation as programs.
A Kronecker product formula that constructs a matrix M can be interpreted as
the operation

y := M x

with suitable vectors x and y. The formula accounts for the fact that M is a
structured matrix whose structure is used to compute the matrix-vector product
efficiently. In the following, algorithms are given for important constructs occur-
ring in formulas for discrete linear transforms. Details can be found in Johnson
et al. [60] and Moura et al. [72].
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The RW Notation

To enable a direct translation of the RW notation into programs, a special sub-
program for implementing the formula

y :=
n∑

i=0

WN,k
b(i),s x, (4.7)

whose base address b(i) is a function of the loop iteration, is required. Whenever
this construct is used in this thesis, b(i) has the following property.

Property 4.34 (Loop Independence) A sum of type (4.7) can be translated
into an loop with independent iterations, if for any r ∈ {0, 1, . . . , N − 1} exactly
one iteration i ∈ {0, 1, . . . , n} and a unique offset j ∈ N exists such that

r = b(i) + js.

Thus, the sum in (4.7) acts as loop. The kth component of y is computed by a
sum where exactly one summand is not zero, which follows from Property 4.34.
By storing the respective kth component of the intermediate result

WN,k
b(i),s x

(where the component is known to be non-zero) in the respective loop iteration i
into the kth component of y these additions can be omitted.

A single iteration i of (4.7) can be implemented using the update function.
For simplicity set b := b(i). All nonzero entries of the vector WN,k

b,s x are stored
into the respective entries of y while all other entries of y remain unchanged, i. e.,
only entries with indices b + js are copied.

Algorithm 4.1 (update(y, WN,k
b,s x))

do i = 0, N − 1
do j = 0, k − 1

if WN,k
b,s (i, j) = 1 then y(i) := x(j)

end do
end do

Using the update function given by Algorithm 4.1, equation (4.7) can be imple-
mented as a loop using the following algorithm.

Algorithm 4.2 (y :=
n∑

i=0

WN,k
b(i),s x)

do i = 0, n
update(y, WN,k

b(i),s x)
end do

The implementation of sums as loops by Algorithm 4.2 is used throughout this
section to obtain implementations of tensor products and stride permutations.
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Direct Sums of Matrices

If x ∈ C
N , y ∈ C

M , A ∈ C
M×N with x = x0 ⊕ x1 with x0 ∈ C

n0 , x1 ∈ C
n1 ,

y = y0 ⊕ y1 with y0 ∈ C
m0 , y1 ∈ C

m1 , and A = A0 ⊕ A1 with A0 ∈ C
m0×n0 ,

A1 ∈ C
m1×n1 then the following algorithm can be used for computing y := Ax.

Algorithm 4.3 (y := (A0 ⊕ A1) x)

y0 := A0 x0

y1 := A1 x1

Corollary 4.7 (Direct Sum) A direct sum

A0 ⊕ A1 ⊕ · · · ⊕ Ak−1 with Ai ∈ C
m×n

can be written as a sum using the read and write operators RN,n
b,s and WN,m

b,s :

(A0 ⊕ A1 ⊕ · · · ⊕ Ak−1) x =
k−1∑
i=0

Wmk,m
im,1 Ai R

nk,n
in,1 x.

Applying Algorithm 4.2 leads to the following algorithm.

Algorithm 4.4 (y := (
k−1⊕
i=0

Ai) x)

do i = 0, k − 1
t := Rnk,n

in,1 x
t′ := Ai t
update(y, Wmk,m

im,1 , t′)
end do

Kronecker products with identity matrices represent loops in a natural way. Ac-
cording to Corollary 4.1 (on page 60) a general Kronecker product can be ex-
pressed as two Kronecker products with identity matrices. Thus, any Kronecker
product can be factored into a product of a parallel Kronecker factor and a vec-
tor Kronecker factor. The implementation of these special Kronecker products is
summarized in the following two sections.

Parallel Kronecker Products

Parallel Kronecker products as given by Definition 4.8 can be translated into
a loop of independent operations on blocks. The iterations of these loops are
independent and can be computed in parallel.

Corollary 4.8 (Parallel Kronecker Products) A parallel Kronecker product

Ik ⊗A with A ∈ C
m×n
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can be written as a sum using the read and write operators RN,n
b,s and WN,n

b,s :

(Ik ⊗A) x =
k−1∑
i=0

Wmk,m
im,1 A Rnk,n

in,1 x.

Applying Algorithm 4.2 leads to the following algorithm.

Algorithm 4.5 (y := (Ik ⊗ A) x)

do i = 0, k − 1
t := Rnk,n

in,1 x
t′ := A t
update(y, Wmk,m

im,1 , t′)
end do

Vector Kronecker Products

Vector Kronecker products as given by Definition 4.9 can be translated into oper-
ations on vectors. These operations on vectors can be implemented using a loop
where the respective elements in consecutive loop iterations are accessed at unit
stride. This is achieved by b(i) = i. Such loops are called vectorizable and can
be implemented efficiently using vector hardware.

Corollary 4.9 (Vector Kronecker Product) A vector Kronecker product

A ⊗ Ik with A ∈ C
m×n

can be written as sum using the read and write operators RN,n
b,s and WN,n

b,s :

(A ⊗ Ik) x =
k−1∑
i=0

Wmk,m
i,k A Rnk,n

i,k x.

Applying Algorithm 4.2 leads to the following algorithm.

Algorithm 4.6 (y := (A ⊗ Ik) x)

do i = 0, k − 1
t := Rnk,n

i,k x
t′ := A t
update(y, Wmk,m

i,k , t′)
end do

Stride Permutations

Stride permutations can be translated into two different algorithms. Either
(i) vector reads and parallel writes are used, or (ii) parallel reads and vector
writes. Thus, a stride permutation features both vector and parallel character-
istics. This leads to difficulties for implementations on both vector and parallel
computers.
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Corollary 4.10 (Stride Permutation) A stride permutation Lmn
m can be

written as a sum using the read and write operators RN,n
b,s and WN,n

b,s :

Lmn
m x =

m−1∑
i=0

Wmn,n
in,1 Rmn,n

i,m x.

Applying Algorithm 4.2 leads to the following algorithm featuring vector reads
and parallel writes.

Algorithm 4.7 (y := Lmn
m x)

do i = 0, m − 1
t := Rmn,n

i,m x
update(y, Wmn,n

in,1 , t)
end do

An alternative implementation is given by the following corollary and the respec-
tive algorithm.

Corollary 4.11 (Stride Permutation) A stride permutation Lmn
m can be writ-

ten as a sum using the read and write operators RN,n
b,s and WN,n

b,s :

Lmn
m x =

n−1∑
i=0

Wmn,m
i,n Rmn,m

im,1 x.

Applying Algorithm 4.2 leads to the following algorithm featuring parallel reads
and vector writes.

Algorithm 4.8 (y := Lmn
m x)

do i = 0, n − 1
t := Rmn,m

im,1 x
update(y, Wmn,m

i,n , t)
end do

A comparison between Algorithms 4.7 and 4.8 and Algorithms 4.5 and 4.6 shows
the connection between parallel and vector Kronecker products and stride per-
mutations.

Mixed Kronecker Products

Both left and right mixed Kronecker products can be translated into sums utiliz-
ing the methods developed for parallel and vector Kronecker products as well as
for stride permutations. These sums can subsequently translated into algorithms
for computing the application of mixed tensor products.
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Left mixed Kronecker products and right mixed Kronecker products are equiv-
alent, as the application of Corollary 4.4 (on page 63) shows that

(Ik ⊗A) Lmk
k = Lmk

k (A ⊗ Ik).

The following corollary expresses mixed Kronecker products (both left and the
respective right mixed Kronecker products) as sums using the RW notation.

Corollary 4.12 (Mixed Kronecker Product) Left and right mixed Kro-
necker products can can be written as sums using the read and write operators
RN,n

b,s and WN,n
b,s :

(Ik ⊗A) Lmk
k x = Lmk

k (A ⊗ Ik) x =
k−1∑
i=0

Wmk,m
im,1 A Rmk,m

i,k x.

Applying Algorithm 4.2 leads to the following algorithm.

Algorithm 4.9 (y := (Ik ⊗ A)Lmk
k x)

do i = 0, k − 1
t := Rmk,m

i,k x
t := A t
update(y, Wmk,m

im,1 , t)
end do

Algorithm 4.12 has the same access pattern as Algorithm 4.7, i. e., it reads with
vector characteristics and writes with parallel characteristics.

4.7.1 The SPL Compiler

The Spiral system includes a formula translator called SPL compiler which
translates Spiral’s proprietary signal processing language (SPL) into C or For-
tran code. Spiral uses the convention introduced at the beginning of this sec-
tion and interprets formulas as matrix-vector products with structured matrices.
Thus, all SPL programs can be interpreted as programs computing the corre-
sponding matrix-vector products x �→ M x.

Figure 4.1 shows an example SPL program and Appendix D.1 contains both
an SPL program and the respective C program generated by the SPL compiler.

SPL Constructs

SPL is used for a computer representation of discrete linear transform algorithms
given as formulas. The following are the most important SPL constructs.

General Matrices. Three types of general matrices, supported by SPL, are
most important in the context of this thesis: (i) generic matrices, (ii) generic
diagonal matrices, and (iii) generic permutations. The respective SPL constructs
are the following:
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(compose
(tensor

(F 2)
(I 2)

)
(T 4 2)
(tensor

(I 2)
(F 2)

)
(L 4 2)

)

Figure 4.1: An algorithm for DFT4 that computes y = (DFT2 ⊗ I2)T4
2(I2 ⊗DFT2) L4

2 x writ-
ten as an SPL program.

(matrix ((a11 ... a1n) ... (am1 ... amn)) ; generic matrix,
(diagonal (a11 ... ann)) ; generic diagonal matrix,
(permutation (k1 ... kn)) ; generic permutation matrix.

Parameterized matrices. SPL supports all parameterized matrices that are
required in the context of this thesis. Examples include (i) identity matrices
In, (ii) DFT matrices DFTn which are no further decomposed and denoted by
Fn, (iii) stride permutations Lmn

n , and (iv) twiddle factor matrices Tmn
n . The

respective SPL constructs are:

(I n) ; identity matrix,
(F n) ; discrete Fourier transform matrix,
(L mn n) ; stride permutation matrix,
(T mn n) ; twiddle factor matrix.

Matrix operations. Various matrix operations are supported by SPL, including
(i) the matrix product, (ii) the Kronecker product, and (iii) the direct sum. The
respective SPL constructs are:

(compose A1 ... An) ; matrix product,
(tensor A1 ... An) ; Kronecker product,
(direct_sum A1 ... An) ; direct sum.

In addition to matrix constructs, SPL provides tags to control the SPL com-
pilation process. For example, there are tags available to control the unrolling
strategy or the datatype (real versus complex) to be used (Xiong et al. [95]). For
example, the DFT4 algorithm given in equation (5.1) on page 78 can be written
in SPL as represented in Figure 4.1.
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SPL Compilation

The SPL compiler translates SPL formulas into optimized C or Fortran code.
The code is produced using standard optimization techniques and domain spe-
cific optimizations. Some optimizations like loop unrolling can be parameterized
to allow Spiral’s search module (see Figure 1.2 on page 22) to try different
implementations of the same formula.

Stage 1. In the first stage, the SPL code is parsed and translated into a bi-
nary abstract syntax tree. The internal nodes represent operators like tensor,
compose, or direct sum. The leave nodes represent SPL primitives like (I n),
(T mn n), and (L mn n).

Within this stage, not only the SPL program is parsed, but also the definitions
of the supported operators, primitives, symbols, and optimization techniques are
loaded. These definitions are part of SPL and can be extended by the user.

All constructs used in leaves of abstract syntax trees are symbols. A symbol is
a named abstract syntax tree, which is translated into a function call to compute
this part of the formula.

Stage 2. In the next stage the abstract syntax tree is translated into an internal
serial code representation (called i-code) using pattern matching against built-in
templates. For example, any SPL formula matching the template

(tensor (I any) ANY)

is translated into a loop of the second argument of tensor. any is a wildcard for
an integer (and the number of loop iterations), while ANY matches any SPL sub-
formula. The template mechanism is also used to apply important optimizations
for constructs like

(compose (tensor (I any) ANY) (T any any)).

In the optimization stage techniques like (partial) loop unrolling, dead code elim-
ination, constant folding, and constant propagation are applied to improve the
i-code. Special attention is paid to the use of temporary variables within the gen-
erated code. Optimizations are applied to minimize the dependencies between
variables and, if possible, scalars are used instead of arrays.

Stage 3. In the last stage, the optimized i-code is unparsed to the target lan-
guage C or Fortran. Various methods to handle constants and intrinsic functions
are available.



Chapter 5

Fast Algorithms for Linear Transforms

This chapter defines discrete linear transforms, fast algorithms for discrete linear
transforms, and summarizes the approach used in this thesis. The approach is
based on Kronecker product factorizations of transform matrices and on recursive
factorization rules. It mainly follows the methodology introduced by the Spiral

team, but extends the way complex transforms are described and introduces a
new way of describing Fftw’s recursion in this context.

5.1 Discrete Linear Transforms

This section defines discrete linear transforms as a foundation for the specific
discussion of fast Fourier transform algorithms in the next section. In this thesis,
all discrete linear transforms are considered. The general method is demonstrated
using the two-dimensional cosine transform and the Walsh-Hadamard transform
as examples. However, the main focus is on the discrete Fourier transform and
its fast algorithms based on the Cooley-Tukey recursion.

Discrete linear transforms are represented by real or complex valued matrices and
their application means to calculate a matrix-vector product. Thus, they express
a base change in the vector space of sampled data.

Definition 5.1 (Real Discrete Linear Transform) Let M ∈ R
m×n, x ∈ R

n,
and y ∈ R

m. The real linear transform M of x is the matrix-vector multiplication

y = M x.

Examples include the Walsh-Hadamard transform and the sine and cosine trans-
forms.

Definition 5.2 (Complex Discrete Linear Transform) Let M ∈ C
m×n,

x ∈ C
n, and y ∈ C

m. The complex linear transform M of x is again given
by the matrix-vector multiplication

y = M x.

A particularly important example and the main focus in this thesis is the discrete
Fourier transform (DFT), which, for size N , is given by the following definition.

77
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Definition 5.3 (Discrete Fourier Transform Matrix) The matrix DFTN is
defined for any N ∈ N with i =

√−1 by

DFTN =
(
e2πik�/N | k, � = 0, 1, . . . , N − 1

)
.

The values ωk�
N = e2πik�/N are called twiddle factors .

Example 5.1 (DFT Matrix) The first five DFT matrices are

DFT1 = (1), DFT2 =
(

1 1
1 −1

)
, DFT3 =

⎛⎝ 1 1 1
1 e−2πi/3 e−4πi/3

1 e−4πi/3 e−2πi/3

⎞⎠

DFT4 =

⎛⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞⎟⎟⎠ , DFT5 =

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 e−2πi/5 e−4πi/5 e−6πi/5 e−8πi/5

1 e−4πi/5 e−8πi/5 e−2πi/5 e−6πi/5

1 e−6πi/5 e−2πi/5 e−8πi/5 e−4πi/5

1 e−8πi/5 e−6πi/5 e−4πi/5 e−2πi/5

⎞⎟⎟⎟⎟⎠ .

DFT4 is the largest DFT matrix having only trivial twiddle-factors, i. e., 1, i,−1,−i.

Definition 5.4 (Discrete Fourier Transform) The discrete Fourier trans-
form y ∈ C

N of a data vector x ∈ C
N is given by the matrix-vector product

y = DFTN x.

Fast Algorithms

An important property of discrete linear transforms is the existence of fast algo-
rithms. Typically, these algorithms reduce the complexity from O(N2) arithmetic
operations, as required by direct evaluation via matrix-vector multiplication, to
O(N log N) operations. This complexity reduction guarantees their very efficient
applicability for large N .

Mathematically, any fast algorithm can be viewed as a factorization of the
transform matrix into a product of sparse matrices. It is a specific property
of discrete linear transforms that these factorizations are highly structured and
can be written in a very concise way using a small number of the mathematical
operators introduced in Chapter 4.

Example 5.2 (DFT4) Consider a factorization, i. e., a fast algorithm, for DFT4. Using the
mathematical notation from Chapter 4 it follows that

DFT4 =

⎛⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠

= (DFT2 ⊗ I2) · T4
2 · (I2 ⊗DFT2) · L4

2 .

(5.1)
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T4
2 denotes a twiddle matrix as defined in Section 4.5, i. e.,

T4
2 = diag(1, 1, 1, i).

L4
2 denotes a stride permutation as defined in Section 4.4 which swaps the two middle elements

x1 and x2 in a four-dimensional vector, i. e.,⎛⎜⎜⎝
x0

x2

x1

x3

⎞⎟⎟⎠ = L4
2

⎛⎜⎜⎝
x0

x1

x3

x3

⎞⎟⎟⎠ .

Automatic Derivation of Fast Algorithms

In Egner and Püschel [23] a method is introduced that automatically derives
fast algorithms for a given transform and size. This method is based on algebraic
symmetries of the transformation matrices utilized by the software package Arep

(Egner and Püeschel [22]), a library for the computer algebra system Gap [88]
used in Spiral. Arep is able to factorize transform matrices and to find fast
algorithms automatically. In Püschel [78] an algebraic derivation of fast sine and
cosine transform algorithms is described.

Recursive Rules

One key element in factorizing a discrete linear transform matrix into sparse
factor matrices is the application of breakdown rules or simply rules.

A rule is a sparse factorization of the transform matrix and breaks down the
computation of the given transform into transforms of smaller size. These smaller
transforms, which can be of a different type, can be further expanded using the
same or other rules. Thus rules can be applied recursively to reduce a large linear
transform to a number of smaller discrete linear transforms.

In breakdown rules, the transform sizes have to satisfy certain conditions
which are implicitly given by the rule. Here the transform sizes are functions of
some parameters which are denoted by lowercase letters. For instance, a break-
down rule for DFTN , whose size N has to be a product of at least two factors
(say m and n), is given by an equation for DFTmn. In such a rule, m and n are
subsequently used as parameters in the right-hand side of the rule.

Examples of discrete linear transforms featuring rules include the Walsh-
Hadamard transform (WHT), the discrete cosine transform (DCT) used, for in-
stance, in the JPEG standard (Rao and Hwang [81]), as well as the fast Fourier
transform (Cooley and Tukey [13]).

In the following examples Pn, P ′
n, and P ′′

n denote permutation matrices, Sn

denotes a bidiagonal and Dn a diagonal matrix (Wang [92]).

Example 5.3 (Walsh-Hadamard Transforms) The WHTN for N = 2k is given by

WHTN =

k times︷ ︸︸ ︷
DFT2 ⊗ . . . ⊗ DFT2 .
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A particular example of a rule for this transform is

WHT2k =
k∏

i=1

(
I2k1+···+ki−1 ⊗WHT2ki ⊗ I2ki+1+···+kt

)
, k = k1 + · · · + kt. (5.2)

Example 5.4 (Discrete Cosine Transforms) The DCTN for arbitrary N is given by

DCTN =
(
cos ((� + 1/2)kπ/N) | k, � = 0, 1, . . . , N − 1

)
.

A corresponding rule is

DCT2n = P2n (DCTn ⊕S2n DCTn D2n)P ′
2n (In ⊗DFT2)P ′′

2n.

Example 5.5 (Discrete Fourier Transforms) A rule for the DFTN matrix is given by

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m . (5.3)

(5.3) is the Cooley-Tukey FFT written in the notation of Chapter 4 (Johnson et al. [60]). It
will be discussed in more detail in Section 5.2 on page 83.

Transforms of higher dimension are also captured in this framework and naturally
possess rules. For example, if M is an N×N transform, then the corresponding
two-dimensional transform is given by M ⊗ M as indicated by Corollary 4.1.
Using the respective property of the tensor product, the rule

M ⊗ M = (M ⊗ IN) (IN ⊗M) (5.4)

is obtained.

The set of rules used in Spiral is constantly growing. A set of important rules
can be found in Püschel et al. [79] and Püschel et al. [80].

Formulas and Base Cases

Eventually a mathematical formula is obtained when all transforms are expanded
into base cases. When this framework is used to express Fftw’s Cooley-Tukey
recursion (see Section 5.2.5), the base cases are defined differently from the way
they are defined for use with Spiral and the newly developed short vector SIMD
algorithms. For instance, in Fftw codelets which correspond to larger transforms
are the base cases while in Spiral all formulas are fully expanded. Within the
newly developed short vector Cooley-Tukey (see Section 7.3) a new type of base
case called vector terminal is introduced. However, the general framework of
having recursive rules and base cases is intrinsic to all three approaches.

Example 5.6 (Fully Expanded Formula for WHT8) According to rule (5.2), WHT8 can
fully be expanded into

(DFT2 ⊗ I4)(I2 ⊗DFT2 ⊗ I2)(I4 ⊗DFT2)

with DFT2 being the base case.
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Trees and Recursion

The recursive decomposition of a discrete linear transform into smaller ones using
recursion rules can be expressed by trees. Fftw calls these trees plans while
Spiral calls these trees rule trees. In these trees the essence of the recursion—
the type and sizes of the child transforms—is specified.

As an example, rule trees for a recursion rule that breaks down a transform
of size N into two smaller transforms is discussed.

Figure 5.1 shows a tree of a discrete linear transform of size N = mn that is
decomposed into smaller transforms of the same type of sizes m and n. When
specific rules are used, the nodes have to carry the rule name.

��
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m n

mn

�� ��

Figure 5.1: Tree representation of a discrete linear transform of size N = mn with one
recursion step applied.

The node marked with mn is the parent node of the child nodes lying directly
below, which indicate here transforms of sizes m and n.

Analogously, Figure 5.2 shows a tree of a discrete linear transform of size
N = kmn where in a first step the transform is decomposed into discrete linear
transforms of size k and mn. In a second step the transforms of size mn are
further decomposed into transforms of size m and n.
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Figure 5.2: Right-expanded tree, two recursive steps.

In general, the splitting rules are not commutative with respect to m and n.
Thus, the trees are generally not symmetric. Left- and right-child nodes have to
be distinguished which is done simply by left and right branches.

In every tree there exists a root node, i. e., the upmost node which has no
“parents”. There are lowest nodes without “children” which are the leave nodes .

The upmost recursive decomposition in a tree, the one of the root node, is
called the top level decomposition. If its two branches are equivalent the tree is
called balanced , if they are nearly equivalent it is said to be “somewhat” bal-
anced. But there also exist trees that are not balanced at all. They may be even
extremely unsymmetrical. A tree with just leafs as left children is formed strictly
to the right. Such s tree is called right-expanded , its contrary left-expanded .
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The Search Space

By selecting different breakdown rules, a given discrete linear transform expands
to a large number of formulas that correspond to different fast algorithms. For
example, for N = 2k, there are k−1 ways to apply rule (5.3) to DFTN . A similar
degree of freedom recursively applies to the smaller DFTs obtained, which leads
to O(5k/k3/2) different formulas for DFT2k . In the case of the DFT, allowing
breakdown rules other than (5.3) further extends the formula space.

The problem of finding an efficient formula for a given transform translates
into a search problem in the space of formulas for that specific transform. The
size of the search space depends on the rules and transforms actually used.

The conventional approach for solving the search problem is to make an edu-
cated guess (with some machine characteristics as hints) which formula might lead
to an efficient implementation and then to continue by optimizing this formula.

The automatic performance tuning systems Spiral and Fftw use a differ-
ent approach. Both systems find fast implementations by intelligently looking
through the search space. Spiral uses various search strategies and fully ex-
pands the formulas. Fftw uses dynamic programming and restricts its search
to the coarse grain structure of the algorithm. The rules are hardcoded into the
executor while the fine grain structure is fixed by the codelet generator at compile
time.

Formula Manipulation

A given formula for a fast linear transform algorithm can be manipulated using
mathematical identities. Formula manipulation is used to exhibit the required
formula structure throughout this thesis. The goal is to develop a short-vector
specific set of formula manipulation rules which can be used to exhibit symbol-
ically vectorizable subexpressions. The identities defined in Chapter 4 are the
foundation for such manipulations. In Chapter 7 the short-vector specific ma-
nipulation rules are derived. Chapter 8 summarizes the inclusion of the newly
developed rules into Fftw and Spiral.

Complex Transforms

In the classical approach using Kronecker product factorization, complex trans-
forms are treated as complex valued entities throughout the formula manipula-
tion. Only at the stage of the actual translation into a program a formula is
coded using real arithmetic. When using programming languages featuring com-
plex data types the formula is never translated into real arithmetic at source code
level.

The actual hardware usually features only real arithmetic, and in case of short
vector SIMD extensions, additional restrictions like data alignment and strides
of real vectors are introduced.



5.2 The Fast Fourier Transform 83

Thus, throughout this thesis, the bar operator as defined in Section 4.6 is used
to obtain the real formulation of complex discrete linear transforms.

Example 5.7 (DFT4) The real version of the complex DFT4 is given by

DFT4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 0 1 −1 0 0 −1
0 1 −1 0 0 −1 1 0
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 0 −1 −1 0 0 1
0 1 1 0 0 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This introduces a new level of detail to the Kronecker product formalism, and
allows for an even closer connection between formulas and hardware features.

5.2 The Fast Fourier Transform

In the last section, discrete linear transforms and the discrete Fourier transform
were defined using the mathematical notation summarized in Chapter 4. It has
been demonstrated that discrete linear transforms feature an intrinsic recursive
structure.

In this section, different types of the Cooley-Tukey recursion are discussed
and the split radix algorithm is introduced. The difference between conventional
iterative algorithms and the recursive approach used by Spiral and Fftw is
discussed. Conventional iterative algorithms and vector computer algorithms are
summarized.

5.2.1 The Cooley-Tukey Recursion

In 1965 Cooley and Tukey [13] found the fast Fourier transform in a form which
is restricted to problem sizes being powers of two. Other authors extended the
idea from powers of two to arbitrarily composed numbers. A summary of the
historic development can be found in Van Loan [90].

Historically, FFT algorithms were obtained by applying breakdown rules re-
cursively and then manipulating the resulting formulas to obtain the respective
iterative algorithms. In the context of this thesis, the rules are more important
than the iterative algorithms. The respective FFT rules are named after the
algorithm where they first occurred.

Due to the degree of freedom introduced by Corollary 4.4, four different ver-
sions of the Cooley-Tukey recursion rule exist. For both tensor products in The-
orem 5.1, one can choose whether the identity matrix is the left or the right
factor. As these recursion steps can be utilized in different ways, all Cooley-
Tukey algorithms—both iterative and recursive ones—can be expressed using
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these four basic rules. Some of these algorithms require additional formula ma-
nipulation. Section 5.2.3 discusses the difference between the iterative and the
recursive approach and gives examples of well-known iterative algorithms.

Decimation in Time FFTs

The following theorem leads to the so-called decimation in time (DIT) FFT al-
gorithm when applied recursively. In the resulting formula the expressions in
parenthesis are to be regrouped to form computational stages.

Theorem 5.1 (DIT Cooley-Tukey Rule) For mn ≥ 2

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m .

Decimation in Frequency FFTs

The following theorem leads to the so-called decimation in frequency (DIF) FFT
algorithm when applied recursively. In the resulting formula the expressions in
parenthesis are to be regrouped to form computational stages.

Theorem 5.2 (DIF Cooley-Tukey Rule) For mn ≥ 2

DFTmn = Lmn
n (Im ⊗DFTn) Tmn

n (DFTm ⊗ In).

4-Step FFTs

The next theorem leads to the so-called four-step or vector FFT algorithm. This
rule usually is applied only once to exhibit the vector Kronecker product structure.
The resulting sub-problems are usually not computed using this rule.

Theorem 5.3 (Vector Cooley-Tukey Rule) For mn ≥ 2

DFTmn = (DFTm ⊗ In) Tmn
n Lmn

m (DFTn ⊗ Im).

Based on this theorem a cache oblivious FFT algorithm can be obtained as de-
scribed in Frigo et al. [34].

6-Step FFTs

The following theorem leads to the so-called six-step or parallel FFT algorithm.
The rule is applied only once to exhibit the parallel Kronecker product structure.
The resulting subproblems are usually not computed using this rule.

Theorem 5.4 (Parallel Cooley-Tukey Rule) For mn ≥ 2

DFTmn = Lmn
m (In ⊗DFTm) Lmn

n Tmn
n (Im ⊗DFTn) Lmn

m .
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This rule was developed by Bailey [10]. A second recursive application of this
rule is the prerequisite for parallel one-dimensional FFT algorithms which overlap
communication and computation (Franchetti et al. [26], and Karner and Ueber-
huber [63]).

5.2.2 Cooley-Tukey Vector Recursion

A recursion rule that enables operations on short vectors is given by the Cooley-
Tukey vector recursion. This recursion rule is included in Fftw 2.1.3 as an
experimental option. It turned out to be of vital importance for the short vector
SIMD adaptation within Fftw and for short vector SIMD implementations of
FFTs in general.

Theorem 5.5 (Cooley-Tukey Vector Recursion) For N = kmn ≥ 2 the
construct (Im ⊗DFTn) Lmn

m in Theorem 5.1 can be factored alternatively into

(Im ⊗DFTkn) Lmkn
m = Im ⊗(DFTk ⊗ In) Tkn

n

(Lmk
m ⊗ In)(Ik ⊗(Im ⊗DFTn) Lmn

m︸ ︷︷ ︸
(a)

)(Lkn
k ⊗ Im).

Proof: Application of Theorem 5.1 to

(Ik ⊗DFTmn) Lkmn
k

leads to

(Imk ⊗DFTn︸ ︷︷ ︸
(1)

)(Im ⊗Lkn
k ) Lmkn

m .

Applying Property 4.9 to construct (1) leads to

Imk ⊗DFTn = (Ik ⊗ Im ⊗DFTn)Lmk
k ⊗ In

= (Lmk
m ⊗ In)(Ik ⊗ Im ⊗DFTn)(Lmk

k ⊗ In)(Im ⊗Lkn
k ) Lkkn

m .

Now Property 4.24 leads to

(Lmk
m ⊗ In)(Ik ⊗ Im ⊗DFTn)(Ik ⊗Lmn

m )(Lkn
k ⊗ Im)

which proves the theorem. �
Theorem 5.5 is “pushing” the factor Im down the recursion to DFTn. Construct
(a) is of the same type as the original construct and thus the rule can be ap-
plied recursively. All tensor products except those in construct (a) are of vector
type with vector lengths m and n and all stride permutations except the one in
construct (a) occur as factors in such vector tensor products.
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5.2.3 Iterative vs. Recursive FFT Algorithms

This section outlines two basic strategies in organizing FFT programs. For the
implementation of an FFT algorithm there exist two divergent strategies for suc-
cessively applying one of the theorems introducing the Cooley-Tukey rules.

Recursive Methods: The multiplication by the DFT matrix is performed by
calling program modules which compute the subproblems according to the
chosen rule. The child problems are further decomposed by recursively
calling the same program again and again until the DFTs are small enough
to be executed directly by optimized leaf routines. This approach is used
by Spiral and Fftw.

Iterative Methods: The FFT code contains the entire matrix decomposition
explicitly and manages all tasks directly. Thus, all recursive decomposition
steps are flatted and the computation is done stagewise leading to con-
ventional triple loop FFT implementations (Van Loan [90]) which perform
the DFT computation stagewise and each stage requires an additional pass
through the data vector. The respective formulas are given by Theorems 5.6
through 5.10.

Recursive FFTs

The approach to discrete linear transforms used in this thesis follows the foun-
dations of the Spiral system and applies the recursion idea to all discrete linear
transforms, including the DFT.

While divide-and-conquer is a standard formulation for FFTs in introductory
texts, almost all non-adaptive high performance FFTs use an iterative implemen-
tation. This is due to the widespread opinion that recursive divide-and-conquer
algorithms are too expensive. Traditionally, the required function calls are among
the computationally most expensive instructions.

However, an intriguing feature of divide-and-conquer algorithms is that they
should run well on computers with deep memory hierarchies without the need for
blocking or tiling. Each successive “divide” step in the divide-and-conquer process
generates subproblems that touch successively smaller portions of data. For any
level of the memory hierarchy, there is a level of division below which all the
data touched by the subproblem will fit into that level of the memory hierarchy.
Therefore, a divide-and-conquer algorithm can be viewed as an algorithm that is
blocked for all levels of the memory hierarchy.

In the recent development of computer systems any memory access became
more and more expensive when compared to function calls. Fftw finally broke
from the tradition of iterative implementations of FFTs for the sake of higher
performance and implement a recursive hardware adaptive FFT computation.

Spiral applies recursion to all discrete linear transforms. It generates and
optimizes one library function for each transform and problem size. As outlined in
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this chapter, Spiral intrinsically produces recursive codes. However, for better
performance the recursion is partly unrolled while the data access pattern is
preserved.

Iterative FFTs

All conventional (non-adaptive) FFT algorithms have an iterative structure. The
first FFT algorithm published by Cooley and Tukey was a right-expanded radix-2
factorized FFT, its decomposition strategy was clear and explicitly implemented.
For decades the execution of an FFT was seen as a sequence of computational
stages; each stage corresponding to one factor of the products which define algo-
rithms in the modern notation.

Typically, a Cooley-Tukey FFT algorithm for data vectors of length N = 2n

is implemented in form of a triple-loop.
While the design and programming of such implementations is rather easy,

performance may not be optimal because vector lengths vary from stage to stage
and therefore the cache usage is suboptimal. Yet, as long as the input vector
fits into the cache memory entirely the iterative strategy was superior because
there is no overhead due to additional program organization which was expen-
sive on earlier computer generations. On current computer systems such a clear
statement is not possible any more.

An iterative algorithm obtained by repeated application of the DIT recursion
rule with equal sizes is the single radix DIT algorithm.

Theorem 5.6 (Single-Radix DIT Factorization) For N = pn

DFTpn =
[ n∏

j=1

(Ipj−1 ⊗DFTp ⊗ Ipn−j)(Ipj−1 ⊗Tpn−j+1

pn−j )
]
Rpn , (5.5)

with

Rpn :=
n−1∏
j=1

(Ipn−j−1 ⊗Lpj+1

p ) . (5.6)

The permutation matrix Rpn is said to be a bit reversal matrix as it orders the
entries of the data vector numbered in the base of the radix (e. g., binary numbers
for a radix-2 factorization) according to those numbers obtained by reversing the
order of the digits of the position numbers (Van Loan [90]). This matrix is an
example of a digit permutations introduced matrix (see Section 4.4).

Example 5.8 (Radix-2 DIT FFT Algorithm) A commonly used FFT algorithm for vec-
tor lengths N = 2k is the radix-2 DIT algorithm given by

DFT2n =
[ n∏

j=1

(I2j−1 ⊗DFT2 ⊗ I2n−j )(I2j−1 ⊗T2n−j+1

2n−j )
]
R2n .
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An iterative algorithm obtained by repeated application of the DIF recursion rule
with the same sizes is the single radix DIF algorithm.

Theorem 5.7 (Single-Radix DIF Factorization) For N = pn

DFTpn = Rpn

[ n∏
j=1

(Ipn−j ⊗Tpj

pj−1)(Ipn−j ⊗DFTp ⊗ Ipj−1)
]
. (5.7)

If—in contrast to the single radix algorithms above—different values are used for
the breakdown rule, an iterative mixed radix DIT algorithm is obtained.

Theorem 5.8 (Mixed-Radix DIT Factorization) For N = p1p2 · · · pn ≥ 2
and p0 := 1, pn+1 := 1

DFTp1···pn =
[ n∏

j=1

(Ip0···pj−1
⊗DFTpj

⊗ Ipj+1···pn+1)(Ip0···pj−1
⊗Tpj ···pn

pj+1···pn+1
)
]
R̃p1···pn

with

R̃p1···pn =
n−1∏
j=1

(Ip0···pn−j−1
⊗Lpn−j ···pn

pn−j
) .

The Stockham Algorithm

Any iterative Cooley-Tukey FFT algorithm is composed of a computation phase
which is linear algebra-like and an order phase which does not execute arithmetic
operations but just performs data reordering.

Several strategies have been developed to achieve structural adaptations of the
FFT’s computation phase to vector processors. Yet the order phase makes things
difficult. The reordering due to the bit-reversal matrix can neither be applied
in-place nor be vectorized efficiently. Consequently it decreases decisively the
speedup obtained by vectorization of the computation phase.

Consequently, the adaptation of FFT algorithms to vector processors concen-
trates on developing methods to avoid an explicit order phase. To achieve this
goal, the data must be ordered within the computational stages step by step, just
in the manner to produce an ordered output.

The single-radix Stockham DIT algorithm (Swarztrauber [86], Van Loan [90])
is an example for FFT algorithms suitable for conventional vector computers.

Theorem 5.9 (Single-Radix Stockham DIT Factorization) For N = pn,
the Stockham DIT factorization (also called Stockham I factorization) is given
by

DFTN =
n∏

j=1

(DFTp ⊗ Ipn−1)(Tpn−j+1

pn−j ⊗ Ipj−1)(Lpn−j+1

p ⊗ Ipj−1) . (5.8)
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Transposition of the Stockham DIT factorization leads to the Stockham DIF FFT
variant.

Theorem 5.10 (Single-Radix Stockham DIF Factorization) For N =
pn, the Stockham DIF factorization (also called Stockham II factorization) is
given by

DFTN =
n∏

j=1

(Lpj

pj−1 ⊗ Ipn−j)(Tpj

pj−1 ⊗ Ipn−j)(DFTp ⊗ Ipn−1) . (5.9)

Vector Computer FFT Algorithms and Short Vector Extensions

The two Stockham FFT algorithms and the 4-step FFT algorithm have been
designed specifically for conventional vector computers. In principle, these algo-
rithms could be used also on processors featuring short vector SIMD extensions,
but they have several drawbacks there.

Complex Arithmetic. These algorithms are formulated using complex ma-
trices. However, as outlined in Section 5.1, it is necessary to reformulate
complex transforms using real matrices and formulas to capture the level
of details required for short vector SIMD extensions.

Vector Length and Stride. All three algorithms are optimized for long vec-
tors . The Stockham algorithms are optimized for fixed stride but not for
unit stride memory access. Accordingly, these algorithms do not produce
good performance when running on short vector SIMD extensions.

Iterative Algorithms. The very nature of the two Stockham FFT algorithms
and the 4-step FFT algorithm is an iterative one which conflicts with the
requirements of Spiral and Fftwto support adaptivity.

Thus, algorithms specifically designed for conventional vector computers are not
suitable for modern short vector SIMD extensions.

5.2.4 The Split-Radix Recursion

Split-radix FFT algorithms for transform lengths N = 2n have been introduced
in the early eighties (Duhamel [19, 20], Duhamel and Hollmann [21], Sorensen
et al. [85], Vetterli and Duhamel [91]).

The split-radix recursion rule differs from the Cooley-Tukey recursion, as it
breaks down a larger transform into three smaller transforms, two of them being
of half the size of the third. This rule leads to the lowest arithmetic complexity
among all FFT algorithms and on current architectures it is used mainly for
smaller kernel routines or recursion steps near to the end of the recursion. The
split-radix FFT algorithm is recursive.
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Split-radix algorithms use a particular splitting strategy which is based in
principle on the Cooley-Tukey splitting. However, split-radix algorithms are
based on a clever synthesis of FFT decompositions according to different radices
which makes it impossible to obtain them using the classical Cooley-Tukey fac-
torization. It rather follows the principle that independent parts of the FFT
algorithm should be computed independently. Each part should use the opti-
mum computational scheme, regardless of what scheme is used for other parts of
the algorithm.

The split-radix approach reduces the number of arithmetic operations required
to calculate the FFT in comparison to the Cooley-Tukey algorithm. The split-
radix decomposition is constructed to produce as many trivial twiddle-factors as
possible. Thus, in particular the number of multiplication operations is greatly
reduced.

As empirical performance assessment shows, the number of arithmetic opera-
tions is no longer an adequate performance measure on current computer archi-
tectures. The split-radix algorithm is competitive with recursive Cooley-Tukey
algorithms only for very small problem sizes or in kernel routines where the whole
working set easily fits into cache or even in the register file.

The following theorem formulates the Split-radix DIF rule in the mathematical
notation introduced in Chapter 4.

Theorem 5.11 (Split-Radix-2/4 DIF Rule) For N = 2n ≥ 4

DFTN = P
(2/4)
N DFT

(2/4)
N T

(2/4)
N A

(2/4)
N

with

P
(2/4)
N = LN

N/2 (IN/2 ⊕L
N/2
N/4) ,

DFT
(2/4)
N = DFTN/2 ⊕(I2 ⊗DFTN/4) ,

T
(2/4)
N = IN/2 ⊕

(
Ω4,N/4 ⊕ (Ω4,N/4)

3
)

,

A
(2/4)
N =

(
IN/2 ⊕(DFT2 Ω2,2 ⊗ IN/4)

)
(DFT2 ⊗ IN/2) ,

Ωm,n = diag(1, ωN/m, ω2
N/m, . . . , ωn−1

N/m) .

Only the matrix T
(2,4)
N contains nontrivial twiddle-factors as Ω2,2 = diag(1,−i).

5.2.5 The Cooley-Tukey Recursion in FFTW

Although the Fftw framework uses the Cooley-Tukey algorithm as specified in
Theorem 5.1,

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m ,

a specific interpretation of the final formulas is required to achieve the order of
the computation as it is done by Fftw.
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Figure 5.3: Comparison of the normalized arithmetic complexity (πR/N log N) of radix-2,
radix-4, and split-radix-2/4 FFT algorithms (multiplications by trivial twiddle-factors can be
avoided and are thus not included).

Fftw is the prototypical hardware adaptive recursive implementation of the
Cooley-Tukey algorithm. Theorem 5.1 can also be written as

DFTmn =

(
n−1∑
i=0

Wmn,m
i,n DFTm Rmn,m

i,n

)
Tmn

n

(
m−1∑
i=0

Wmn,n
in,1 DFTn Rmn,n

i,m

)
(5.10)

using Corollaries 4.10, 4.8, and 4.9. Fftw does not use the Kronecker product
formalism but uses the formulation as recursive algorithm.

The following algorithm describes the formulation used by Fftw using the
framework of Chapter 4. Thus a connection between the Kronecker product
formalism and the algorithmic formulation is established.

Algorithm 5.1 (y := DFTmn x)

do i = 0, m − 1
t1 := Rmn,n

i,m x
t1 := DFTn t1
update(t′, Wmn,n

in,1 , t1)
end do
t′ := Tmn

n t′

do i = 0, n − 1
t2 := Rmn,m

i,n t′
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t2 := DFTm t2
update(y, Wmn,m

i,n , t2)
end do

To apply the short vector SIMD vectorization derived in Chapter 7 to Fftw, it is
required to use the formal connection between the Kronecker product formalism,
the RW notation, and the algorithmic description. Throughout this chapter this
connection is used, always starting from Kronecker products and finally leading
to the actual code.

A major property of Fftw is its restriction to rightmost trees. Practical
experiments show that rightmost trees perform well as they achieve memory
locality (Haentjens [40]). Restriction to rightmost trees leads to only two different
types of basic blocks required by Fftw: (i) twiddle codelets and (ii) no-twiddle
codelets .

This section shows how the Fftw recursion, the twiddle codelets and the
no-twiddle codelets interact to compose the Cooley-Tukey FFT algorithm.

FFTW’s Codelets

Definition 5.5 (No-twiddle Codelet) An Fftw no-twiddle codelet of size m
performs a DFTm on m elements of the data vector of size N that are specified
by the input and output base bi and bo, and the input and output access stride
si and so:

FNT bi,si,bo,so

m,N = WN,m
bo,so

DFTm RN,m
bi,si

.

Due to the different input and output strides, a no-twiddle codelet has to be
computed out-of-place.

Definition 5.6 (Twiddle Codelet) An Fftw twiddle codelet of size m is de-
fined by

FTW b,s,d
m,N,k =

k−1∑
i=0

WN,m
b+id,s DFTm Tmk

k,i RN,m
b+id,s .

It performs the operation

(DFTm ⊗ Ik) Tmk
k =

k−1∑
i=0

Wmk,m
i,k DFTm Tmk

k,i Rmk,m
i,k (5.11)

with Tmk
k,i being defined by

k−1⊕
i=0

Tmk
k,i =

(
Tmk

k

)Lmk
k .

Corollaries 4.7 and 4.9, as well as Properties 4.4 and 4.5 provide the distributivity
required for equation (5.11). Thus, a twiddle codelet operates on a subvector of
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size mk of a vector of size N that is accessed from base b at stride s and distance
d, and applies scaling by Tmk

k combined with k DFTs of size m. A twiddle codelet
can be computed in-place.

FFTW’s Cooley-Tukey Recursion

Fftw’s Cooley-Tukey recursion implements Theorem 5.1, i. e., Algorithm 5.1. In
each recursion step, the parameter m is chosen such that DFTm and the twiddle
factors can be computed using twiddle codelets, and DFTn is further decomposed
recursively. Finally, DFTn and the stride permutations are computed using no-
twiddle codelets.

This section describes Fftw’s Cooley-Tukey recursion using the Kronecker
product formalism and RW notation.

Theorem 5.12 (FFTW’s Cooley-Tukey Recursion) The recursion used in
Fftw applies the Cooley-Tukey DIT rule

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m

to a subvector of size mn of a data vector of size N . The input is read from the
base bi with stride si and written to the base bo at stride so. The recursion is
given by

WN,mn
bo,so

DFTmn RN,mn
bi,si

= FTW bo,nso,so

m,N,n

m−1∑
i=0

(
WN,n

bo+inso,so
DFTn RN,n

bi+isi,msi︸ ︷︷ ︸
(a)

)
.

Construct (a) is of the same structure as the original problem and thus the recur-
sion can be applied again if n = rs. Once n becomes small enough, construct (a)
can be computed using a no-twiddle codelet, i. e.,

FNT bi+isi,msi,bo+inso,so

n,N = WN,n
bo+inso,so

DFTn RN,n
bi+isi,msi

.

Proof: First, the Cooley-Tukey recursion (Theorem 5.1) is applied:

WN,mn
bo,so

DFTmn RN,mn
bi,si

= WN,mn
bo,so

(DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m WN,mn
bo,so

Next, the tensor products, the stride permutation and the twiddle factor matrix
are decomposed using Corollaries 4.7, 4.8, and 4.9, as well as Properties 4.4 and
4.5. This leads to

WN,mn
bo,so

(
n−1∑
i=0

Wmn,m
i,n DFTm Tmn

n,i Rmn,m
i,n

)(
m−1∑
i=0

Wmn,n
in,1 DFTn Rmn,n

i,m

)
RN,mn

bo,so
.

Now Property 4.6 is used and thus

Imn = RN,mn
bo,so

WN,mn
bo,so
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is inserted between the two major factors. As both RN,mn
bo,so

and WN,mn
bo,so

as well

as WN,mn
bo,so

and WN,mn
bo,so

are independent of i, these factors can be moved into the
sums leading to the first factor

n−1∑
i=0

(
WN,mn

bo,so
Wmn,m

i,n DFTm Tmn
n,i Rmn,m

i,n RN,mn
bo,so

)
and the second factor

m−1∑
i=0

(
WN,mn

bo,so
Wmn,n

in,1 DFTn Rmn,n
i,m RN,mn

bo,so

)
.

Applying Properties 4.4 and 4.5 leads to the following expression for the whole
computation.

n−1∑
i=0

(
WN,m

bo+iso,nso
DFTm Tmn

n,i RN,m
bo+iso,nso

)m−1∑
i=0

(
WN,n

bo+inso,so
DFTn RN,n

bi+isi,msi

)
.

Identifying the left sum with the definition of the twiddle codelet leads to

FTW bo,nso,so

m,N,n

m−1∑
i=0

(
WN,n

bo+inso,so
DFTn RN,n

bi+isi,msi

)
which proves the theorem. �
Appendix E.1 shows the Fftw framework in pseudo code. There the executor
implements the Cooley-Tukey recursion rule. The codelets do the actual compu-
tation. Note the close connection between the formal derivation presented in this
section and the actual code.

Example 5.9 (FFTW’s Recursion for N = rstu) Suppose a DFT computation using
three twiddle codelet stages and one no-twiddle stage. Using Theorem 5.1 for m = r and
n = stu leads to

DFTrstu = (DFTr ⊗ Istu)Trstu
stu (Ir ⊗DFTstu) Lrstu

r .

Applying Theorem 5.1 again for m = s and n = tu leads to

DFTrstu = (DFTr ⊗ Istu)Trstu
stu (Ir ⊗

(
(DFTs ⊗ Itu)Tstu

tu (Is ⊗DFTtu) Lstu
s

)
Lrstu

r .

Applying Theorem 5.1 a last time with m = t and n = u leads to the final expansion:

DFTrstu = (DFTr ⊗ Istu)Trstu
stu (Ir ⊗

(
(DFTs ⊗ Itu)Tstu

tu

(Is ⊗
(
(DFTt ⊗ Iu)Ttu

u (It ⊗DFTu) Ltu
t

)
Lstu

s

)
Lrstu

r .

The same expansion is now derived using Fftw’s recursion rule and the codelets’ definition.
The result is an expression featuring three nested loops. By choosing the innermost loop index
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Twiddle m = r Twiddle m = s Twiddle m = t No-twiddle m = u

N rstu rstu rstu rstu
mn rstu stu tu
m r s t u
n stu tu tu
bi 0 i i + jr i + jr + krs
si 1 r rs rst
bo 0 istu istu + jtu istu + jtu + ku
so 1 1 1 1

Table 5.1: Recursion steps applying Fftw’s Cooley-Tukey rule (Theorem 5.12) three times
to N = rstu with the respective loop indices i, j, and k.

running fastest and the outermost loop index running slowest (the natural choice according to
the loop structure) Fftw’s recursion is shown unrolled:

DFTrstu = FTW 0,stu,1
r,rstu,stu

r−1∑
i=0

(
FTW istu,tu,1

s,rstu,tu

s−1∑
j=0

(
FTW istu+jtu,u,1

t,rstu,u

t−1∑
j=0

(
FNT i+jr+krs,rst,istu+jtu+ku,1

u,rstu

)))
.

Fftw’s planner has the possibility to choose from different factorizations

N = n0n1 · · ·nk

where both k and ni can be chosen. The best choice is found using dynamic programming and
run time measurement.

The Cooley-Tukey Vector Recursion

Fftw 3.1.2 features an experimental implementation of the Cooley-Tukey vector
recursion as given by Theorem 5.5.

This section describes Fftw’s Cooley-Tukey vector recursion using the Kro-
necker product formalism and the RW notation.

Theorem 5.13 (FFTW’s Cooley-Tukey Vector Recursion) Fftw’s Coo-
ley-Tukey vector recursion computes

(Im ⊗DFTk1k2n) Lmk1k2n
m = Im ⊗(DFTk1 ⊗ Ik2n) Tk1k2n

k2n

(Lmk1
m ⊗ Ik2n)

(Ik1 ⊗(Im ⊗DFTk2n) Lmk2n
m )

(Lk1k2n
k1

⊗ Im).
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Once k2 = 1 is reached, the recursion stops and the respective leaf is

(Im ⊗DFTn) Lmn
m = Lmn

m (DFTn ⊗ Im).

Proof: Applying Theorem 5.5 with m = m, k = k1 and n = k2n leads to the
recursion rule and Property 4.4 accounts for the leaf rule. �

Thus, any operations apart from the leaf operations are carried out on vectors
of length m and n. The construct Im originating from the topmost splitting is
pushed down to DFTn.

The vector recursion can be expressed in terms of twiddle codelets and no-
twiddle codelets analogous to the standard Cooley-Tukey recursion.

Example 5.10 (FFTW’s Vector Recursion for N = rstu) Suppose a DFT computation
using three twiddle codelet stages and one no-twiddle stage. Using Theorem 5.1 leads to

DFTrstu = (DFTr ⊗ Istu)Trstu
stu (Ir ⊗DFTstu) Lrstu

r .

Applying Theorem 5.13 for m = r, k1 = s, k2 = t, and n = u to the right construct leads to

DFTrstu = (DFTr ⊗ Istu)Trstu
stu(

Ir ⊗(DFTs ⊗ Itu)Tstu
tu

)
(Lrs

r ⊗ Itu)
(Is ⊗(Ir ⊗DFTtu) Lrtu

r )
(Lstu

s ⊗ Ir).

Applying Theorem 5.13 a second time with m = r, k1 = t, k2 = 1, and n = u leads to

DFTrstu = (DFTr ⊗ Istu)Trstu
stu(

Ir ⊗(DFTs ⊗ Itu)Tstu
tu

)
(Lrs

r ⊗ Itu)
(Is ⊗

(
Ir ⊗(DFTt ⊗ Iu)Ttu

u

)
(Lrt

r ⊗ Iu)(It ⊗(Ir ⊗DFTu) Lru
r )(Ltu

t ⊗ Ir))

(Lstu
s ⊗ Ir).

Applying the leaf transformation of Theorem 5.13 leads to the final expansion:

DFTrstu = (DFTr ⊗ Istu)Trstu
stu(

Ir ⊗(DFTs ⊗ Itu)Tstu
tu

)
(Lrs

r ⊗ Itu)
(Is ⊗

(
Ir ⊗(DFTt ⊗ Iu)Ttu

u

)
(Lrt

r ⊗ Iu)(It ⊗Lru
r (DFTu ⊗ Ir))(Ltu

t ⊗ Ir))

(Lstu
s ⊗ Ir).

Except from Lru
r , any expression in this formula is either a (i) twiddle factor, (ii) of the form

A ⊗ Ir, or (iii) of the form A ⊗ Iu. Fftw computes this formula using twiddle and no-twiddle
codelets exhibiting a maximum of memory access locality.



Chapter 6

A Portable SIMD API

Short vector SIMD extensions are advanced architectural features. Utilizing the
respective instructions to speed up applications introduces another level of com-
plexity and it is not straightforward to produce high performance codes.

The reasons why short vector SIMD instructions are hard to use are the
following: (i) They are beyond standard (e. g., C) programming. (ii) They re-
quire an unusually high level of programming expertise. (iii) They are usually
non-portable. (iv) Compilers in general don’t (can’t) use these features to a sat-
isfactory extent. (v) They are changed/extended with every new architecture.
(vi) It is not clear where and how to use them. (vii) There is a potential high
payoff (factors of 2, 4, and more) for small and intermediate problem sizes whose
solution cannot be accelerated with multi-processor machines but there is also
potential speed-up for large scale problems.

As discussed in the Chapter 3, a sort of common programming model was
established recently. The C language has been extended by new data types ac-
cording to the available registers and the operations are mapped onto (intrinsic
or built-in functions) functions.

Using this programming model, a programmer does not have to deal with
assembly language. Register allocation and instruction selection is done by the
compiler. However, these interfaces are not standardized neither across differ-
ent compiler vendors on the same architecture nor across architectures. But for
any current short vector SIMD architecture at least one compiler featuring this
interface is available. Note, that for IPF currently only SSE is supported via com-
pilers. Thus, IPF’s SIMD instructions cannot be utilized in native mode within
C codes yet.

Careful analysis of the instructions required by the code generated for dis-
crete linear transforms within the context of this thesis allowed to define a set
of C macros—a portable SIMD API—that can be implemented efficiently on all
current architectures and features all necessary operations. The main restric-
tion turned out to be that across all short vector SIMD extensions only naturally
aligned vectors can be loaded and stored highly efficient. All other memory access
operations lead to performance degradation and possibly to prohibitive perfor-
mance characteristics.

All codes generated in the scope of this thesis use the newly defined portable
SIMD API. This portable SIMD API serves two main purposes: (i) to abstract
from hardware peculiarities, and (ii) to abstract from special compiler features.
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Abstracting from Special Machine Features

In the context of this thesis all short vector SIMD extensions feature the function-
ality required in intermediate level building blocks. However, the implementation
of such building blocks depends on special features of the target architecture.
For instance, a complex reordering operation like a permutation has to be im-
plemented using register-register permutation instructions provided by the target
architecture. In addition, restrictions like aligned memory access have to be han-
dled. Thus, a set of intermediate building blocks has to be defined which (i) can
be implemented on all current short vector SIMD architectures and (ii) enables
all discrete linear transforms to be built on top of these building blocks. This set
is called the portable SIMD API.

Appendix B describes the relevant parts of the instruction sets provided by
current short vector SIMD extensions.

Abstracting from Special Compiler Features

All compilers featuring a short vector SIMD C language extension provide the
required functionality to implement the portable SIMD API. But syntax and
semantics differ from platform to platform and from compiler to compiler. These
specifics have to be hidden in the portable SIMD API.

Table 3.1 (on page 40) shows that for any current short vector SIMD extension
compilers with short vector SIMD language extensions exist.

6.1 Definition of the Portable SIMD API

The portable SIMD API includes macros of four types: (i) data types, (ii) con-
stant handling, (iii) arithmetic operations, and (iv) extended memory operations.
An overview of the provided macros is given below. Appendix C contains exam-
ples of actual implementations of the portable SIMD API on various platforms.
All examples of such macros displayed in this section suppose a two-way or four-
way short vector SIMD extension. The portable SIMD API can be extended to
arbitrary vector length ν. Thus, optimization techniques like loop interleaving
(Gatlin and Carter [37]) can be implemented on top of the portable SIMD API.

Data Types

The portable SIMD API introduces three data types, which are all naturally
aligned: (i) Real numbers of type float or double (depending on the extension)
have type simd_real. (ii) Complex numbers of type simd_complex are pairs of
simd_real elements. (iii) Vectors of type simd_vector are vectors of ν elements
of type simd_real.
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For two-way short vector SIMD extensions the type simd_complex is equal to
simd_vector.

Nomenclature. In the remainder of this section, variables of type simd_vector
are named t, t0, t1 and so forth. Memory locations of type simd_vector are
named *v, *v0 , *v1 and so forth. Memory locations of type simd_complex

are named *c, *c0, *c1 and so forth. Memory locations of type simd_real are
named *r, *r0, *r1 and so forth. Constants of type simd_real are named r, r0,
r1 and so forth.

Table 6.1 summarizes the data types supported by the portable SIMD API.

API type Elements

simd_real single or double
simd_complex a pair of simd_real
simd_vector native data type, vector length ν,

for two-way equal to simd_complex

Table 6.1: Data types provided by the portable SIMD API.

Constant Handling

The portable SIMD API provides declaration macros for the following types of
constants whose values are known at compile time: (i) the zero vector, (ii) ho-
mogeneous vector constants (all components have the same value), and (iii) in-
homogeneous vector constants (all components have different components).

Three types of constant load operations have bee introduced: (i) load a con-
stant (both homogeneous and inhomogeneous) that is known at compile time, (ii)
load a constant vector (both homogeneous and inhomogeneous) that is precom-
puted at run time (but not known at compile time), and (iii) load a precomputed
constant real number and build a homogeneous vector constant with that value.

Table 6.2 shows the most important macros for constant handling.

Macro Type

DECLARE_CONST(name, r) compile time homogeneous
DECLARE_CONST_2(name, r0, r1) compile time inhomogeneous
DECLARE_CONST_4(name, r0, r1, r2, r3) compile time inhomogeneous
LOAD_CONST(name) compile time
LOAD_CONST_SCALAR(*r) precomputed homogeneous real
LOAD_CONST_VECT(*v) precomputed vector
SIMD_SET_ZERO() compile time homogeneous

Table 6.2: Constant handling operations provided by the portable SIMD API.



100 6. A Portable SIMD API

Arithmetic Operations

The portable SIMD API provides real addition, multiplication, and subtraction
operations, the unary minus, two types of fused multiply-add operations, and a
complex multiplication. Both variants that either modify a parameter or that
return the result exist. See Table 6.3 for a summary.

Macro Operation

VEC_ADD_P(v, v0, v1) v = v0 + v1

VEC_SUB_P(v, v0, v1) v = v0 − v1

VEC_UMINUS_P(v, v0) v = −v0

VEC_MUL_P(v, v0, v1) v = v0 × v1

VEC_MADD_P(v, v0, v1, v2) v = v0 × v1 + v2

VEC_NMSUB_P(v, v0, v1, v2) v = −(v0 × v1 − v2)
COMPLEX_MULT(v0, v1, v2, v0 = v2 × v4 − v3 × v5

v3, v4, v5) v1 = v2 × v5 + v3 × v4

VEC_ADD(v0, v1) return (v0 + v1)
VEC_SUB(v0, v1) return (v0 − v1)
VEC_UMINUS(v0) return −v0

VEC_MUL(v0, v1) return (v0 × v1)
VEC_MADD(v0, v1, v2) return v0 × v1 + v2

VEC_NMSUB(v0, v1, v2) return −(v0 × v1 − v2)

Table 6.3: Arithmetic operations provided by the portable SIMD API.

Extended Memory Operations

The portable SIMD API features three types of memory operations. All vector
reordering operations are part of the memory access operations as all permuta-
tions are joined with load or store operations. The portable SIMD API provides
three types of memory access operations which are described in the following:
(i) plain vector load and store, (i) vector memory access plus permutation, and
(iii) generic memory access plus permutation. The semantics of all load oper-
ations is to load data from memory locations which are not necessarily aligned
nor vectors into a set of vector variables. The semantics of all store operations
is to store a set of vector variables at specific memory locations which are not
necessarily aligned nor vectors.

Tables 6.4, 6.5, and 6.6 show the most important macros for memory access.

Vector Memory Access. The macros VEC_LOAD and VEC_STORE load or store
naturally aligned vectors from or to memory, respectively. These are the most
efficient operations for memory access.

Vector Memory Access plus Permutation. A basic set of permutations of
n vector variables is supported. For load operations, n vectors are loaded from
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memory, permuted accordingly and then stored into n vector variables. The
store operations first permute and then store vector variables respectively. The
supported permutations are

Iν Jν L2ν
2 L2ν

ν Lν2

ν Lν
2 ⊗ I2

which lead to

I2 I4 J2 J4 L4
2 L8

2 L8
4 L16

4 L4
2 ⊗ I2

in the case of two-way and four-way short vector SIMD extensions. The case
Iν is the standard vector memory access. The load and store macros are de-
fined according to these permutations. This leads to macros like LOAD_L_4_2,
STORE_J_4, and LOAD_L_16_4.

Generic Memory Access plus Permutation. These macros are a gener-
alization of the vector memory access macros. The implementation of general
permutations require these macros which are not directly supported by all short
vector SIMD extensions.

Instead of accessing whole vectors, these macros imply memory access at
the level of real or complex numbers. Depending on the underlying hardware,
these operations may require scalar, subvector or vector memory access. The
performance of such permutations depends strongly on the target architecture.

For instance, on SSE, properly aligned memory access for complex numbers
does not degrade performance very much. For two-way short vector SIMD exten-
sions complex numbers are native vectors. However, on AltiVec these memory
operations feature prohibitive performance characteristics as such a macro can
result in many vector memory accesses and permutation operations.

These operations lead to macros like LOAD_L_4_2_R which loads four real num-
bers from arbitrary locations and then performs a L4

2 operation, or STORE_8_4_C
which performs a L8

4 and then stores pairs of real numbers properly aligned at
arbitrary locations.

Macro Access Permutation

LOAD_VECT(t, *v) vector Iν
LOAD_J(t, *v) vector Jν

LOAD_L_4_2(t0, t1, *v0, *v1) vector L4
2

LOAD_R_2(t, *r0, *r1) real implicit
STORE_VECT(*v, t) vector Iν
STORE_J(*v, t) vector Jν

STORE_L_4_2(*v0, *v1, t0, t1) vector L4
2

LOAD_R_2(*r0, *r1, t) real implicit

Table 6.4: Load and store operations supported by the portable SIMD API for two-way short
vector SIMD extensions.
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Macro Access Permutation

LOAD_VECT(t, *v) vector Iν
LOAD_J(t, *v) vector Jν

LOAD_L_4_2(t, *v) vector L4
2

LOAD_L_8_2(t0, t1, *v0, *v1) vector L8
2

LOAD_L_8_4(t0, t1, *v0, *v1) vector L8
4

LOAD_L_16_4(t0, t1, t2, t3, vector L16
4

*v0, *v1, *v2, *v3)

LOAD_C(t, *c0, *c1) complex implicit
LOAD_J_C(t, *c0, *c1) complex implicit + J4

LOAD_L_4_2_C(t, *c0, *c1) complex implicit + L4
2

LOAD_L_8_2_C(t0, t1, *c0, *c1, *c2, *c3) complex implicit + L8
2

LOAD_L_8_4_C(t0, t1, *c0, *c1, *c2, *c3) complex implicit + L8
4

LOAD_R_4(t, *r0, *r1, *r2, *r3) real implicit

Table 6.5: Load operations supported by the portable SIMD API for four-way short vector
SIMD extensions.

Macro Access Permutation

STORE_VECT(*v, t) vector Iν
STORE_J(*v, t) vector Jν

STORE_L_4_2(*v, t) vector L4
2

STORE_L_8_2(*v0, *v1, t0, t1) vector L8
2

STORE_L_8_4(*v0, *v1, t0, t1) vector L8
4

STORE_L_16_4(*v0, *v1, *v2, *v3, vector L16
4

t0, t1, t2, t3)

STORE_C(*c0, *c1, t) complex implicit
STORE_J_C(*c0, *c1, t) complex implicit + J4

STORE_L_4_2_C(*c0, *c1, t) complex implicit + L4
2

STORE_L_8_2_C(*c0, *c1, *c2, *c3, t0, t1) complex implicit + L8
2

STORE_L_8_4_C(*c0, *c1, *c2, *c3, t0, t1) complex implicit + L8
4

STORE_R_4(*r0, *r1, *r2, *r3, t) real implicit

Table 6.6: Store operations supported by the portable SIMD API for four-way short vector
SIMD extensions.



Chapter 7

Transform Algorithms on Short Vector
Hardware

This chapter shows how discrete linear transform formulas can be transformed
into other equivalent formulas which (i) can be implemented efficiently using short
vector SIMD extensions, and (ii) are structurally close to the original formulas.
Specifically, constructs are identified that allow for an implementation on all
current short vector SIMD extensions. In addition, a set of rules is given that
allows to formally transform constructs appearing in discrete linear transforms
into versions that match the requirements of short vector SIMD extensions. Such
constructs are said to be vectorized .

This set of rules is designed to be included into the Spiral system to enable
Spiral to generate efficient vector code. Thus, the formal approach and the
automatic performance tuning provided by Spiral is used and extended by the
newly developed formal rules and the associated implementation guidelines.

Furthermore, the important case of DFTs is handled in more detail leading to
a set of short vector Cooley-Tukey rules that allow high-performance short vector
SIMD implementations of FFTs and solve the intrinsic problems present in all
other approaches to vectorize FFTs for short vector SIMD extensions.

This set of short vector Cooley-Tukey rules accounts for high-performance
implementations of DFTs within the Spiral framework. The extension of Spi-

ral with the general formal vectorization and the DFT specific short vector
Cooley-Tukey rules as well as the respective numerical experiments are presented
in Section 8.1. In addition, the short vector Cooley-Tukey rules are the founda-
tion of a short vector SIMD extension to Fftw which delivers about the same
performance level as the short vector Cooley-Tukey FFT implementation within
Spiral. The extension of Fftw and the respective numerical experiments are
presented in Section 8.2.

Related Work. Floating-point short vector SIMD extensions are relatively new
features of modern microprocessors. They are the successors of integer short vec-
tor SIMD extensions. A radix-4 FFT implementation for the NEC V80R DSP
processor featuring a four-way integer short vector SIMD extension has been
presented some years ago (Joshi and Dubey [62]). A portable Fortran imple-
mentation of the proprietary Cray Scilib library targeted at traditional vector
computers is the Sciport library (Lamson [65]).

Apple Computers Inc. included the vDSP vendor library into their operating
system MAC OS X. This library features a DFT implementation which supports
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the MPC 74xx G4 AltiVec extension [8]. This implementation based on the Stock-
ham algorithm is described in Crandall and Klivington [15]. Intel’s math kernel
library (MKL) provides support for SSE, SSE 2, and the Itanium processor fam-
ily [58]. An SSE split-radix FFT implementation is given in an Intel application
note [44].

An ongoing effort to develop a portable library which will utilize short vector
SIMD extensions is libSIMD (Nicholson [74]). SIMD-FFT (Rodriguez [82]) is a
radix-2 FFT implementation for SSE and AltiVec. Fftw-gel is a short vector
SIMD extension for Fftw 2.1.3 supporting 3DNow! and SSE 2 (Kral [64]).

7.1 Formal Vectorization of Linear Transforms

This section outlines how formulas that describe algorithms for discrete linear
transforms can be vectorized symbolically using formula manipulation techniques
such that the resulting formula can be implemented on short vector SIMD exten-
sions efficiently. In principle, this result could be used create short vector SIMD
implementations of discrete linear transforms without advanced code generation
techniques. Formulas obtained using the newly developed techniques would serve
as starting point for a traditional implementation and optimization cycle where
formulas serve as starting point and then implementations are manually derived
and subsequently optimized further. However, as the main focus of this work is
automatic performance tuning and code generation, both formal rules and im-
plementation guidelines are developed. The major goal is to provide the required
theoretical framework to enable automatic code generation for discrete linear
transforms within Fftw and Spiral.

7.1.1 Vectorizable Formulas

The key problem to solve is to identify the formula constructs that can be vec-
torized and to find an efficient implementation of the required building blocks.
The presented approach is based on the vectorization of the basic construct

A ⊗ Iν , ν being the vector length, (7.1)

and A denoting an arbitrary formula. This construct can be naturally imple-
mented by replacing in a scalar implementation of A all scalar operations by the
corresponding vector operations.

Extending from (7.1), the most general normalized construct that can be
vectorized by the presented approach (i. e., a construct that can be implemented
using exclusively macros provided by the portable SIMD API) is

k∏
i=1

PiDi(Ai ⊗ Iν)EiQi, (7.2)
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with arbitrary matrices Ai, permutation matrices Pi, Qi, and matrices Di, Ei that
are either real diagonals or vector diagonals matching equation (4.5). For exam-
ple, all DFT and WHT algorithms arising from rules (5.3) and (5.2), respectively,
and two-dimensional transforms given by equation (5.4) as well as any multi-
dimensional transform, can be normalized to formulas matching equation (7.2).
Thus, all these algorithms be completely vectorized using the approach presented
in this chapter.

Two prerequisites are required to obtain a vectorized implementation of a formula.

• Symbolic vectorization rules allow to normalize a formula, using manipula-
tion rules, to exhibit maximal subformulas that match (7.2).

• Code generation guidelines describe how to translate the vectorizable sub-
formulas matching (7.2) into efficient vectorized code built on top of the
portable SIMD API; the remainder of the formula is implemented in stan-
dard C code.

Efficient utilization of short vector SIMD extensions requires unit-stride data
access, but other access patterns are predominating in discrete linear transform
algorithms. An important example are subformulas of the form In ⊗A. A similar
problem arises from the interleaved data format found in complex transforms.
In the context of this thesis, all such problems are solved by applying identities
from Chapter 4 and by using formula manipulation that formally modify these
expressions to make them match equation (7.2) by introducing permutations Pi

and Qi.

To allow high performance implementations it is necessary to introduce such
permutations Pi, and Qi that are supported efficiently by the portable SIMD API.
The efficient support of permutations depends both on the type of permutation
and on the underlying short vector SIMD architecture. A permutation can be
negligible concerning run time, but it may also slow down the whole discrete lin-
ear transform algorithm dramatically. Implementing the newly derived formula
manipulation rules in an automatic performance tuning system favors permuta-
tions that are cheap in terms of run time on the target platform. Additionally, a
class of permutations is defined that can be realized efficiently on all short vec-
tor SIMD extensions and includes the permutations occurring in the considered
transforms.

It is important to note that the approach presented in this chapter utilizes
high-level structural information about discrete linear transform algorithms. This
information is available in the formula representation, but not in a C code repre-
sentation of the algorithm. For this reason, a general purpose vectorizing compiler
fails, e. g., to vectorize the construct Iν ⊗A, even though it is completely vector-
ized using the methods of this chapter.
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7.1.2 Symbolic Vectorization

First, all vectorizable constructs have to be extracted. The core elements of the
normalized formulas are symbols.

Definition 7.1 (Symbol) A symbol Si is defined as by

Si = PiDi(Ai ⊗ Iν)EiQi

with permutation matrices Pi and Qi and real diagonals or vector diagonals Di

and Ei and an arbitrary real matrix Ai.

Symbols defined by Definition 7.1 are the basic construct to be vectorized. Using
the identities summarized in Chapter 4 an expression of the form

F =
n∏

i=1

(Ri ⊕ Si ⊕Ti)Ui, ν divides the size of Ri (7.3)

has to be obtained. The constructs Ri, Ti, and Ui are arbitrary formulas and
Si is a symbol. In practice this normalization can be achieved manually or
by means of symbolic manipulation utilizing computer algebra systems or func-
tional languages. For instance, Spiral utilizes the computer algebra system
Gap and Fftw’s codelet generator genfft is written in the functional language
OCaml [66].

The constructs Ri, Ti, and Ui of equation (7.3) have to be be translated into
standard C code as they do not match equation (7.2). For example, a formula
that has no vectorizable parts degenerates to

F = U1,

while in a completely vectorizable formula Ri and Ti vanish, Ui is in this case the
identity, and thus F matches equation (7.2).

Note that the normalization given by equation (7.3) is not unique. When
normalizing a given formula, it is important to preserve the structure of the
original formula as much as possible to keep the data access patterns as close
to the original one as possible and minimize the interference with an automatic
performance tuning system.

Important subformulas that become symbols Si when applying the transfor-
mation identities summarized in Chapter 4 include

A ⊗ B, A ⊗ Ik, Ik ⊗A, A ⊗ Ik, and Ik ⊗A,

as can be seen from the manipulation rules summarized in Sections 4.2.2, 4.3.1,
4.4.1, and 4.6.1.

Furthermore, products QiPi+1 of adjacent permutations may entirely or par-
tially cancel out leading to identity matrices. An important example of such an
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cancellation is the real version of a complex formula. In such formulas Proper-
ties 4.18 and 4.33 can be often applied leading to the cancellation

(Ik ⊗L2ν
ν )(Ik ⊗L2ν

2 ) = I2kν .

The constructs Ik ⊗L2ν
ν and Ik ⊗L2ν

2 become a product QiPi+1 during the nor-
malization due to the identities summarized in Section 4.6.1.

After the normalization, the symbols Si can be treated as independent for-
mulas for which vector code is generated. The remaining formula consisting of
the respective Ri, Ti, and Ui is translated into standard (scalar) C code where
the symbols Si become subroutines that are implemented utilizing the portable
SIMD API and thus become vectorized code.

Example 7.1 (Symbolic Vectorization) This example shows the symbolic vectorization of
DFT16. A normalized formula for DFT16 is given by

DFT16 = (DFT4 ⊗ I4) T16
4 (I4 ⊗DFT4) L16

4 (7.4)

with
DFT4 = (DFT2 ⊗ I2) T4

2 (I2 ⊗DFT2) L4
2 . (7.5)

The formula is first transformed into its real representation using the bar operator ( ) and the
identities summarized in Section 4.6.1. Permutations are inserted to make the formula match
equation (7.3) with the constraint that the constructs Ri, Ti are as small as possible, and
Ui is as close to Ik as possible. The inserted permutations are factored using identities from
Section 4.4.1 such that they match the permutations that can be implemented efficiently as
outlined in the next section.

The target architecture is assumed to feature a four-way short vector SIMD extension
(ν = 4). Formula manipulation leads to

DFT16 =
( (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

)
T

′16
4

)( (
I4 ⊗L8

2

) (
L16

4 ⊗ I2
) (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

) (
I4 ⊗L8

2

) )
.

(7.6)

The achieved formula is factored into two symbols S1 and S2

DFT16 = S1 S2 .

The first symbol is given by

S1 =
(
I4 ⊗L8

4

) (
DFT4 ⊗ I4

)
T

′16
4

with

P1 =
(
I4 ⊗L8

4

)
D1 = I32
A1 = DFT4

E1 = T
′16
4 = T

16

4

(I4 ⊗L8
4)

Q1 = I32
R1 = I0
T1 = I0
U1 = I32
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and the second one by

S2 =
(
I4 ⊗L8

2

) (
L16

4 ⊗ I2
) (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

) (
I4 ⊗L8

2

)
with

P2 =
(
I4 ⊗L8

2

) (
L16

4 ⊗ I2
) (

I4 ⊗L8
4

)
D2 = I32
A2 = DFT4

E2 = I32
Q2 = I4 ⊗L8

2

R2 = I0
T2 = I0
U2 = I32 .

Thus, the transform DFT16 is symbolically vectorized. Two symbols S1 and S2 are required
and all parameters are defined.

7.1.3 Types of Permutations

The key to high performance for short vector SIMD implementations of symboli-
cally vectorized formulas is the implementation of the permutations Pi and Qi in
Definition 7.1. These permutations can be classified with respect to their perfor-
mance relevant properties leading to different classes of permutations featuring
different types factorizations. Considering the translation of formulas into code
according to Section 4.7 makes the required memory access explicit.

Three classes of permutations are required to both support the general case
and high-performance implementations: (i) permutations that can be imple-
mented utilizing exclusively vector memory access, (ii) permutations requiring
memory access of pairs of real numbers, and (iii) permutationst that require ac-
cess of single real numbers. The implementation of the permutations Pi and Qi

crucially depends on their factorization and thus on their membership in one of
the three classes.

These classes are mirrored in the portable SIMD API by three types of com-
bined load or store and permute macros, respectively, that are provided by the
portable SIMD API. If new permutations are required, the portable SIMD API
can easily be extended, as any permutation falls into one of the three supported
classes.

In the remainder of this section, the three classes of macros are discussed and the
respective factorization is given.

Vector Memory Access Operations

These macros feature only vector memory access and in-register permutations.
The permutations that can be handled using this class of macros are given by

(U ⊗ Iν)(Ik ⊗W )(V ⊗ Iν), ν divides the size of W, (7.7)
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where U, V, and W are permutation matrices. Equation (7.7) allows for loop
code generation if the permutations U and V can be translated into loop code,
as tensor products can be translated into loops. Thus, the class of permutations
can be extended to support more general permutations if completely unrolled im-
plementations can be used. For instance, the SPL compiler produces completely
unrolled code for small subformulas. Then Ik ⊗W is replaced by a direct sum of
different permutation matrices Wi as given by

(U ⊗ Iν)(
k−1⊕
i=0

Wi)(V ⊗ Iν), ν divides the size of Wi, (7.8)

Example 7.2 (Vector Memory Access Operations) Equation (7.7) includes all permuta-
tions needed for a vectorized implementation of the DFTs, WHTs, and two-dimensional trans-
forms. For instance, in Example 7.1 all permutations can be factored according to equation (7.7)
leading to

DFT16 =
( (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

)
T

′16
4

)( (
L8

4 ⊗ I4
) (

I2 ⊗L16
4

) (
L8

2 ⊗ I4
) (

DFT4 ⊗ I4
) (

I4 ⊗L8
2

) ) (7.9)

with

P1 = I4 ⊗L8
4

Q2 = I4 ⊗L8
2

P2 = (I4 ⊗L8
2)(L

16
4 ⊗ I2)(I4 ⊗L8

4)
= (L8

4 ⊗ I4)(I2 ⊗L16
4 )(L8

2 ⊗ I4).

By factoring P2, the desired form is achieved. Now all permutations can be implemented using
LOAD_L_8_2, STORE_L_8_4, and STORE_L_16_4.

Any permutation covered by equations (7.7) and (7.8) can be implemented using
the appropriate macros provided by the portable SIMD API.

For permutations Pi the respective permutation U and for permutations Qi

the respective permutation V is an index transformation for vector load and
vector store operations. Thus these permutations are handled by the value of the
parameters *vi.

For permutations Pi the respective permutation V and for permutations Qi

the respective permutation U is handled by renaming temporary variables and
thus by the value of the parameters ti. Thus, the input and output parameters
for the portable SIMD API macros implement the permutations U and V . The
permutation W is implemented transparently within the respective macros.

Table 7.1 summarizes the most important macros of the portable SIMD API
that are vector memory access operations.

Subvector Memory Access Operations

The second important type of permutations operates on pairs of real numbers.
This includes all permutations of complex numbers using the interleaved com-
plex format and the bar operator ( ). This class of permutations is given by all
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Macro Permutation W

LOAD_VECT(t, *v) Iν
LOAD_J(t, *v) Jν

LOAD_L_4_2(t, *v) L4
2

LOAD_L_8_2(t0, t1, *v0, *v1) L8
2

LOAD_L_8_4(t0, t1, *v0, *v1) L8
4

LOAD_L_16_4(t0, t1, t2, t3, L16
4

*v0, *v1, *v2, *v3)

STORE_VECT(*v, t) Iν
STORE_J(*v, t) Jν

STORE_L_4_2(*v, t) L4
2

STORE_L_8_2(*v0, *v1, t0, t1) L8
2

STORE_L_8_4(*v0, *v1, t0, t1) L8
4

STORE_L_16_4(*v0, *v1, *v2, *v3, L16
4

t0, t1, t2, t3)

Table 7.1: Combined vector memory access and permutation macros supported by the portable
SIMD API for four-way extensions.

permutations

Pi = (U ⊗ I2)(Ik ⊗W )(V ⊗ Iν) (7.10)

Qi = (U ⊗ Iν)(Ik ⊗W )(V ⊗ I2) (7.11)

where U, V, and W are permutation matrices. The size of W has to be a multiple
of ν. For permutations Pi the respective permutation U and for permutations
Qi the respective permutation V is an index transformation for load and store
operations of pairs and thus these permutations are handled by the value of *ci.
For permutations Pi the respective permutation V and for permutations Qi the
respective permutation U is handled by renaming temporary variables and thus
by the value of the parameters ti. Thus, the input and output parameters for the
portable SIMD API macros implement the permutations U and V . The permu-
tation W is implemented transparently within the corresponding macros. Again,
if unrolled code is acceptable, the class of supported permutations is extended by
changing

Ik ⊗W into
k−1⊕
k=0

Wi.

For two-way vector extensions, this class is the same as the vector memory access
operations. On four-way short vector SIMD extensions, however, the performance
of permutations requiring pairwise memory access crucially depends on the target
architecture.

Using SSE these permutations can be implemented efficiently as SSE features
memory access of naturally aligned pairs of single-precision floating-point num-
bers and these memory access instructions do not degrade performance. On the
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AltiVec extension, load operations for such pairs have to be built from vector
access operations and expensive general permutations. Storing pairs has to be
done using permutations and expensive single element stores. Thus, on AltiVec,
pairwise data access operations have to be avoided.

Example 7.3 (Subvector Memory Access Operations) In Example 7.1 the permuta-
tions Pi and Qi can be chosen differently leading to a subvector memory access instead of
a vector memory access. Equation (7.6) can alternatively be transformed into

DFT16 =
( (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

)
T

′16
4

(
I4 ⊗L8

2

) (
L16

4 ⊗ I2
) )( (

I4 ⊗L8
4

) (
DFT4 ⊗ I4

) (
I4 ⊗L8

2

) )
leading to

P1 = I4 ⊗L8
4

Q1 = (I4 ⊗L8
2)(L

16
4 ⊗ I2)

P2 = I4 ⊗L8
4

Q2 = I4 ⊗L8
2 .

When applying this factorization, the intermediate permutation(
I4 ⊗L8

2

) (
L16

4 ⊗ I2
) (

I4 ⊗L8
4

)
is distributed differently—Q1 and P2 are chosen differently—and the factorization given in
Example 7.2 cannot be applied any more. The permutation Q1 requires a subvector memory
access operation supported by the macro LOAD_L_8_2_C and L16

4 ⊗ I2 becomes readdressing of
subvectors.

As explained above, subvector memory access has the potential to slow down codes and thus
has to be avoided. Example 7.1 and this example show the degree of freedom in symbolically
vectorizing constructs. Depending on the factorization chosen of Pi and Qi, vector memory
access can be achieved or subvector memory access is required.

Table 7.2 summarizes the most important macros of the portable SIMD API
featuring subvector memory access.

General Permutations

Any permutation not covered by the two classes from above has to be imple-
mented by loading ν elements into the vector register or storing the ν elements
to arbitrary memory locations. As direct data transfer between scalar and vec-
tor floating-point registers is not supported directly by most short vector SIMD
extensions (see Sections 3.2 to 3.4), the vector has to be assembled or disassem-
bled in memory (usually on the stack) using floating-point loads and stores. The
assembled vector has to be transferred between memory and the vector register
file using a vector memory access, i. e., data is transferred between memory and
the register file twice. Thus, this type of permutation degrades performance on
virtually all short vector SIMD extensions and has to be avoided at any cost.
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Macro Permutation W

LOAD_C(t, *c0, *c1) Iν
LOAD_J_C(t, *c0, *c1) J4

LOAD_L_4_2_C(t, *c0, *c1) L4
2

LOAD_L_8_2_C(t0, t1, *c0, *c1, *c2, *c3) L8
2

LOAD_L_8_4_C(t0, t1, *c0, *c1, *c2, *c3) L8
4

STORE_C(*c0, *c1, t) Iν
STORE_J_C(*c0, *c1, t) J4

STORE_L_4_2_C(*c0, *c1, t) L4
2

STORE_L_8_2_C(*c0, *c1, *c2, *c3, t0, t1) L8
2

STORE_L_8_4_C(*c0, *c1, *c2, *c3, t0, t1) L8
4

Table 7.2: Subvector memory access operations supported by the portable SIMD API for
four-way short vector SIMD extensions.

Example 7.4 (General Permutations) The macro LOAD_R_4 loads four single-precision
floating-point numbers from arbitrary memory locations into a local array of four floating-
point variables using standard C statements. This array is aliased to a vector variable and thus
the C compiler places this array properly aligned on the stack. After the data is stored into the
array, the whole array is loaded into a vector register using one vector memory access. Thus,
four FPU loads, four FPU stores and one vector load is required to implement this macro.

Consider a general permutation of 16 single-precision floating-point numbers that requires
four such macros. The cost introduced by this permutation can only be amortized by a large
number of vector operations. See Appendix C for the actual implementation of this macro.

Formula manipulation is used to produce formulas that—whenever possible—
consist only of permutations allowing vector memory access. Thus, it is tried
to transform formulas featuring permutations of the second and third type into
formulas featuring only permutations of the first type with the additional condi-
tion that the global structure of the formula is changed as little as possible. This
transformation is the most crucial part in getting performance portable short
vector SIMD code. The degree of freedom in normalizing a given formula adds
another application for search techniques in Spiral’s formula generator.

7.1.4 Code Generation for Symbols

Symbols as defined by equation (7.1) are designed to be implemented as follows.
Each symbol consists of three logical stages, whose implementation can be inter-
leaved by reordering operations, however, for any element in the data vector the
order of operations has to be preserved. (i) Load phase: x′ = EiQi x. (ii) Com-
putation phase: y′ = (A ⊗ Iν) x′. (iII) Store phase: y = PiDi y

′.

Definition 7.2 (Vector Terminal) A vector terminal is the

subformula A in A ⊗ Iν .
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Optimized code for a vector terminal A ⊗ Iν can be generated by producing
optimized scalar code for A and then replacing all scalar arithmetic operation in
the generated code by their respective vector operations.

Example 7.5 (Vector Terminal) The constructs

DFTm ⊗ Iν and DFTm ⊗ In
ν
⊗ Iν

are vector terminals that occur when applying the short Vector Cooley-Tukey rules developed
in Section 7.3.

Any construct that can be implemented using exclusively (i) vector arithmetic,
and (ii) vector memory access macros can be implemented highly efficient. All
such constructs required in the scope of this thesis are given by the following
definition.

Definition 7.3 (Vector Construct) A vector construct matches one of the fol-
lowing constructs:

A ⊗ Iν ,
k⊕

i=0

D
′
i, (U ⊗ Iν)(

k−1⊕
i=0

Wi)(V ⊗ Iν), and ν | size of Wi,

with A being an arbitrary real matrix, U , V , and Wi permutation matrices, and
Di complex ν × ν matrices.

Example 7.6 (Vector Construct) Any construct A ⊗ Iν is a vector construct as it only
requires vector arithmetic operations and vector loads and stores.

All permutations covered by vector memory access operations are vector constructs. For
instance,

L4
2 ⊗L8

2 = (L4
2 ⊗ I8)(I4 ⊗L8

2)

is a vector construct as it can be implemented using LOAD_L_8_2.

The Load Phase and Store Phase

The computation of x′ = EiQi x is joined with an initial load operation for each
data element. EiQi is decomposed into combined load and permutation opera-
tions provided by the portable SIMD API and scaling operations that immedi-
ately follow these load operations. For each element that is loaded from memory
according to the formula, the whole vector register has to be loaded using the
appropriate macro of the portable SIMD API. These combined load and per-
mute operations decompose the construct Qi. Ei is implemented by the scaling
operations. The operation y = PiDi y

′ is implemented accordingly.
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The Computation Phase

A⊗ Iν is the most natural construct that can be mapped onto short vector SIMD
hardware. It is obtained by replacing any scalar in ai,j in A by

diag(ai,j, . . . , ai,j︸ ︷︷ ︸
ν times

).

Thus vector code is obtained by replacing any scalar arithmetic operation with
the respective vector operation. This property is important as it allows to utilize
existing code generators for scalar codes like Fftw’s genfft and Spiral’s SPL
compiler. These compilers are extended to support the generation of short vector
SIMD code. Specifically, support for the portable SIMD API and for the different
types of permutations is required in addition to infrastructural changes. The
extension of genfft is described in Section 8.1.1 and the extension of the SPL
compiler is described in Section 8.2.1.

Synthesis

The load, store, and computation phase have to be overlapped to gain stack
access locality. In this overlapping the order of operations has to be preserved
for each data element.

Immediately before the first data element loaded by a specific macro required
by EiQi is used within the computation phase, the respective load macro and
the scaling operations for this data element are issued. These macros are loading
and scaling a set of data elements including the required one. The number of
additionally preloaded data elements is depending on the macro’s parameters.
Thus, for these elements the load phase is finished and the computation phase
can be started.

In the computation phase, immediately after the final result is computed for
all elements required to issue a specific store macro required by PiDi, this macro
is issued as the next instruction. Thus, for these elements, the application of the
symbol has been computed.

7.2 FFTs on Short Vector Hardware

Any Cooley-Tukey FFT algorithm features characteristics that require further
special formula manipulation rules to exhibit formulas that consist of vector con-
structs. In addition, the global structure of the algorithm should not be altered
too much to keep the Cooley-Tukey splitting’s data access locality. The formal
method introduced in this section extends the method from the last section and is
based on the standard Cooley-Tukey recursion as given by Theorem 5.1, the vec-
tor Cooley-Tukey FFT (the four-step FFT algorithm) as given by Theorem 5.3,
and the Cooley-Tukey vector recursion given by Theorem 5.5. It is shown that
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the short vector Cooley-Tukey rule set leads to formulas for FFTs which com-
pletely consist of vector constructs and thus can be mapped to efficient short
vector SIMD code. The approach of this section is the foundation of the imple-
mentation of performance portable short vector FFTs as discussed in Sections 8.1
and 8.2.

The newly developed short vector Cooley-Tukey recursion rule set and the re-
spective base cases (both developed in Section 7.3) depend merely on the vector
length ν of the short vector SIMD extension. Implementing DFTs using short
vector SIMD instructions imposes a set of challenges to the programmer and
algorithm developer to match. The special properties of short vector SIMD ex-
tensions and the goal to provide one general method for treating all extensions
(regardless of their actual vector length ν and any other machine specifics) are
the major challenges to address.

It is important to note that all operations have to be expressed in real arith-
metic, as (i) only real arithmetic is supported by the hardware, and (ii) short
vector SIMD extensions pose stringent requirements on the location (alignment)
and stride (unit stride) of real numbers in memory to be accessed efficiently.
Complex arithmetic operations (based on the interleaved complex format) im-
plemented straightforward using real arithmetic violate the unit stride memory
access requirement, and thus are leading to an enormous performance break-
down. These restrictions cannot be expressed in the standard Kronecker product
notation for FFT algorithms where the entries of matrices are complex numbers.

In both automatic performance tuning systems for discrete linear transforms
that are extended in this thesis—Spiral and Fftw—all Cooley-Tukey FFT
based algorithms have recursive structure (as opposed to iterative stage-wise com-
putation found in traditional implementations) to exhibit data locality, and are
built from only a few basic constructs. It turns out that the construct imposing
the most annoying difficulties is the stride permutation

L
mn

m = Lmn
m ⊗ I2, (7.12)

especially in conjunction with vector arithmetic, in particular for ν �= 2. The
permutations

L2k
2 and L2k

k

introduced by the interleaved complex format complicate the situation. Equa-
tion (7.12) occurs on every recursion level in all Cooley-Tukey factorizations. The
combination of multiple recursion steps may produce digit permutations as the
bit-reversal permutation. The source of the problem is that for arbitrary ν one
cannot find a factorization of L

mn

m that (i) consists of vector constructs only, and
(ii) does not require nontrivial transformations involving adjacent constructs.
The additional condition that arithmetic operations have to treat ν elements
equally as vector arithmetic is used introduces a further difficulty.
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In the following, possibilities are discussed how to resolve the problems in-
troduced by the fact that the DFT is a complex-to-complex transform and fea-
tures stride permutations. Both advantages and disadvantages of the various ap-
proaches are summarized. A subset of vector constructs is identified that serves as
the building blocks and base cases for short vector Cooley-Tukey FFTs. Finally,
the respective short vector Cooley-Tukey rule set is derived.

There are three fundamentally different approaches to resolve the stride permu-
tation issue.

• The permutation L
mn

m is performed explicitly in a separate computation
stage requiring an iterative approach. One can use high-performance im-
plementations of transpositions (blocked or cache oblivious) and machine
specific versions that utilize special instructions.

• The permutation L
mn

m is decomposed into subvector memory access opera-
tions where pairs of real numbers are accessed. Equation (7.12) shows that
this is always possible. To reach satisfactory performance levels, it is re-
quired that either (i) ν = 2, or (ii) the hardware is able to efficiently access
two elements at a subvector level (e. g., as provided by SSE).

• The permutation L
mn

m is factored into a sequence of permutations within
blocks and permutations of blocks (with a block size being a multiple of ν) at
the cost of possibly requiring changes of adjacent constructs as well. These
permutations can be handled using the portable SIMD API as described in
Section 7.1.4.

This approach only requires a minimum of data reorganization (all done
in register). All memory access operations are accomplished using vector
operations. This method can be used for any number of ν.

This thesis focusses on the third approach but briefly overviews the other two ap-
proaches as well. The remainder of this section discusses the first two approaches
while the next section discusses the short vector Cooley-Tukey rule set.

7.2.1 The Cooley-Tukey Recursion

The starting point for the discussion of the standard Cooley-Tukey recursion is

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m

mapped to real arithmetic, i.e.,

DFTmn = (DFTm ⊗ In) Tmn
n (Im ⊗DFTn) Lmn

m . (7.13)

It is assumed that ν divides n and m. The standard way of translating The-
orem 5.1 into real code using the complex interleaved format corresponds to a
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straightforward application of the identities in given Section 4.6.1. Starting with
distributing ( ) over the factors in equation (7.13) leads to

DFTmn = (DFTm ⊗ In)(Im ⊗L2n
2 )T

mn

n (Im ⊗DFTn)(Lmn
m ⊗ I2). (7.14)

This formula features constructs that cannot be directly implemented using only
vector memory access.

• The construct Lmn
m ⊗ I2 requires pairwise memory access. Thus, for ν �= 2

vector memory access cannot be used.

• The construct Im ⊗DFTn is no vector construct and requires pairwise mem-
ory access at stride m which can introduce cache problems for large sizes of
m, especially for m = 2k, and requires low performance pairwise memory
access.

• The construct T
mn

n does not match equation (4.6) and thus is not a vector
diagonal . To allow for vector arithmetic, further formula manipulation is
required. Alternatively, pairwise memory access macros can be used which
degrade the performance.

• The construct DFTm ⊗ In has to be factored into(
DFTm ⊗ In

ν

)⊗ Iν

to obtain a vector construct.

To obtain vector memory access for the conjugation permutations, further fac-
torization of Im ⊗L2n

2 and Im ⊗L2n
n is required. Using Properties 4.21 and 4.22,

Im ⊗L2n
2 =

(
L

2n
ν

2 ⊗ Iν

) (
In

ν
⊗L2ν

2

)
Im ⊗L2n

n =
(
In

ν
⊗L2ν

ν

) (
L

2n
ν

n
ν

⊗ Iν

)
is obtained which allows to use vector memory access macros. However, the factor

L
2n

ν
2 ⊗ Iν stores and L

2n
ν

n
ν

⊗ Iν loads logically associated vectors (i. e., the real and

imaginary parts of a complex vector) at scalar stride n which can lead to cache
conflicts for large numbers of n, especially for n = 2k.

Cooley-Tukey FFTs with Subvector Memory Access

As outline above, equation (7.13) cannot be mapped efficiently to short vector
SIMD hardware without further manipulation. But using the identities intro-
duced in Chapter 4 and the ideas outlined above, it is possible to modify equa-
tion (7.14) to obtain a better structure leading to the subvector Cooley-Tukey
FFT.
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Theorem 7.1 (Subvector Cooley-Tukey FFT) For ν | m and ν | n

DFTmn =
((

DFTm ⊗ In
ν
⊗ Iν

)
T

′mn

n

)(Imn
ν

⊗L2ν
ν

)
(

Im
ν
⊗ (DFTn ⊗ Iν

)(In ⊗L2ν
ν )(Lnν

n ⊗ I2)
)

(Lmn
m ⊗ I2) .

(7.15)

Theorem 7.1 can be implemented using both subvector memory access and vector
memory access and leads to moderate to good performance. The difficulty of
Lmn

n ⊗ I2 remains and the conjugation with Lnν
n ⊗ I2 is introduced. Both constructs

require sub-vector memory access for ν �= 2.

Equation (7.15) features nearly the same data access pattern as the original
Cooley-Tukey FFT rule and changes the structure of the formula much less than
the short vector Cooley-Tukey FFT. Thus, this formula is a trade-off between
structural change and vector memory access. Depending on the target machine,
this rule can be an interesting alternative, especially for ν = 2.

To support arbitrary vector lengths, formal vectorization developed in Sec-
tion 7.1 is extended. FFTs for problem sizes which are multiples of ν can be
computed using the vector FPU exclusively. Problems of other sizes are com-
puted partly using the scalar FPU. This is achieved by applying Property 4.10
which decomposes any tensor product

A ⊗ Ikν+l

into a vector part

(A ⊗ Ik) ⊗ Iν

and a scalar part

A ⊗ Il .

Applying this idea to (7.15) with m = m1ν + m2 and n = n1ν + n2 leads to the
general subvector Cooley-Tukey FFT.

Theorem 7.2 (General Subvector Cooley-Tukey FFT) For m = m1ν+m2

and n = n1ν + n2

DFTmn =

((
DFTm ⊗ In1 ⊗ Iν

)⊕ (DFTm ⊗ In2

) (
T

mn

n

)P1

)P2

((
Im1 ⊗DFTn ⊗ Iν

)⊕ (Im2 ⊗DFTn

))P3(
Lmn

m ⊗ I2

)
with non-digit permutations Pi.
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This method leads to high SIMD utilization while supporting arbitrary problem
sizes.

The method summarized by Theorems 7.1 and 7.2 is called Cooley-Tukey FFT
for subvectors as subvector memory access is required. It can be applied to for
arbitrary problem sizes. Experimental results of a short vector SIMD extension
of Fftw based on Theorems 7.1 and 7.2 are summarized in Section 8.1

Internal Vectorization of DFTN

By restricting the machines to 2-way short vector SIMD architectures (ν = 2), the
real arithmetic stride permutation appears as perfect vector operation Lmn

n ⊗ I2.
By computing the sub-problems DFTm and DFTn using vector instructions (i. e.,
not vectorizing the tensor product), one can get high performance implementa-
tions for the special case of ν = 2. This approach depends crucially on the fact
that a complex number can be expressed as a pair of real numbers and thus cannot
be extended to arbitrary ν and is beyond the scope of this thesis. Fftw-gel, a
proprietary Fftw extensions for SSE 2 and 3DNow! using this idea can be found
in Kral [64].

7.2.2 The Vector Cooley-Tukey Rule

Targeting classical vector processors (as described in Section 3.5) with typically
ν ≥ 64 and the ability to load vectors at non-unit stride but featuring a rather
high startup cost for vector operations, the Stockham autosort FFT algorithm
(see Section 5.2.3) was designed. But as short vector SIMD extensions requires
unit-stride memory access, this algorithm cannot be used for short vector SIMD
architectures. In addition, the Stockham autosort algorithm is an iterative algo-
rithm. Alternatively, the vector Cooley-Tukey FFT (also called four-step algo-
rithm)

DFTmn = (DFTm ⊗ In)︸ ︷︷ ︸
4

Tmn
n︸︷︷︸
3

Lmn
m︸︷︷︸
2

(DFTn ⊗ Im)︸ ︷︷ ︸
1

as described in Section 5.2.1 also was designed for classical vector processors and
m ≈ n is the usual choice. The vector Cooley-Tukey algorithm features unit-stride
memory access (for complex numbers) and computes the stride permutation ex-
plicitly as one of its four stages. The four stages are (i) A vector FFT to compute
DFTn ⊗ Im, (ii) interpretation of the data vector as a m×n complex matrix and
computing a transposition of it, (iii) a pointwise (vector) multiplication of the
whole data vector with Tmn

n , and (iv) a vector FFT to compute DFTm ⊗ In.

This corresponds to an iterative interpretation of the four constructs in The-
orem 5.3.

In case of short vector SIMD extensions, again the real arithmetic view is
required. Straightforward application of the bar operator ( ) to Theorem 5.3
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leads to

DFTmn =
((

DFTm ⊗ In
)
T

mn

n

)(Im ⊗L2n
2 )

(Lmn
m ⊗ I2)(

DFTn ⊗ Im
)(In ⊗L2m

2 )
.

(7.16)

Although using
DFTm ⊗ In = (DFTm ⊗ In

ν
) ⊗ Iν

and
DFTn ⊗ Im = (DFTn ⊗ Im

ν
) ⊗ Iν ,

the computation phases are vector constructs. However, the twiddle factor matrix
T

mn

n does not match the equation (4.18) and the complex stride permutation
Lmn

m ⊗ I2 is no vector construct for ν �= 2. In addition, the conjugation by Im ⊗L2n
2

and In ⊗L2m
2 introduces large strides when accessing corresponding vectors of real

and imaginary parts, which can result in cache problems. Thus, this formula
cannot be used for efficient SIMD implementations without further modification.

Using the identities summarized in Chapter 4, the vector Cooley-Tukey FFT
can be modified such that it is better suited for short vector SIMD implemen-
tation. This results in a short vector SIMD version of the vector Cooley-Tukey
algorithm for real arithmetic.

Theorem 7.3 (Short Vector 4-Step FFT) For ν | m and ν | n

DFTmn =
((

DFTm ⊗ In
ν
⊗ Iν

)
T

′mn

n

)(Imn
2ν

⊗L2ν
2

)
(
Im

ν
⊗Ln

ν ⊗ I2 ⊗ Iν
) (

Imn
ν2

⊗Lν
ν
2
⊗Lν

2 ⊗ I2

)(
L

mn
ν

ν ⊗ I2 ⊗ Iν

)
(
DFTn ⊗ Im

ν
⊗ Iν

)(Imn
2ν

⊗L2ν
2

)
.

However, Theorem 7.3 still features three drawbacks: (i) The computation re-
quires at least three passes through the data, (ii) the stride permutation is done
explicitly, and (iii) Theorem 7.3 exhibits many register-register permutations.

7.3 A Short Vector Cooley-Tukey Recursion

This section introduces a short vector Cooley-Tukey recursion, which (i) breaks
down a DFT computation to vector constructs and vector terminals exclusively ,
(ii) features additional degrees of freedom to allow for searching the best imple-
mentation on a given platform, and (iii) allows for a recursive computation and
does not introduce artificial stride problems.

The new recursion meets the requirements of the automatic performance tun-
ing systems Spiral and Fftw and has been included as short vector SIMD
extension into these systems. Run time results are presented in Sections 8.1 and
8.2.

The short vector Cooley-Tukey recursion is based on three classes of vector con-
structs: (i) Vector terminals, (ii) permutations, and (iii) twiddle factors.
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Vector Terminals

The only vector terminals occurring in the new Cooley-Tukey recursion are either
of the form

DFTm ⊗ Iν

or
DFTm ⊗ In

ν
⊗ Iν .

In the implementations summarized in Chapter 8 these two constructs are further
optimized using the automatic performance tuning facilities provided by Spiral

and Fftw.

Permutations

Only permutations are required that can be factorized according to equation (7.7).
Thus, the permutations W required are

Iν L2ν
2 L2ν

ν Lν2

ν

which are standard permutations supported by special instructions on most short
vector SIMD architectures.

Twiddle Factors

Twiddle factors are diagonal matrices with complex numbers as entries. Accord-
ing to Section 4.6.1 such diagonals can be transformed into special vector con-

structs called vector diagonals by the application of the bar-prime operator( )
′
.

Thus, whenever twiddle factors are used in the context of the new short vector
Cooley-Tukey rule set,

T
′mn

n = T
mn

n

(
Imn

ν
⊗L2ν

ν

)
is used.

All these constructs can be implemented efficiently on all current short vector
SIMD extensions using the portable SIMD API defined in Chapter 6. As their
size is always a multiple of ν and they are composed by the recursive rules in the
right way, the required aligned memory access is guaranteed on a formal level.

7.3.1 Short Vector Cooley-Tukey Rules

This section introduces the set of rules needed to recursively decompose DFTN

into vector constructs and vector terminals. These rules are applicable for any
N = ν2N1 and thus they are not restricted to powers of two and can be used on
all current short vector SIMD extension. The rule set offers two types of degrees
of freedom: (i) the way the vector terminals are obtained using the rules, and
(ii) the way how the vector terminals are further expanded.
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Within the short vector SIMD extension developed for the Spiral system
these rules are applied in the extended version of the SPL compiler as described
in Section 8.2. In the short vector SIMD extension developed for Fftw these
rules are implemented as recursive functions which manage the call sequence and
parameter values for the newly developed vector codelets which compute the
action of vector terminals. See Section 8.1 for details.

The first rule is given by

DFTmn = (DFTm ⊗ In) Tmn
n︸ ︷︷ ︸

(a)

(Im ⊗DFTn) Lmn
m︸ ︷︷ ︸

(b)

, ν | m,n. (7.17)

This is the “entry rule”, as equation (7.17) decomposes an arbitrary DFTmn with
ν | m and ν | n exclusively into subformulas that are either vector terminals,
vector diagonals, or formulas that are further handled by the rule set. DFTmn is
decomposed into two constructs, (a) and (b), which both are handled further by
the short vector Cooley-Tukey rules. Note, that the DFT is written as real matrix,
and Property 4.28 has been applied to split the formula into two constructs.

The twiddle matrix Tmn
n can be associated with either construct (a) or (b)

which is another degree of freedom. In the following it is associated with (a) to
conform Fftw’s definition of codelets.1 Both constructs are further decomposed
using the short vector Cooley-Tukey rule set. Construct (a) is matched by

(DFTm ⊗ In) Tmn
n =

((
DFTm ⊗ In

ν︸ ︷︷ ︸
(c)

⊗ Iν
)
T

′mn

n

)(Imn
ν

⊗L2ν
2

)
, ν | n. (7.18)

This rule consists only of vector terminals and vector diagonals and thus equa-
tion (7.18) is not further expanded using short vector Cooley-Tukey rules. The
construct (c) in (7.18) is a vector terminal and is further handled by the target
systems Spiral and Fftw. The most important degree of freedom is intro-
duced by construct (b) in (7.17) which is matched by two rules in the short vector
Cooley-Tukey rule set which are discussed in the remainder of this section.

The terminal rule for construct (b) in (7.17) is discussed first. This rule is built
from vector constructs exclusively and thus provides for efficient implementation
on all current short vector SIMD extensions. The required decomposition of the
stride permutation is given by

(Ik ⊗DFTn) Lkn
k =

(
I k

ν
⊗ (Ln

ν ⊗ Iν)
(
In

ν
⊗Lν2

ν

)
(DFTn ⊗ Iν)

)(
L

kn
ν

k
ν

⊗ Iν

)
. (7.19)

Equation (7.19) follows from Property 4.26 and shows the decomposition of the
stride permutation Lkn

k using complex formulas. This is the first of two step
which breaks the stride permutation into two parts and partially turns parallel

1Within the Spiral short vector SIMD implementation this degree of freedom is used.
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Kronecker factors into vector Kronecker factors. This moves two factors of the
stride permutation factorization to the other side. The permutations

L
kn
ν

k
ν

⊗ Iν and Ln
ν ⊗ Iν

permute blocks of size ν while the permutation

In
ν
⊗Lν2

ν

is a permutation within blocks of size ν2.
In a second step, the bar operator is applied. The identities from Section 4.6

are used to transform the real arithmetic formulas into the required shape

(Ik ⊗DFTn) Lkn
k =

(
I kn

ν
⊗L2ν

ν

)(
I k

ν
⊗ (L2n

ν ⊗ Iν
) (

I 2n
ν
⊗Lν2

ν

) (
DFTn︸ ︷︷ ︸

(f)

⊗ Iν
))

(
L

kn
ν

k
ν

⊗L2ν
2

)
, ν | k, n.

(7.20)

Construct (f) again is a vector terminal which is handled by the target systems
Spiral and Fftw. Equation (7.20) is one of the key elements to achieve a
high-performance short vector FFTs.

When only applying equations (7.18) and (7.20) to equation (7.17), a formula
is obtained that completely decomposes a DFT into vector constructs and vector
terminals leading to the short vector Cooley-Tukey FFT.

Theorem 7.4 (Short Vector Cooley-Tukey FFT) Any DFTN with N =
ν2N1 can be transformed into a formula built exclusively from vector constructs
by using the following equation.

DFTν2mn =
(
Iνmn ⊗L2ν

ν

) (
DFTνm ⊗ In ⊗ Iν

)
T

′ν2mn

νn(
Im ⊗ (L2νn

ν ⊗ Iν
) (

I2n ⊗Lν2

ν

) (
DFTνn ⊗ Iν

))(
Lνmn

m ⊗L2ν
2

)
.

The only degree of freedom in Theorem 7.4 is the choice of m and n. However,
construct (b) can also be expanded by

(Ik ⊗DFTmn) Lkmn
k =

(
Ik ⊗ (DFTm ⊗ In) Tmn

n︸ ︷︷ ︸
(d)

)
(7.21)

(
Lkm

k ⊗ I2n

) (
Im ⊗ (Ik ⊗DFTn) Lkn

k︸ ︷︷ ︸
(e)

)
(Lmn

m ⊗ I2k) .

(7.21) is a complex version of Theorem 5.5 and consists of two constructs. Con-
struct (d) again is matched by equation (7.18). Construct (e) has the same
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structure as construct (b) and thus again offers the freedom to choose either
equation (7.20) or (7.21) for further expansion. Equation (7.21) has a strong
impact on data locality. The important degree of freedom is the choice of the
recursion level where (7.20) is used instead of (7.21) and accordingly switching
to vector terminals takes place.

In addition all intermediate permutations L2ν
ν and L2ν

2 introduced by the con-
jugations cancel according to Properties 4.1 and 4.1 which is very important to
avoid additional data reorganization steps. Applying these properties to equa-
tion (7.20) and to equation (7.21) leads to the following rule set.

Theorem 7.5 (Short Vector Cooley-Tukey Rule Set) Any DFTN with
N = ν2N1 can be transformed into a formula built exclusively from vector con-
structs by using the following equations.

DFTν2mn = (DFTνm ⊗ Iνn) Tν2mn
νn

(
Iνmn ⊗L2ν

ν

)(
Iνmn ⊗L2ν

2

)
(Iνm ⊗DFTνn) Lν2mn

νm (7.22)

(DFTm ⊗ Iνn) Tνmn
νn(

Imn ⊗L2ν
ν

)
=

(
Imn ⊗L2ν

ν

)((
DFTm ⊗ In ⊗ Iν

)
T

′νmn

νn

)
(7.23)

(DFTm ⊗ Iνn) Tνmn
νn

Imn ⊗L2ν
ν

=
((

DFTm ⊗ In ⊗ Iν
)
T

′νmn

νn

)
(7.24)

(
Iνmn ⊗L2ν

2

)
(Iνm ⊗DFTνn) Lν2mn

νm =
(
Im ⊗ (L2νn

ν ⊗ Iν
) (

I2n ⊗Lν2

ν

) (
DFTνn ⊗ Iν

))(
Lνmn

m ⊗L2ν
2

)
(7.25)

(
Iνmk1k2n ⊗L2ν

2

)
(Iνm ⊗DFTνk1k2n) Lν2mk1k2n

νm =

(
Iνm ⊗(DFTk1 ⊗ Iνk2n) Tνk1k2n

νk2n

Ik1k2n ⊗L2ν
ν

)
(
Lνk1m

νm ⊗ I2νk2n

)(
Ik1 ⊗

(
Iνmk2n ⊗L2ν

2

)
(Iνm ⊗DFTνk2n) Lν2mk2n

νm

)
(
Lνk1k2n

k1
⊗ I2νm

)
(7.26)

Note, that this set of rules also exists as transposed rules, starting from the
transposed version of Theorem 5.1, i. e., Theorem 5.2.
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Example 7.7 (Short Vector Cooley-Tukey Rule Set for N = ν2rstu) This example
shows the application of the short vector Cooley-Tukey rule for four factors. The problem
size has to be a multiple of ν2. In this example, the four factors are r, s, t, and u. This
is the smallest example which enables to study all equations of the rule set. The example
is analogous to Example 5.10, but the formula manipulation is done in the real arithmetic
formulation and applying the short vector Cooley-Tukey rules instead of the Cooley-Tukey
vector recursion.

In a first step equation (7.22) is applied to the initial transform DFTν2rstu with m = r and
n = stu leading to

DFTν2rstu = (DFTrν ⊗ Iνstu) Tν2rstu
νstu

(
Iνrstu ⊗L2ν

ν

)︸ ︷︷ ︸
(a)(

Iνrstu ⊗L2ν
2

)
(Irν ⊗DFTνstu) Lν2rstu

rν︸ ︷︷ ︸
(b)

.
(7.27)

Construct (a) in (7.27) is further expanded using rule (7.23) leading to

(
Iνrstu ⊗L2ν

ν

)((
DFTrν ⊗ Istu ⊗ Iν

)
T

′ν2rstu

νstu

)
. (7.28)

Construct (b) in (7.27) is further expanded using rule (7.26) with m = n, k1 = s, k2 = t, and
n = u leading to(

Iνr ⊗ (DFTs ⊗ Iνtu)Tνstu
νtu

Istu ⊗L2ν
ν︸ ︷︷ ︸

(c)

)

(Lνsr
νr ⊗ I2νtu)

(
Is ⊗

(
Iνrtu ⊗L2ν

2

) (
Iνr ⊗DFTνtu

)
Lν2rtu

νr︸ ︷︷ ︸
(d)

)(
Lνstu

s ⊗ I2νr

)
.

(7.29)

Construct (c) in (7.29) is expanded using rule (7.24) with m = s and n = tu leading to(
DFTs ⊗ Itu ⊗ Iν

)
T

′νstu

νtu . (7.30)

Construct (d) in (7.29) is again expanded using rule (7.26) with m = n, k1 = t, k2 = 1, and
n = u leading to(

Iνr ⊗ (DFTt ⊗ Iνu)Tνtu
νu

Itu ⊗L2ν
ν︸ ︷︷ ︸

(e)

)
(
Lνrt

νr ⊗ I2νu

)(
It ⊗

(
Iνru ⊗L2ν

2

)
(Iνr ⊗DFTνu) Lν2ru

νr︸ ︷︷ ︸
(f)

)(
Lνtu

t ⊗ I2νr

)
.

(7.31)

Construct (e) in (7.31) is expanded using rule (7.24) with m = t and n = u leading to(
DFTt ⊗ Iu ⊗ Iν

)
T

′νtu

νu . (7.32)

Construct (f) in (7.31) is expanded using rule (7.25) with m = r and n = u leading to(
Ir ⊗

(
L2νu

ν ⊗ Iν
) (

I2u ⊗Lν2

ν

) (
DFTνu ⊗ Iν

)) (
Lνru

r ⊗L2ν
2

)
. (7.33)
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In the final step the equations are substituted back. Thus equations (7.32) and (7.33) are
substituted into (7.31), (7.30) and (7.31) are substituted into (7.29), and (7.28) and (7.29) are
substituted into (7.27). Finally, the fully expanded equation is obtained:

DFTν2rstu =
(

Iνrstu ⊗L2ν
ν

)((
DFTrν ⊗ Istu ⊗ Iν

)
T

′ν2rstu

νstu

)
︸ ︷︷ ︸

(a)(
Iνr ⊗

(
DFTs ⊗ Itu ⊗ Iν

)
T

′νstu

νtu︸ ︷︷ ︸
(c)

)
(

Lνsr
νr ⊗ I2νtu

)(
Is ⊗

(
Iνr ⊗

(
DFTt ⊗ Iu ⊗ Iν

)
T

′νtu

νu︸ ︷︷ ︸
(e)(

Lνrt
νr ⊗ I2νu

)
(

It ⊗
(

Ir ⊗
(
L2νu

ν ⊗ Iν
)(

I2u ⊗Lν2

ν

)(
DFTνu ⊗ Iν

))(
Lνru

r ⊗L2ν
2︸ ︷︷ ︸

(f)

))
(

Lνtu
t ⊗ I2νr

))
(

Lνstu
s ⊗ I2νr

)
(7.34)

In the resulting equation (7.34) all basic constructs are vector constructs matching

A ⊗ Iν , L2ν
2 , L2ν

ν , Lν2

ν , or T
′mn

n .

Thus, equation (7.34) can be implemented utilizing vector memory access and in-register per-
mutations exclusively.

Example 7.7 shows, how the short vector Cooley-Tukey rules are applied for a
small example. In the real application, the utilization of a computer algebra sys-
tem like Gap (which is used by Spiral) or direct coding of the recursion rules as
done by Fftw’s executor is required to exploit the following degrees of freedom:
(i) how many factors are used, (ii) how are the factors chosen, (iii) which rule is
applied, and (iv) how are the vector terminals further expanded. This provides a
rich search space for the application of automatic empirical performance tuning.

The most important property of the short-vector Cooley-Tukey rule set is that
the formal approach guarantees that the resulting formula can be implemented
with vector arithmetic, vector memory access operations, and efficient in-register
permutations exclusively . In Chapter 8 both an implementation of Theorem 7.4
and Theorem 7.5 is described.

7.4 Short Vector Specific Search

In order to achieve high performance on short vector SIMD architectures, it is
necessary to apply search methods to empirically find a good implementation.
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This section discusses, how the search methods provided by Spiral have to be
adopted to support the short vector Cooley-Tukey rule set.

Spiral provides different search methods to find the best algorithm for a
given computing platform, including dynamic programming (Cormen et al. [14]),
Steer (an evolutionary algorithm by Singer and Veloso [84]), a hill climbing
search, and exhaustive search.

For scalar DFT implementations, it turns out that in general dynamic pro-
gramming is a good choice since it terminates fast (using only Theorem 7.22,
dynamic programming does at the order of O(n2) run time experiments, where n
is the transform size) and finds close to the best implementations (Püschel et al.
[80]).

In the case of short vector SIMD implementations, it turns out that dynamic
programming fails to find (nearly) best algorithms, as the run time of subprob-
lems becomes very context sensitive and dynamic programming assumes context
independence (the optimal subproblem asumption is no longer valid). This is
explained in the following and two variations of dynamic programming are pre-
sented that are included in the Spiral search engine to overcome this problem.
In Section 8.2.2 the various dynamic programming variants are evaluated exper-
imentally.

7.4.1 Standard Dynamic Programming

Dynamic programming searches for the best implementation for a given transform
recursively. First of all, the list of all possible child transforms (with respect to
all applicable rules) is generated and the best implementation for each possible
child transform is determined by using dynamic programming recursively. Then
the best implementation for the transform is determined by applying all possible
rules and plugging in the already known solutions for the children. Since the
child transforms are smaller than the original construct, this process terminates.
For a DFT2n , using Theorem 7.22, dynamic programming can be used to find the
best implementations for DFT2k , k = 1, 2, . . . , n in one search run for DFT2n .

The method works well for scalar code, but for vector code the method is
flawed. At some stage, rule (7.25) has to be applied to obtain vector termi-
nals. Using dynamic programming recursively on the obtained children would
inevitably apply this rule again, even though the children are vector terminals,
i.e., should rather be expanded using rule (7.22). As a result, wrong breakdown
strategies are found.

7.4.2 Vector Dynamic Programming

The first obvious change is to disable the vector rule (7.25) for vector terminals.
This already leads to reasonably structured formulas. But there is a second prob-
lem: dynamic programming optimizes all vector terminals like DFTk as scalar
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constructs thus not taking into account the vector tensor product, i. e., ignoring
the context DFTk ⊗ Iν of DFTk. Thus, a second modification is made by expand-
ing DFTk by using scalar rules but always measuring the run time of the vector
code generated from DFTk ⊗ Iν . For the other construct containing a vector ter-
minal in (7.25), i. e., DFTm ⊗ In

ν
⊗ Iν , also DFTm⊗ Iν is measured, independently

of n/ν.

7.4.3 Stride Sensitive Vector Dynamic Programming

This variant is directly matched to rule (7.25). For a given DFTN , this search
variant first creates all possible pairs (m,n) with N = mn. For any pair (m,n), it
searches the best implementation of the vector terminals required by rule (7.25)
using vector dynamic programming. But when searching for the best DFTm

by using vector dynamic programming a variant is used that finally measures
DFTm ⊗ In

ν
⊗ Iν instead of DFTm ⊗ Iν , which makes the search sensitive to the

stride n/ν. A fast formula for DFTn is found by using to standard vector dynamic
programming. This exactly optimizes the required vector terminals, including
the stride. This dynamic programming variant requires much more run time
measurements compared to the other two dynamic programming variants and
thus saving the results for earlier measured pairs (m,n) speeds up the search
crucially.

A second variant of the stride sensitive vector dynamic programming was de-
veloped, where the search operation is done without reusing intermediate results
across different runs of dynamic programming. This leads to a context and stride
sensitive version which is subsequently called “nohash” variant.



Chapter 8

Experimental Results

This chapter presents the experimental evaluation of the methods developed in
Chapter 7. To obtain relevant performance results, the newly developed methods
have been included into the two state-of-the-art hardware adaptive systems for
computing discrete linear transforms, i. e., Spiral and Fftw.

Fftw has been extended to utilize short vector SIMD instructions when com-
puting complex-to-complex DFTs supported by the original version of Fftw,
independently of the data stride and the problem size, i. e., the problem size has
not been restricted to powers of two. Section 8.1 describes how the Cooley-Tukey
FFT for subvectors (developed in Section 7.2) and the short vector Cooley-Tukey
FFT (developed in Section 7.3) have been included into Fftw and evaluated
across various short vector SIMD extensions and platforms.

The Spiral system has been extended to produce short vector SIMD imple-
mentations for any discrete linear transform supported by the original system.
The general formula based vectorization method developed in Section 7.1 has
been tested with the WHT and two-dimensional DCTs of type II, while the short
vector Cooley-Tukey FFT developed in Section 7.3 is used for DFT implementa-
tions for problem sizes being powers of two.

The experiments presented in Section 8.2 include a detailed run time analysis,
an analysis of the short vector SIMD specific dynamic programming method
introduced in Section 7.4, as well as an analysis of the best performing codes
with respect to their recursive structure, and a survey of the applicability of
vectorizing compilers for short vector SIMD extensions.

All performance values were obtained using the original timing routines pro-
vided by Spiral and Fftw. Third-party codes were assessed using these timing
routines as well. Details on performance assessment for scientific software can be
found in Appendix A and in Gansterer and Ueberhuber [36]. All codes for com-
plex transforms utilize the interleaved complex format (described in Section 4.6)
unless noted differently.

8.1 A Short Vector Extension for FFTW

In the scope of this thesis, Fftw is extended to portably support short vector
SIMD extensions based on two methods developed in Chapter 7, (i) the Cooley-
Tukey FFT for subvectors, and (ii) the short vector Cooley-Tukey FFT.

The necessary modifications are hidden within the Fftw framework such that

129
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the utilization of the short vector SIMD extensions is transparent for the user.
The system automatically chooses the problem-dependent optimum method to
utilize the available hardware. Specifically, the following support was included
into Fftw.

• Applying the Cooley-Tukey rule for subvectors, support for (i) problem
sizes which are multiples of ν2 based on Theorem 7.1, and (ii) for arbitrary
problem sizes based on Theorem 7.2 is provided. This method supports
all features of Fftw for complex-to-complex DFT computations, including
arbitrary problem sizes and arbitrary strides.

• Support for problem sizes which are multiples of ν2 based on the short vector
Cooley-Tukey rule set (Theorem 7.5) is provided. This method achieves
higher performance but can only be used with a subset of problem sizes and
with unit stride only (in the case of four-way short vector SIMD extensions).

Fftw does not directly utilize the formal methods presented in Chapter 4. In case
of the short vector SIMD extension an implementation based on Theorems 7.1 and
7.2 as well as the short vector Cooley-Tukey rule set (Theorem 7.5) was included
into Fftw which itself is based on the Cooley-Tukey recursion as summarized in
Section 5.2.5.

The formal methods developed in this thesis are a valuable tool to study and
express the computations carried out by the Fftw short vector SIMD extension
developed in this thesis.

8.1.1 Extending FFTW

In order to include the newly developed methods into the Fftw framework, sev-
eral changes to the original system were required. Due to technical considerations,
the experimental version nfftw2 that is not publicly available was chosen as the
version to be extended. Implementation of the short vector Cooley-Tukey rule
set would not have been possible without access to nfftw2.

This section only gives a high-level overview of the implementation of the
Fftw short vector SIMD extension. The reader may refer to the documentation
of the latest official release, i. e., Fftw 2.1.3 which provides sufficient information.
Throughout this section, the nomenclature of Fftw 2.1.3 is used.

The Vector Codelets

Fftw features one twiddle codelet and one no-twiddle codelet per codelet size.
For the short vector SIMD extension new types of scalar and vector codelets are
required which feature additional support for permutations. Vector codelets are
specialized symbols and thus follow the approach described in Section 7.1.4.

Vector twiddle codelets have the following general structure:
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Load phase: x′ = EiQi x,

Computation phase: y′ = (DFTN ⊗ I k
ν
⊗ Iν) x′,

Store phase: y = Pi y
′.

Vector no-twiddle codelets have the following structure:

Load phase: x′ = Qi x,

Computation phase: y′ = (DFTN ⊗ Iν) x′,

Store phase: y = Pi y
′.

The codelet generator genfft is extended following the ideas from Section 7.1.4,
thus it (i) utilizes genfft’s core routines to generate code for the computational
cores, and (ii) uses a modified unparsing routine to enable the support for Pi

and Qi. Pi and Qi originate from either L2ν
k or Lν2

ν and the complex diagonal Ei

provides the required support for the twiddle factors. These constructs and the
arithmetic vector operations required within the computational core of a codelet
are implemented using the portable SIMD API.

Although the computational core is the same for all twiddle vector codelets
of a specific size on the one hand as well as for all no-twiddle vector codelets of a
specific size on the other hand, different versions of vector codelets are required
to cope with data alignment and the permutations required by the short vector
Cooley-Tukey rule set. The differences between the short vector Cooley-Tukey
rule set and the Cooley-Tukey rules for subvectors are hidden in the permutation
macros that support Pi and Qi. Appendix E.2 shows a scalar no-twiddle codelet
of size four and Appendix E.3 shows one of the respective vector codelets.

The Vector Framework

The standard Fftw framework had to be extended to support the multitude
of codelets. The applicability of a certain codelet had to be managed as well
as the various methods to support the short vector SIMD extensions. This is
the major reason that the experimental version nfftw2 was used as the required
support was gained more easily compared to extending Fftw 2.1.3. Both the
executor and the planner required changes, thus all major parts of Fftw had to
be adopted.

8.1.2 Run Time Experiments

The short vector SIMD extension of Fftw, called Fftw-Simd, was compared
to the standard scalar version of Fftw which served as baseline. As nfftw2

was extended, this version was used as scalar version. However, for the problem
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specifications that were analyzed, nfftw2 delivers about the same performance
as the last public release Fftw 2.1.3.

The Test Machines

Fftw-Simd has been investigated on three IA-32 compatible machines and us-
ing one Motorola Power PC machine: (i) Intel Pentium 4 running at 1.8 GHz,
(ii) Intel Pentium III running at 650 MHz, (iii) AMD Athlon XP 1800+ running
at 1533 MHz, and (iv) Motorola MPC7400 G4 running at 400 MHz. Details
about the machines can be found in Table 8.1.

The SSE version was tested on the Pentium III, the Pentium 4, and the AMD
Athlon XP. The SSE 2 version was tested on the Pentium 4. The AltiVec version
was tested on the MPC7400 G4.

For all IA-32 compatible machines the Intel C++ 6.0 compiler with experimen-
tally determined compiler options, optimized for the specific machine, was used.
All experiments on IA-32 compatible machines were conducted using the operat-
ing system Microsoft Windows 2000 and were validated on the same machines
running under RedHat Linux 7.2 and using the Linux Intel C++ 6.0 compiler.

The experiments on the Motorola MPC7400 G4 were conducted under Yel-
lowdog Linux 1.2 and the AltiVec version of the Gnu C 2.9. compiler.

For power of two problem sizes on IA-32 compatible machines the perfor-
mance of the scalar and short vector SIMD version of Fftw was compared to
the hand-optimized vendor library Intel MKL 5.1 [58]. Non-powers of two cannot
be compared to the Intel MKL due to the missing support by Intel’s library.

The performance is displayed in pseudo Gflop/s, i. e., (5N log N)/T , which
is a scaled inverse of the run time T and thus preserves run time relations and
additionally gives an indication of the absolute performance. Details on the
performance unit pseudo flop/s can be found in Appendix A and in Frigo and
Johnson [33].

Note that SSE has hardware support for loading subvectors of size two while
that is a costly operation on the AltiVec extension. On the other hand, Al-
tiVec internally operates on vectors of size four while on all machines featuring
SSE the four-way operations are broken internally into two two-way operations
thus limiting the vectorization speed-up. However, due to other architectural im-
plications the speed-up achievable by vectorization (ignoring effects like smaller
program size due to fewer instructions) is limited by a factor of four for SSE on
the Pentium III, Pentium 4 and for AltiVec on the MPC7400 G4. For SSE on the
Athlon XP and SSE 2 on the Pentium 4 the upper speed-up limit is a factor of
two.

The Short Vector Cooley-Tukey Rule Set, Powers of Two

This section describes the experimental results which were obtained by inves-
tigating the Fftw implementation of the short vector Cooley-Tukey rule set
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CPU Intel Pentium 4
1.8 GHz
8 kB L1 Data Cache
256 kB on-die L2 Cache
7.2 Gflop/s single-precision
3.6 Gflop/s double-precision
SSE and SSE 2

RAM 256 MB RDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

CPU Intel Pentium III Coppermine
650 MHz
16 kB L1 Data Cache
256 kB on-die L2 Cache
7.2 Gflop/s single-precision
SSE

RAM 128 MB SDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

CPU AMD Athlon XP 1800+
1533 MHz
64 kB L1 Data Cache
256 kB on-die L2 Cache
6.1 Gflop/s single-precision
3DNow! Professional (SSE compatible)

RAM 128 MB DDR-SDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

CPU Motorola 7400 G4
400 MHz
32 kB L1 Data Cache
1024 kB unified L2 Cache
3.2 Gflop/s single-precision
AltiVec

RAM 128 MB SDRAM
Operating System Yellodog Linux 1.2
Compiler Gnu C Compiler 2.9.5 for AltiVec

Table 8.1: The computer systems used for assessing Fftw’s short vector SIMD extension.

developed in Section 7.3. Figures 8.1 to 8.4 show the floating-point performance
of the short vector Cooley-Tukey rule set applied to power of two problem sizes
tested across all IA-32 compatible machines within the test pool. Both SSE and
SSE 2 was tested. Concerning four-way short vector SIMD extensions, these
experiments show that that the short vector Cooley-Tukey rule set is superior
whenever applicable. The data format used for these experiments is—in contrast
to most other experiments—the split complex format summarized in Section 4.6.
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On the Pentium 4 the highest performance is achieved for problem sizes that
fit completely into L1 cache and are not too small, i. e., N = 64 or 128. The
performance then decreases for problems that fit into L2 cache but do not fit into
L1 cache. Speed-ups of more than three are achieved for SSE and more than
1.8 for SSE 2 for data sets that fit into L1 data cache. For data sets that fit
into L2 cache but not into L1 cache, speed-ups of 2.5 for SSE and 1.7 for SSE 2
were achieved. This is due to the memory subsystem and the high computational
power of the Pentium 4 in combination with the memory access patterns required
by the vector recursion and Fftw’s restriction to right-expanded trees. For data
sets that fit into L1 cache, the Intel MKL is slower than Fftw-Simd. Intel’s MKL
is faster than Fftw-Simd for some problem sizes where the data set does not
fit into L1 cache. This is due to (i) the usage of prefetching, and (ii) due to the
fact that in-place computation is used in contrast to Fftw which features out-
of-place computation resulting in higher memory requirements. See Figures 8.1
and 8.2 for details.

nfftw2
Intel MKL 5.1
nfftw2-sse

Floating-Point Performance

Vector Length N

Gflop/s

213212211210292827262524

4

3

2

1

0

Figure 8.1: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 24, 25, . . . , 213, for single-precision and SSE on an Intel Pentium 4 running at 1.8 GHz.

On the Pentium III the shape of the performance graph looks different. The
maximum performance is obtained for N = 256 and N = 512. The performance
slowly decreases for both smaller and larger problem sizes. This is due to the
differences in the cache architecture between the Pentium III and the Pentium 4.
Speed-up factors of up to 2.8 have been achieved for SSE on the Pentium III.
The performance of the Intel MKL is at least 20 % below the performance of
Fftw-Simd. See Figure 8.3 for details.

The performance graph for the Athlon XP looks quite similar to the graph
obtained for the Pentium III. The notable differences are (i) speed-up factors
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Figure 8.2: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 24, 25, . . . , 213, for double-precision and SSE 2 on an Intel Pentium 4 running at 1.8 GHz.
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Figure 8.3: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 24, 25, . . . , 213, for single-precision and SSE on an Intel Pentium III running at 650 MHz.
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are lower due to the different microarchitecture as explained at the beginning
of this section, and (ii) Intel’s MKL library performs relatively better than on
the Pentium III, although it reaches the performance of Fftw-simd only for
N = 1024 and N = 2048. Fftw-Simd achieves speed-ups of up to 1.8 on the
Athlon XP. See Figure 8.4 for details.
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Figure 8.4: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 24, 25, . . . , 213, for single-precision and SSE on an AMD Athlon XP 1800+ running at
1533 MHz.

The Short Vector Cooley-Tukey Rule Set, Non-powers of Two

This section describes the experimental results which were obtained by inves-
tigating the Fftw implementation of the short vector Cooley-Tukey rule set
developed in Section 7.3. Figures 8.5 to 8.8 show the vector recursion applied
to non-power of two problem sizes tested across all IA-32 compatible machines
within the test pool. Both SSE and SSE 2 were tested. Concerning four-way
short vector SIMD extensions, these experiments again show that that the short
vector Cooley-Tukey rule set is superior whenever applicable. The problem sizes
tested are multiples of 16 and can be found in Table 8.2. The data format used for
these experiments is—in contrast to most other experiments—the split complex
format summarized in Section 4.6.

On the Pentium 4 the highest performance is achieved for problem sizes that
fit completely into L1 cache and feature small prime factors. For problem sizes
with large prime factors the performance gain breaks down significantly. As the
problem sizes grow, the performance graph becomes smoother as large prime
factors do not occur so often in the tested problem sizes.
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16 32 48 64 80
96 112 128 144
160 176 192 208 224
240 256 320 480 640
800 960 1,120 1,280 1,440

1,600 3,200 4,800 6,400 8,000

Table 8.2: The problem sizes tested with the short vector Cooley-Tukey rule set extension for
Fftw in the non-power of two case.

For problem sizes that fit into L2 cache but do not fit into L1 data cache, the
performance graph features about the same characteristics as for the power-of-
two case. Speed-up factors of up to 3.2 for SSE and more than 1.7 for SSE 2 are
achieved. See Figures 8.5 and 8.6 for details.
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Figure 8.5: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 16, . . . , 8000 (see Table 8.2) for single-precision and SSE on an Intel Pentium 4 running at
1.8 GHz.

On the Pentium III again the shape of the performance graph looks different.
The maximum performance is obtained between N = 160 and N = 320 and the
performance slowly decreases for both smaller and larger problem sizes. But close
to the highest performance two large breakdowns in performance gain can be seen
due to large prime factors and relatively slow codelets. Again the differences in
the cache architecture between the Pentium III and the Pentium 4 can be seen in
the performance graph. Speed-up factors between 2.5 and three are achieved for
SSE on the Pentium III. See Figure 8.7 for details.

Again the performance graph for the Athlon XP looks quite similar to the
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graph obtained for the Pentium III. The notable difference again is the lower
speed-up factors compared to the Pentium III. As outlined above this is due to
the AMD microarchitecture. Fftw-Simd achieves speed-ups of up to 1.8 on the
Athlon XP. See Figure 8.8 for details.

The Cooley-Tukey Rule Set for Subvectors

This section describes the experimental results obtained by investigating the
Fftw-Simd implementation based the Cooley-Tukey rules for subvectors given
by Theorems 7.1 and 7.2. Figures 8.9 and 8.10 show the application of Theo-
rem 7.1 for powers of two while Figures 8.11 and 8.12 show the application of
Theorem 7.2 for non-powers of two. Both four-way extensions were analyzed:
(i) SSE on the Pentium III, and (ii) AltiVec on the Motorola MPC7400 G4. The
Pentium III features relatively cheap subvector memory access (64 bit quantities
can be loaded into the 128 bit vector register) while this operation is very expen-
sive on the MPC7400 G4. Comparing the performance shows similar speed-up
factors.

For power of two problem sizes, speed-up factors of up to two are achieved
on the Pentium III and speed-up factors of up to 2.5 on the MPC7400 G4. The
performance achieved on the Pentium III is about 30 % less than by using the
short-vector Cooley-Tukey rule set. On the MPC7400 G4 the cache influence is
more severe than on the Pentium III. See Figures 8.9 and 8.10 for details.

Figures 8.11 and 8.12 focus on non-power of two sizes which are not necessarily
multiples of 16. Thus the method based on Theorem 7.2 has to be used. On both
the Pentium III and the MPC 7400 G4 the shape of the performance graph in the
non-power of two case is similar to the power of two case. However, analogously
to the non-power of two case for the short vector Cooley-Tukey rule set the
performance graph is less smooth due to changing prime factors. The problem
sizes tested are not necessarily multiples of 16. They can be found in Table 8.3.

10 20 30 40 50 60 70 90
100 200 300 500 600 700 900

1,000 2,000 3,000 5,000 6,000 7,000 9,000
10,000 20,000

Table 8.3: The problem sizes tested with the short vector SIMD extension for Fftw based
on Theorem 7.2 in the non-power of two case.
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Figure 8.6: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 16, . . . , 8000 (see Table 8.2) for double-precision and SSE 2 on an Intel Pentium 4 running
at 1.8 GHz.
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Figure 8.7: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 16, . . . , 8000 (see Table 8.2) for single-precision and SSE on an Intel Pentium III running
at 650 MHz.
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Figure 8.8: FFTW, Short Vector Cooley-Tukey rule set: Performance results for DFTN with
N = 16, . . . , 8000 (see Table 8.2) for single-precision and SSE on an AMD Athlon XP 1800+
running at 1533 MHz.
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Figure 8.9: FFTW, Subvector Memory Access: Performance results for DFTN with N =
24, 25, . . . , 213, for single-precision and SSE on an Intel Pentium III running at 650 MHz.
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Figure 8.10: FFTW, Subvector Memory Access: Performance results for DFTN with N =
24, 25, . . . , 213, for single-precision and SSE on a Motorola MPC 7400 G4 running at 400 MHz.
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Figure 8.11: FFTW, Subvector Memory Access: Performance results for DFTN with N =
10, . . . , 20 000 (see Table 8.3) for single-precision and SSE on an Intel Pentium III running at
650 MHz.
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Figure 8.12: FFTW, Subvector Memory Access: Performance results for DFTN with N =
10, . . . , 20 000 (see Table 8.3) for single-precision and SSE on a Motorola MPC 7400 G4 running
at 400 MHz.

8.2 A Short Vector Extension for SPIRAL

In the scope of this thesis, Spiral has been extended to portably support short
vector SIMD extensions based on two methods developed in Chapter 7 and the
portable SIMD API. The SPL compiler is extended to support short vector SIMD,
thus preserving the interfaces within the Spiral system. The newly developed
extension of the SPL compiler formally vectorizes a given SPL program and
generates a program that is based on the portable SIMD API.

• General support for discrete linear transforms utilizing the method devel-
oped in Section 7.1 is included.

• DFT specific support utilizing the short vector Cooley-Tukey FFT devel-
oped in Section 7.3 is provided. In addition, the search module is extended
according to Section 7.4.

To enable analysis of compiler vectorization for discrete linear transforms, sup-
port for the Intel C++ compiler’s vectorization was included into Spiral. The
structure of the best found formulas are analyzed and related to relevant hard-
ware parameters. It is shown that adapting the codes to a specific combination
of target machine, short vector SIMD extension, and set of compiler options is
required to obtain top performance.
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8.2.1 Extending the SPL Compiler for Vector Code

This section presents the extended version of the SPL compiler that generates C
code enhanced with macros provided by the portable SIMD API using an SPL
formula and the SIMD vector length ν (i. e., number of single-precision floating-
point numbers contained) as its sole input. The modified SPL compiler supports
real and complex transforms and input vectors. Moreover, the compiler produces
portable code, which is achieved by restricting the generated code to instructions
available on all SIMD architectures and using the portable SIMD API as hardware
abstraction layer.

The newly developed vectorization technique is based on the concepts devel-
oped in Chapter 7. For example, DFTs, WHTs arising from rules (5.2), and
two-dimensional transforms arising from rule (5.4), can be completely vectorized.
Implementing the method developed in Section 7.1, a general formula is normal-
ized and vectorized code is generated for symbols matching equation (7.1), while
the rest is translated to standard (scalar) C code. In addition, DFTs are handled
more efficiently by the short vector Cooley-Tukey FFT provided by Theorem 7.4.

The symbolic vectorization is implemented as manipulation of the abstract
syntax tree representation (see Section 4.7.1) of the SPL program. The newly in-
cluded vectorization rules are based on the identities introduced in Chapters 4 and
7. Special support for complex transforms is provided according to Section 4.6.
Table 8.4 shows some examples of the required rules.

Basic Vectorization Rules Extended

Vectorization Rules

A ⊗ B �→ (A ⊗ Im)(In ⊗B) A ⊗ Iν �→ S
A ⊗ Iνk �→ (A ⊗ Ik) ⊗ Iν = A′ ⊗ Iν D S �→ S′

Iνk ⊗A �→ Iν ⊗(Ik ⊗A) S D �→ S′

= P−1 ((Ik ⊗A) ⊗ Iν) P = P−1(A′ ⊗ Iν)P P S �→ S′

A ⊗ Iνk+l �→ A ⊗ (Iνk ⊕ Il) S P �→ S′

= Q−1((Iνk ⊗A) ⊕ (Il ⊗A))Q
Iνk+l ⊗A �→ (Iνk ⊕ Il) ⊗ A = (Iνk ⊗A) ⊕ (Il ⊗A)

Table 8.4: Recursion and transformation rules for SIMD vectorization. P and Q are permu-
tation matrices. D is a diagonal matrix, and A and B are arbitrary formulas. S and S′ are
SIMD symbols.

In addition, the SPL compiler’s unparsing stage had to be extended to support
the portable SIMD API.

The remainder of this section explains the five stages of translating an SPL pro-
gram into a C program that is built on top of the portable SIMD API.
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Stage 1: Basic Vectorization

In the first stage the abstract syntax tree generated from the SPL program is
searched for constructs of the form

Ir ⊗A and A ⊗ Is .

Then, using the basic vectorization rules from Table 8.4, these constructs are
transformed into

Qi (A
′
i ⊗ Iν) Pi

with suitable permutation matrices Pi and Qi. Next, in the main abstract syntax
tree each of these constructs is replaced by a symbol Si which thus becomes leaves
in this tree. In addition, an abstract syntax tree is generated for each symbol.
Within the abstract syntax tree of a symbol, no further steps are needed in this
stage. The result of this stage is a collection of abstract syntax trees for the
following constructs: (i) the remaining part of the formula (subsequently called
main part), and (ii) for each symbol.

Stage 2: Joining Diagonals and Permutations

In this stage real and complex diagonals as well as permutations are vectorized.
After this stage all constructs covered by equation (7.2) are transformed into a
product of symbols. If any symbol Si is composed with complex or real diago-
nals Di or Ei or any permutation Pi or Qi within the abstract syntax tree, the
symbol Si is transformed into the symbol S′

i by joining the permutations and/or
diagonals using the extended vectorization rules summarized in Table 8.4. The
diagonals and permutations will be handled in the load and store phase of the
implementation of the corresponding symbol as outlined in Section 7.1.4. The
joined permutations and diagonals are subsequently removed from the remaining
main abstract syntax tree.

Stage 3: Generating Code

In this stage an internal representation of real arithmetic (i-code) for the main
abstract syntax tree and the abstract syntax trees for all symbols is generated
by calling the standard SPL compiler’s code generator (see Section 4.7.1). For
each symbol and the remaining main part of the formula i-code is generated and
optimized using the respective stages of the standard SPL compiler.

Stage 4: Memory Access Optimization

In this stage the abstract syntax trees are transformed into the corresponding
real arithmetic abstract syntax trees according to Section 4.6.1 and the required
permutations L2ν

k are deduced. The i-code generated in Stage 3 is extended with
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load and store operations implementing these permutations which will finally be
handled in the unparsing stage.

Stage 5: Unparsing

The i-code for symbols and for the main program generated in Stage 3 and ex-
tended in Stage 4 are unparsed as C program enhanced with macros provided by
the portable SIMD API. The i-code generated for symbols is unparsed as vector
arithmetic and the permutations produced by Stages 1, 2, and 4 are unparsed
using memory access macros. The i-code generated for the main program is
unparsed as scalar C program and calls to the symbols are inserted.

The short vector Cooley-Tukey rules developed in Section 7.3 have been imple-
mented currently in Stages 1, 2, and 4, as their main purpose is to handle complex
arithmetic and generate suitable symbols for parts of the DFT computation. The
long-term goal is to move the short vector Cooley-Tukey rules into Spiral’s for-
mula generator and enable rule (7.26).

8.2.2 Run Time Experiments

This section describes experimental results for the automatically generated short
vector SIMD code for the DFT, WHT and the two-dimensional DCT of type
II. All transforms are of size N = 2n or N × N = 2n × 2n, respectively. The
code generated and optimized by Spiral-Simd is compared to the best available
DFT implementations across different architectures. In addition, different search
methods and the structure of the best algorithms found are analyzed.

To validate the approach introduced in this thesis, both the SSE and SSE 2
extensions on three binary compatible, yet architectural different platforms were
chosen: (i) Intel Pentium III with SDRAM running at 1 GHz, (ii) Intel Pentium 4
with RDRAM running at 2.53 GHz, and (iii) AMD Athlon XP 2100+ with DDR-
SDRAM running at 1733 MHz.

These processors are based on different cores and have different cache archi-
tectures. The machines feature different chip sets, system busses, and memory
technology. Details about these machine can be found in Table 8.5.

As outlined in Section 8.1.2, the theoretical speed-up limit achievable due
to vectorization (thus ignoring effects like smaller program size due to a smaller
number of vector instructions) is a factor of four for SSE on the Pentium III and
the Pentium 4. For SSE on the Athlon XP and SSE 2 on the Pentium 4 the limit
is a factor of two.

By finding differently structured algorithms on different machine, high perfor-
mance across architectures and across short vector SIMD extensions is achieved,
which demonstrates the success of the presented approach to provide portable
performance independent of the vector length ν and other architectural details.
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CPU Intel Pentium 4
2.53 GHz
8 kB L1 Data Cache
256 kB on-die L2 Cache
10.1 Gflop/s single-precision
5.06 Gflop/s double-precision
SSE and SSE 2

RAM 512 MB RDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

CPU Intel Pentium III Coppermine
1 GHz
16 kB L1 Data Cache
256 kB on-die L2 Cache
7.2 Gflop/s single-precision
SSE

RAM 128 MB SDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

CPU AMD Athlon XP 2100+
1733 MHz
64 kB L1 Data Cache
256 kB on-die L2 Cache
6.9 Gflop/s single-precision
3DNow! Professional (SSE compatible)

RAM 512 MB DDR-SDRAM
Operating System Microsoft Windows 2000
Compiler Intel C++ Compiler 6.0

Table 8.5: The computer systems used for benchmarking the short vector SIMD extension for
Spiral.

Note that using automatic compiler vectorization in tandem with Spiral

code generation provides a fair evaluation of the limits of this technique. By
running a dynamic programming search, Spiral can find algorithms that are
best structured for compiler vectorization. Furthermore, the code generated by
Spiral is of simple structure (e. g., contains no pointers or variable loop limits).
Even though the compiler can improve on Spiral’s scalar code, the performance
is far from being optimal.

In case of the DFT, the vector code generated using the new approach de-
veloped in this thesis is compared to the state-of-the-art C code by Fftw 2.1.3
(Frigo and Johnson [33]) and code generated by Spiral, compiler vectorized C
code generated by Spiral, and short vector SIMD code (SSE and SSE 2) pro-
vided by the Intel Math Kernel Library MKL 5.1 [58]. The MKL features separate
versions optimized for Pentium III and 4. Note that the MKL uses in-place com-
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putation and memory prefetching instructions, which gives it an advantage over
the code generated by Spiral-Simd, which computes the DFT out-of-place.

In all cases the Intel C++ 6.0 compiler was used. In case of DFTs, the
performance is displayed in pseudo Gflop/s, i. e., (5N log N)/T , which is a scaled
inverse of the run time T and thus preserves run time relations and additionally
gives an indication of the absolute performance. Details on the performance unit
pseudo flop/s can be found in Appendix A and in Frigo and Johnson [33]. For the
other transforms, the actual number of floating-point operations was counted and
used for the computation of real Gflop/s performance values. These short vector
SIMD implementations were compared to the scalar implementations generated
and optimized by standard Spiral because of the lack of standard libraries.

Spiral generated scalar code was found using a dynamic programming search,
Spiral generated vector code (using the newly developed SIMD extensions) using
the best result of the two vector dynamic programming variants in Section 7.4.
In both cases the global limit for unrolling (the size of subblocks to be unrolled)
was included into the search.

Pentium 4

DFTs. On this processor the best ratio of flops per cycle among all investigated
processors and the highest speed-ups of Spiral generated vector code compared
to scalar Spiral generated code was achieved. For DFTs, using SSE, up to 6.25
pseudo Gflop/s (and a speed-up of up to 3.1), and using SSE 2 up to 3.3 pseudo
Gflop/s (and a speed-up of up to 1.83) were measured on a 2.53 GHz machine as
can be seen in Figures 8.13 and 8.14. Exhaustive search can further increase the
performance when using SSE 2 for small problem sizes.

The performance of the code generated by Spiral-Simd is best within L1
cache and only slightly decreases outside L1. Analysis of the generated program
shows that the best found code features very small loop bodies (as opposed to
medium and large unrolled blocks that typically lead to high performance) and
very regular code structure. This is due to Pentium 4’s new features, namely
(i) its new core with a very long pipeline, (ii) its new instruction cache that
caches instructions after they are decoded (trace cache), and (iii) its small, but
very fast data caches.

The results reported by Rodriguez [82] obtained on a similar machine running
at 1.4 GHz are included. As the source code cannot be obtained, the reported
results are scaled up to the frequency of the test machine used in this thesis. These
performance numbers are only a very rough but instructive estimate. Only half of
the performance obtained using the approach presented in this thesis is achieved
by Rodriguez’ method.

The standard C and Fortran codes generated by scalar Spiral and Fftw

2.1.3 show about the same performance and serve as a base line. Using compiler
vectorization, the code is sped up but the result is much slower than the code
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obtained using Spiral-Simd for SSE. For SSE 2 compiler vectorization does not
significantly speed up the code.

For SSE, apart from some problem sizes around 211, Intel’s MKL is much
slower than the code obtained using Spiral-Simd. For SSE 2 Intel’s MKL is
significantly slower across all evaluated problem sizes.

Fftw 2.1.3
Spiral C

Spiral C vect
SIMD-FFT

Intel MKL 5.1
Spiral SSE

Floating-Point Performance

Vector Length N

Gflop/s
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10
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6

4

2

0

Figure 8.13: SPIRAL: Performance results for DFTN with N = 24, 25, . . . , 213, for single-
precision arithmetic and SSE on an Intel Pentium 4 running at 2.53 GHz.

WHTs. Speed-up factors of more than 2.6 are achieved for WHTs when using
Spiral-Simd with SSE. The WHT is a very simple transform and thus compiler
vectorization can speed up the computation significantly. However, it cannot
reach the performance level of the code generated using Spiral-Simd. See Fig-
ure 8.15 for details.

For SSE 2, speed-up factors of up to 1.5 are achieved. In this experiment, com-
piler vectorization is able to reach the same performance level as code generated
by Spiral-Simd for larger problem sizes. See Figure 8.16 for details.

2D-DCTs, Type II. Speed-up factors of more than 3.1 are achieved for the
2D-DCT type II using Spiral-Simd with SSE. 2D-DCTs of type II feature a
very simple macro structure as they are higher-dimensional transforms and thus
compiler vectorization should be able to speed up the computation significantly.
However, the predicted speed-up has not been observed in the SSE experiments.
See Figure 8.17 for details.

For SSE 2, speed-up factors of up to 1.88 are achieved. In this experiment,
compiler vectorization can speed up the code across all problem sizes, yet the
performance level of code generated using Spiral-Simd is not achieved. See
Figure 8.18 for details.
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Figure 8.14: SPIRAL: Performance results for DFTN with N = 24, 25, . . . , 212, for double-
precision arithmetic and SSE 2 on an Intel Pentium 4 running at 2.53 GHz.
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Figure 8.15: SPIRAL: Performance results for WHTN with N = 24, 25, . . . , 214, for single-
precision arithmetic and SSE on an Intel Pentium 4 running at 2.53 GHz.
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Figure 8.16: SPIRAL: Performance results for WHTN with N = 24, 25, . . . , 214, for double-
precision arithmetic and SSE 2 on an Intel Pentium 4 running at 2.53 GHz.
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Figure 8.17: SPIRAL: Performance results for 2D DCTII
N ×N with N = 22, 23, . . . , 27, for

single-precision arithmetic and SSE on an Intel Pentium 4 running at 2.53 GHz.
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Figure 8.18: SPIRAL: Performance results for 2D DCTII
N ×N with N = 22, 23, . . . , 27, for

double-precision arithmetic and SSE 2 on an Intel Pentium 4 running at 2.53 GHz.

Pentium III

DFTs. Up to 1.7 pseudo Gflop/s (and a speed-up of up to 3.1) on a 1 GHz
machine featuring a Coppermine core were achieved. The best DFT implementa-
tions obtained by Spiral-Simd featured moderately sized loop bodies. On this
machine, codes generated by Spiral-Simd deliver the highest speed-ups with
respect to the scalar codes for larger problem sizes. On the Pentium III, Intel’s
MKL shows lower performance compared to codes generated by Spiral-Simd as
when comparing the respective run times on the the Pentium 4. This reflects In-
tel’s additional tuning effort for the Pentium 4 version of the MKL. Again Fftw

2.1.3 (without support for SSE) and scalar code generated by Spiral perform at
about the same performance level and serve as a baseline. Compiler vectorization
can speed up the code significantly, but again does not reach the performance
level obtained with code generated by Spiral-Simd. See Figure 8.19 for details.

WHTs. Speed-up factors of more than 2.6 are achieved when computing WHTs
using Spiral-Simd with SSE. Compiler vectorization can speed up the compu-
tation significantly, but again does not reach the same performance level as code
generated using Spiral-Simd. See Figure 8.20 for details.

2D-DCTs, Type II. Speed-up factors of more than 3.1 are achieved for the 2D-
DCT of type II using Spiral-Simd with SSE. For smaller problem sizes compiler
vectorization is able to speed up the computation significantly and finally reaches
the same performance level as code generated using Spiral-Simd. However, for
large problem sizes the performance breaks down to half of the scalar performance.
See Figure 8.21 for details.
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Figure 8.19: SPIRAL: Performance results for DFTN with N = 24, 25, . . . , 213, for single-
precision arithmetic and SSE on an Intel Pentium III running at 1 GHz.
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Figure 8.20: SPIRAL: Performance results for WHTN with N = 24, 25, . . . , 213, for single-
precision arithmetic and SSE on an Intel Pentium III running at 1 GHz.
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Figure 8.21: SPIRAL: Performance results for 2D DCTII
N ×N with N = 22, 23, . . . , 27, for

single-precision arithmetic and SSE on an Intel Pentium III running at 1 GHz.

Athlon XP

DFTs. Up to 2.8 pseudo Gflop/s (and speed-ups of up to 1.7) on a 1733 MHz ma-
chine were achieved. The best DFT implementations obtained by Spiral-Simd

featured large loop bodies. On this machine, the performance of the code gen-
erated by Spiral-Simd decreases at the L1 boundary while Intel’s MKL keeps
the performance level. Careful analysis shows, however, that the performance
level of codes generated by Spiral-Simd for 2n−1 is the same as Intel’s MKL
achieves for 2n. This is partly due to the in-place computation featured by In-
tel’s MKL resulting in substantially lower memory requirements. Although the
3DNow! professional extension which is binary compatible to 3DNow! and SSE
features 4-way SIMD extensions, the maximum obtainable speed-up is a factor
of two, as the Athlon XP’s two floating-point units then both operate as two-way
SIMD units. See Figure 8.22 for details.

WHTs. Speed-up factors of more than 1.65 are achieved for WHTs using
Spiral-Simd with SSE. Compiler vectorization achieves the same performance
level as code generated by Spiral-Simd. See Figure 8.23 for details.

2D-DCTs, Type II. Speed-up factors of more than 1.7 are achieved for 2D-
DCTs of type II using Spiral-Simd with SSE. For small problem sizes, compiler
vectorization is even inferior to scalar code. For medium problem sizes, compiler
vectorization can speed up the computation significantly but is not able to reach
the performance level of code generated by Spiral-Simd. For large problems,
compiler vectorization produces incorrect programs! See Figure 8.24 for details.
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Figure 8.22: SPIRAL: Performance results for DFTN with N = 24, 25, . . . , 213, for single-
precision arithmetic and SSE on an AMD Athlon XP 2100+ running at 1733 MHz.
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Figure 8.23: SPIRAL: Performance results for WHTN with N = 24, 25, . . . , 214, for single-
precision arithmetic and SSE on an AMD Athlon XP 2100+ running at 1733 MHz.
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Figure 8.24: SPIRAL: Performance results for 2D DCTII
N ×N with N = 22, 23 . . . , 27, for

single-precision arithmetic and SSE on an AMD Athlon XP 2100+ running at 1733 MHz.

8.2.3 Assessment of Search Methods

The three variants of dynamic programming introduced in Section 7.4 were ana-
lyzed: (i) Standard dynamic programming, (ii) vector dynamic programming,
and (iii) stride sensitive vector dynamic programming. The major observa-
tions made in the experiments were that dynamic programming works on some
machines while on others it misses the best implementation considerably, thus
requiring the modified versions introduced in Section 7.4. Specifically, on the
Pentium III and the Athlon XP, standard dynamic programming finds implemen-
tations very close to the optimum. However, on the Pentium 4 the vector-aware
dynamic programming variants are required to get the best performance, as stan-
dard dynamic programming only reaches 75 % of the best result.

Figure 8.25 shows that on the Pentium 4 using SSE for N ≤ 27, exhaustive
search leads to the best result. But for N > 27 vector dynamic programming is
very close to the best result which is obtained by stride sensitive vector dynamic
programming. Thus, the additional search time required by stride sensitive vector
dynamic programming does not pay off. A combination of exhaustive search
(where possible) and vector dynamic programming (for larger sizes) is the most
economical search method for short vector SIMD codes.

Figure 8.26 shows for the Pentium 4 using SSE 2 that dynamic programming
finds implementations more than 18 % slower than implementations found using
vector-aware dynamic programming versions.

On the Pentium III, dynamic programming finds implementations that are not
more than 7 % slower than implementations found with the vector-aware dynamic
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programming versions. See Figure 8.27 for details.
On the Athlon XP, implementations found with dynamic programming are not

more than 6 % slower than the best implementations for N < 213. For N = 213

dynamic programming finds implementations that are more than 10 % slower
than the best implementations. See Figure 8.28 for details.
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Figure 8.25: SPIRAL: Comparison of the best algorithms found for DFTN with N =
24, 25, . . . , 213 and SSE (single-precision), by different search methods on an Intel Pentium 4
running at 2.53 GHz. The slowdown factor gives the performance relation to the best algo-
rithms found.

8.2.4 Crosstiming

The experiments in this section show how much the best formula for a machine
depends on the target architecture and the SIMD extension. To make this explicit
a suite of experiments were conducted.

Pentium 4, SSE. Figure 8.29 shows the slow-down of the best found DFT
formulas for SSE on the Pentium III and the Athlon XP and the best formulas
for scalar and SSE 2 code found on the Pentium 4, all implemented using SSE
vector code and run on the Pentium 4 (using the best compiler optimization).

As expected, the code generated from the formula found on the Pentium 4
using SSE performs best and is the baseline. Both the the code generated from
the best formula found on the Pentium 4 using the FPU and using SSE 2 perform
very badly. But interestingly, the code generated from the formulas found on the
Pentium 3 and the Athlon XP using SSE are up to 60 % slower than the respective
Pentium 4 SSE version. This reflects the need of searching on the actual target
machine. It shows that it is not sufficient, to conduct the search on a binary
compatible machine featuring the same vector extension.
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Figure 8.26: SPIRAL: Comparison of the best algorithms found for DFTN with N =
24, 25, . . . , 213 and SSE 2 (double-precision), by different search methods on an Intel Pentium 4
running at 2.53 GHz. The slowdown factor gives the performance relation to the best algorithms
found.
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Figure 8.27: SPIRAL: Comparison of the best algorithms found for DFTN with N =
24, 25, . . . , 213 and SSE (single-precision), by different search methods on an Intel Pentium 3
running at 1 GHz. The slowdown factor gives the performance relation to the best algorithms
found.
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Figure 8.28: SPIRAL: Comparison of the best algorithms found for DFTN with N =
24, 25, . . . , 213 and SSE (single-precision), by different search methods on an AMD Athlon XP
2100+ running at 1733 MHz. The slowdown factor gives the performance relation to the best
algorithms found.

Pentium 4, SSE 2. Figure 8.30 shows the respective experiment for the Pen-
tium 4 using double precision and SSE 2. It shows the slow-down of the code
generated from the best DFT formula found on the Pentium III, the Athlon XP
and the Pentium 4 using SSE and the respective slow-down for the best formulas
found on the Pentium 4 using the FPU and SSE, all implemented using SSE 2
vector code and run on the Pentium 4 (using the best compiler optimization).

As expected, the Pentium 4 SSE 2 version performs best and is the baseline.
All other formulas lead to codes that run at least 50 % slower and the worst
implementation is obtained from the formula found with search for the best scalar
implementation which is then implemented using SSE 2. It is up to a factor of
1.8 slower than the formula found for SSE 2.

Pentium III, SSE. Figure 8.31 shows the crosstiming experiment for the Pen-
tium III using single precision arithmetic and SSE. It shows the slow-down of the
codes generated from the the best found DFT formulas for SSE and SSE 2 on the
Pentium 4, SSE on the Athlon XP and for the best found formulas for scalar code
found on the Pentium III, all implemented using SSE vector code and run on the
Pentium III (using the best compiler optimization). As one can see, the codes
generated from the best found formulas on the Athlon XP perform very good on
the Pentium III while the codes generated from the best found formulas for SSE
on the Pentium 4 are 30 % slower. As expected, both the scalar Pentium III and
the SSE 2 Pentium 4 version are significantly slower than the Pentium III SSE
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version. However, for intermediate problem sizes, the best found formulas on the
Pentium 4 using SSE are slower than the formulas found for scalar implementa-
tions on the Pentium III. This coincides with the fact that the best found formula
for a given problem size is rather different for the Pentium III and Pentium 4 even
for SSE.

Athlon XP, SSE. Figure 8.32 shows the crosstiming experiment for the
Athlon XP using single precision arithmetic and SSE. It shows the slow-down
of the codes generated from the best found DFT formulas for SSE and SSE 2 on
the Pentium 4, SSE on the Pentium III and from the best formulas found on the
Athlon XP for scalar code, all implemented using SSE vector code and run on the
Athlon XP (using the best compiler optimization).

Interestingly, the codes generated from the best found formulas for SSE on the
Pentium III and Pentium 4 run within 5 % of the codes generated from the best
found formulas for the Athlon XP. Even the best found formulas for SSE 2 on the
Pentium 4 runs within 20 %. Thus, the Athlon XP can handle codes optimized for
the Pentium III very well and codes optimized for the Pentium 4 well. Exchang-
ing codes between Pentium III and Pentium 4 results in much higher slow-downs
relative to the native best-found formula as comparing these formulas on the
Athlon XP with the respective native best found formulas. Thus, the Athlon XP
is able to handle codes optimized for other processors very well. But in gen-
eral, these experiments show that for optimal performance the codes have to be
adapted to the actual target machine.

8.2.5 The Best Algorithms Found

The approach presented in this thesis delivers high performance on all tested
systems. The structure of the best implementations, however, depends heavily
on the target machine. Figure 8.6 shows the structure of the best found formulas,
displayed as trees representing the breakdown strategy.

Generally speaking, two completely different types of behavior were observed:
(i) formulas with rather balanced trees, and (ii) formulas with unbalanced trees
tending to be right-expanded. The first type occurs when the working set fits into
L1 cache and for codes generated using compiler vectorization. For the second
type, the structure depends on whether scalar or vector code is generated. For
all rule trees, parameters and structural details on deeper levels depend on the
actual target machine.

Scalar Code

Right-expanded trees with machine-dependent sizes of the left leaves are found
to be the most efficient formulas when using only the scalar FPU. These trees
provide the best data locality. Due to the larger caches of the Pentium III and
Athlon XP, the problem size fits into L1 cache and balanced trees are found.
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Figure 8.29: SPIRAL: Crosstiming of the best algorithms for DFTN with N = 24, 25, . . . , 213,
found for different architectures, all measured on the Pentium 4, implemented using SSE. The
slowdown factor gives the performance relation to the best algorithms found for Pentium 4,
SSE.
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Figure 8.30: SPIRAL: Crosstiming of the best algorithms for DFTN with N = 24, 25, . . . , 213,
found for different architectures, all measured on the Pentium 4, implemented using SSE 2. The
slowdown factor gives the performance relation to the best algorithms found for Pentium 4,
SSE 2.



8.2 A Short Vector Extension for SPIRAL 161

Pentium III float
Pentium4 SSE2
Pentium4 SSE
Athlon XP SSE

Slow-down Factor

Vector Length N

213212211210292827262524

2.0

1.8

1.6

1.4

1.2

1

Figure 8.31: SPIRAL: Crosstiming of the best algorithms for DFTN with N = 24, 25, . . . , 213,
found for different architectures, all measured on the Pentium III, implemented using SSE. The
slowdown factor gives the performance relation to the best algorithms found for Pentium III,
SSE.
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Figure 8.32: SPIRAL: Crosstiming of the best algorithms for DFTN with N = 24, 25, . . . , 213,
found for different architectures, all measured on the Athlon XP, implemented using SSE. The
slowdown factor gives the performance relation to the best algorithms found for Athlon XP,
SSE.
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Pentium 4
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Pentium 4
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Pentium III
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10
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3 32 2

generated
scalar code
compiler

vectorized
2 2
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4 6

4 22 2
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2 3
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6 4

2 22 4

2 2
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vector code
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1 7

2 5

2 3
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1

1 7

2 5

2 3

10

5 5

2 32 3

10

5 5

2 32 3

Table 8.6: The best found DFT algorithms for N = 210, represented as breakdown trees,
on a Pentium III, Pentium 4, and Athlon XP for generated scalar code, generated scalar code
using compiler vectorization, and generated vector code. Note that single-precision vector code
implies SSE, and double-precision vector code implies SSE 2.

Compiler Vectorized Scalar Code

Vectorizing compilers tend to favor large loops with many iterations. Thus, the
best found trees feature a top-level split that recurses into about equally large
sub-problems. On the Pentium 4 for double-precision, the code was not vectorized
leading to a right-expanded tree.

Short Vector SIMD Code

Due to structural differences in the standard Cooley-Tukey rule (optimizing for
locality) and the short vector Cooley-Tukey rules (trying to keep locality while
supporting vector memory access), in the first recursion step the right child prob-
lem is small compared to the left child problem and the left child problem is
subsequently right-expanded. This leads to good data locality for vector memory
access. Due to the cache size, on the Pentium III and Athlon XP again balanced
trees are found.
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8.2.6 Vectorizing Compilers

The code generated by Spiral cannot be vectorized directly by vectorizing com-
pilers. The code structure has to be changed to give hints to the compiler and
enable the proof that vectorization is safe. This is true for both Fortran and C
compilers. Optimization carried out by the Spiral system makes it impossible
for vectorizing compilers to vectorize the generated code without further hints.

The alignment of external arrays has to be guaranteed, and it also has to be
guaranteed that pointers are unambiguous. It is required to give hints which loops
to vectorize and that no loop carried dependencies exist. Vectorizing compilers
like the Intel C++ compiler only vectorize rather large loops, as in the general
case the additional cost for prologue and epilogue has to be amortized by the
vectorized loop. Straight line codes cannot be vectorized.

By following these guidelines, a vectorizing compiler can be plugged into the
Spiral system at nearly no additional cost and is able to speed up the gener-
ated code significantly. Figures 8.13 to 8.24 show the performance achieved by
state-of-the-art scalar code, automatically vectorized code, and code generated
by Spiral-Simd using the approach discussed in Chapter 7. Summarizing these
results, for simpler transforms like WHTs and two-dimensional transforms, the
performance achieved by a vectorizing compiler is close to the formula based ap-
proach, although still inferior, except for some rare cases. It is not possible to
achieve the same performance level as by vectorizing DFTs using the short vector
Cooley-Tukey rule set. The complicated structure of the DFT requires to utilize
structural knowledge which can hardly be deduced automatically from source
code.

In addition, the portable SIMD API and the possibility to issue vector instruc-
tions is required to achieve the performance. Hardly any scalar program exists
that leads to the same object code as obtained with the presented approach when
compiled with short vector SIMD vectorizing compilers like the Intel C++ com-
piler. If one would “devectorize” the code generated by Spiral-Simd (i. e., write
the equivalent scalar C or Fortran code), this code would have a very unusual
structure which is explained by the formal rules given in Section 7. For instance,
it turns out that the vectorized loops in these codes have rather small numbers of
loop iterations (mainly ν iterations). This code would not follow any guidelines
for generating well vectorizable code as given by compiler vendors. Thus, al-
though this code would deliver the best performance, it would not be vectorized
by the vectorizing compiler. One reason why the intrinsic interface was intro-
duced is to speed up the performance of code which cannot be sped up by a
vectorizing compiler.



Conclusion and Outlook

The main contribution of this thesis is a mathematical framework and its im-
plementation that enables automatic performance optimization of discrete linear
transform algorithms running on processors featuring short vector SIMD exten-
sions. The newly developed framework covers all current short vector SIMD
extensions and the respective compilers featuring language extensions to support
them.

The theoretical results presented in this thesis have been included in Spiral

and Fftw, the two major state-of-the-art automatic performance tuning systems
in the field of discrete linear transforms. A portable SIMD API was defined to
abstract the details of both short vector SIMD extensions and compilers. Per-
formance portability has been demonstrated experimentally across various short
vector SIMD extensions, processor generations and compilers. The experiments
covered discrete Fourier transforms, Walsh-Hadamard transforms as well as two-
dimensional cosine transforms. For Intel processors featuring SSE or SSE 2, the
codes of this thesis are currently the fastest FFTs for both non-powers and powers
of two.

The experimental extensions will be included in the next releases of Spiral

and will be available as Fftw PowerPack extension. These extensions will
cover all current short vector SIMD architectures and various compilers.

The range of supported algorithms will be extended to other discrete linear
transforms of practical importance, including wavelet transforms as well as real-
to-halfcomplex DFTs and their inverse transforms. Moreover, the techniques
presented in this thesis will be used to implement other performance relevant
techniques, including prefetching and loop interleaving.

The results of this thesis are relevant from small scale signal processing (with
possibly real-time constraints) up to large scale simulation. For instance, in
embedded computing the Motorola MPC processor series featuring a short vector
SIMD extension is heavily used. On the other end of the spectrum, IBM is
currently developing its BG/L machines which aim at the top rank in the Top 500
list. The current number 5 in this list is a cluster featuring Intel Pentium 4
processors. Both machine feature double-precision floating-point short vector
SIMD extensions. This demonstrate the wide applicability of the techniques
developed in this thesis.
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Appendix A

Performance Assessment

The assessment of scientific software requires the use of numerical values, which
may be determined analytically or empirically, for the quantitative description of
performance. As to which parameters are used and how they will be interpreted
depends on what is to be assessed. The techniques discussed in this appendix
have a strong impact on the experimental results presented in Chapter 8. A
detailed discussion of performance assessment for both serial and parallel scientific
software can be found in Gansterer and Ueberhuber [36].

The user of a computer system who waits for the solution of a particular
problem is mainly interested in the time it takes for the problem to be solved.
This time depends on two parameters, workload and performance:

time =
workload

performanceeffective

=
workload

performancemaximum · efficiency
.

The computation time is therefore influenced by the following quantities:

1. The amount of work (workload) which has to be done. This depends on the
nature and complexity of the problem as well as on the properties of the
algorithm used to solve it. For a given problem complexity, the workload
is a characteristic of the algorithm. The workload (and hence the required
time) may be reduced by improving the algorithm.

2. Peak performance characterizes the computer hardware independently of
particular application programs. The procurement of new hardware with
high peak performance usually results in reduced time requirements for the
solution of the same problem.

3. Efficiency is the percentage of peak performance achieved for a given com-
puting task. It tells the user as to what share of the potential peak per-
formance is actually exploited and thus measures the quality of the imple-
mentation of an algorithm. Efficiency may be increased by optimizing the
program.

The correct and comprehensive performance assessment requires answers to a
whole complex of questions: What limits are imposed, independently of specific
programming techniques, by the hardware ? What are the effects of the differ-
ent variants of an algorithm on performance ? What are the effects of specific
programming techniques ? What are the effects on efficiency of an optimizing
compiler ?
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CPU Time

The fact that only a small share of computer resources are spent on a particular
job in a multiuser environment is taken into account by measuring CPU time.
This quantity specifies the amount of time the processor actually was engaged
in solving a particular problem and neglects the time spent on other jobs or on
waiting for input/output.

CPU time itself is divided into user CPU time and system CPU time. User
CPU time is the time spent on executing an application program and its linked
routines. System CPU time is the time consumed by all system functions required
for the execution of the program, such as accessing virtual memory pages in the
backing store or executing I/O operations.

Peak Performance

An important hardware characteristic, the peak performance Pmax of a computer,
specifies the maximum number of floating-point (or other) operations which can
theoretically be performed per time unit (usually per second).

The peak performance of a computer can be derived from its cycle time Tc

and the maximum number Nc of operations which can be executed during a clock
cycle:

Pmax =
Nc

Tc

.

If Pmax refers to the number of floating-point operations executed per second,
then the result states the floating-point peak performance. It is measured in

flop/s (floating-point operations per second)

or Mflop/s (106 flop/s), Gflop/s (109 flop/s), or Tflop/s (1012 flop/s). Unfortu-
nately, the fact that there are different classes of floating-point operations, which
take different amounts of time to be executed, is neglected far too often (Ueber-
huber [89]).

Notation (flop/s) Some authors use the notation flops, Mflops etc. instead of flop/s, Mflop/s
etc.

It is most obvious that no program, no matter how efficient, can perform better
than peak performance on a particular computer. In fact, only specially op-
timized parts of a program may come close to peak performance. One of the
reasons for this is that, in practice, address calculations, memory operations, and
other operations which do not contribute directly to the result are left out of the
operation count. Thus, peak performance may be looked upon as a kind of speed
of light for a computer.
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A.1 Short Vector Performance Measures

Short vector SIMD operation is small-scale parallelism. The speed-up of compu-
tations depends on the problem to solve and how its fits on the target architecture.
In the context of this thesis, the speed-up is the most important measure of how
efficient the available parallelism is used. The speed-up describes, how many
times a vectorized program is executed faster on an n-way short vector SIMD
processors than on the scalar FPU.

Definition A.1 (Speed-up) Suppose, program A can be vectorized in the way
that it can be computed on an n-way short vector SIMD processors. T1 denotes
the time, the scalar program needs when using 1 processor, Tn denotes the time
of the n-way vectorized program. Then, the speed-up is defined to be:

Sn =
T1

Tn

.

In most cases, Sn will be higher than 1. However, sometimes, when the problem
is not vectorizable efficiently, vectorization overhead will cause Tn to be higher
than T1.

Speed-up Sn := T1/Tn

Speed-up is the ratio between the run time T1 of the scalar algorithm (prior
to vectorization) and the run time of the vectorized algorithm utilizing an
n-way short vector SIMD processor.

Efficiency En := Sn/n ≤ 1
Concurrent efficiency is a metric for the utilization of a short vector SIMD
processor’s capacity. The closer En gets to 1, the better use is made of the
potentially n-fold power of an n-way short vector SIMD processor system.

A.2 Empirical Performance Assessment

In contrast to analytical performance assessment obtained from the technical
data from the computer system, empirical performance assessment is based on
experiments and surveys conducted on given computer systems or abstract models
(using simulation).

Temporal Performance

In order to compare different algorithms for solving a given problem on a single
computer, either the execution time

T := tend − tstart
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itself or its inverse, referred to as temporal performance PT := T−1, can be used.
To that end, the execution time is measured. The workload is normalized by
ΔW = 1, since only one problem is considered.

This kind of assessment is useful for deciding which algorithm or which pro-
gram solves a given problem fastest. The execution time of a program is the
main performance criterion for the user. He only wants to know how long he has
to wait for the solution of his problem. For him, the most powerful and most
efficient algorithm is determined by the shortest execution time or the largest
temporal performance. From the user’s point of view the workload involved and
other details of the algorithm are usually irrelevant.

Empirical Floating-Point Performance

The floating-point performance characterizes the workload completed over the
time span T as the number of floating-point operations executed in T :

PF [flop/s] =
WF

T
=

number of executed floating-point operations

time in seconds
.

This empirical quantity is obtained by measuring executed programs in real life
situations. The results are expressed in terms of Mflop/s, Gflop/s or Tflop/s as
with analytical performance indices.

Floating-point performance is more suitable for the comparison of different
machines than instruction performance, because it is based on operations instead
of instructions . This is because the number of instructions related to a pro-
gram differs from computer to computer but that the number of floating-point
operations will be more or less the same.

Floating-point performance indices based simply on counting floating-point
operations may be too inaccurate unless a distinction is made between the differ-
ent classes of floating-point operations and their respective number of required
clock cycles. If these differences are neglected, a program consisting only of
floating-point additions will have considerably better floating-point performance
than a program consisting of the same number of floating-point divisions . On
the Power processor, for instance, a floating-point division takes around twenty
times as long as a floating-point addition.

A.2.1 Interpretation of Empirical Performance Values

In contrast to peak performance, which is a hardware characteristic, the empirical
floating-point performance analysis of computer systems can only be made with
real programs, i. e., algorithm implementations. However, it would be misleading
to use floating-point performance as an absolute criterion for the assessment of
algorithms .

A program which achieves higher floating-point performance does not neces-
sarily achieve higher temporal performance, i. e., shorter overall execution times.
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In spite of a better (higher) flop/s value, a program may take longer to solve the
problem if a larger workload is involved. Only for programs with equal workload
can the floating-point performance indices be used as a basis for assessing the
quality of different implementations .

For the benchmark assessment of computer systems, empirical floating-point
performance is also suitable and is frequently used (for instance in the Linpack

benchmark or the SPEC1 benchmark suite).

Pseudo Flop/s

In case of FFT algorithms an algorithm specific performance measure is used
by some authors. The arithmetic complexity of 5N log2 N operations for a FFT
transform of size N is assumed This is an upper bound for the FFT computation
and motivated by the fact that different FFT algorithms have slightly different
operation counts ranging between 3N log2 N and 5N log2 N when all trivial twid-
dle factors are eliminated (see Section 4.5 and Figure 5.3). As a complication,
some implementations do not eliminate all trivial twiddle factors and the actual
number has to be counted. Thus, pseudo flop/s, (5N log N)/T (a scaled inverse
of run time), is a easier comparable performance measure for FFTs and an upper
bound for the actual performance (Frigo and Johnson [33]).

Empirical Efficiency

Sometimes it is of interest to obtain information about the degree to which a
program and its compiler exploit the potential of a computer. To do so, the ratio
between the empirical floating-point performance and the peak performance of
the computer is considered.

This empirical efficiency is usually significantly lower than 100 %, a fact which
is in part due to simplifications in the model for peak performance.

A.2.2 Run Time Measurement

The run-time is the second important performance index (in addition to the
workload). To determine the performance of an algorithm, its run-time has to be
measured. One has to deal with the resolution of the system clock. Then, most
of the time not the whole program, but just some relevant parts of it have to be
measured. For example, in FFT programs the initialization step usually is not
included, as it takes place only once, and the transform is executed many times.

The following fragment of a C program demonstrates how to determine user
and system CPU time as well as the overall elapsed time using the predefined
subroutine times.

1SPEC is the abbreviation of Systems Performance Evaluation Cooperative.
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#include <sys/times.h>
...
/* period is the granularity of the subroutine times */
period = (float) 1/sysconf(_SC_CLK_TCK);
...
start_time = times(&begin_cpu_time);
/* begin of the examined section */
...
/* end of the examined section */
end_time = times(&end_cpu_time);
user_cpu = period*(end_cpu_time.tms_utime

- begin_cpu_time.tms_utime);
system_cpu = period*(end_cpu_time.tms_stime

- begin_cpu_time.tms_stime);
elapsed = period*(end_time - start_time);

The subroutine times provides timing results as multiples of a specific period
of time. This period depends on the computer system and must be determined
with the Unix standard subroutine sysconf before times is used. The subroutine
times itself must be called immediately before and after that part of the program
to be measured. The argument of times returns the accumulated user and system
CPU times, whereas the current time is returned as the function value of times.
The difference between the respective begin and end times finally yields, together
with scaling by the predetermined period of time, the actual execution times.

Whenever the execution time is smaller than the resolution of the system
clock, different solutions are possible: (i) Performance counters can be used to
determine the exact number of cycles required, and (ii) the measured part of
a program can be executed many times and the overall time is divided by the
number of runs.

This second approach has a few drawbacks. The resulting time may be too
optimistic, as first-time cache misses will only occur once and the pipeline might
be used too efficiently when executing subsequent calls. A possible solution is to
empty the cache with special instructions.

Calling in-place FFT algorithms repeatedly has the effect that in subsequent
calls the output of the previous call is the input of the next call. This can result,
when repeating this process very often, in excessive floating-point errors up to
overflow conditions. This would not be a drawback by itself, if processors handled
those exceptions as fast as normal operations. But some processors handle them
with a great performance loss, making the timing results too pessimistic.

The solution to this problem is calling the program with special vectors (zero
vector, eigenvectors) or restoring the first input between every run. The second
solution leads to higher run times, but measuring this tiny fraction and subtract-
ing it finally yields the correct result.
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A.2.3 Workload Measurement

In order to determine the empirical efficiency of a program, it is necessary to
determine the arithmetic complexity. This can be done either “analytically”
by using formulas for the arithmetic complexity or “empirically” by counting
executed floating-point operations on the computer systems used. Estimating
the number of floating-point operations analytically has the disadvantage that
real implementations of algorithms often do not achieve the complexity bounds
given by analytical formulas.

In order to determine the number of executed floating-point operations, a
special feature of modern microprocessors can be used: the Performance Mon-
itor Counter (PMC). PMCs are hardware counters able to count various types
of events, such as cache misses, memory coherence operations, branch mispredic-
tions, and several categories of issued and graduated instructions. In addition to
characterizing the workload of an application by counting the number of floating-
point operations, PMCs can help application developers for gaining deeper insight
into application performance and for pinpointing performance bottlenecks.

PMCs were first used extensively on Cray vector processors, and appear in
some form in all modern microprocessors, such as the MIPS R10000 [35, 68,
69, 96], Intel IA-32 processors and Itanium processor family [43, 51, 67], IBM
PowerPC family [93], DEC Alpha [16], and HP PA-8x00 family [42]. Most
of the microprocessor vendors provide hardware developers and selected perfor-
mance analysts with documentation on counters and counter-based performance
tools.

Hardware Performance Counters

Performance monitor counters (PMCs) offer an elegant solution to the counting
problem. They have many advantages :

• They can count any event of any program.

• They provide exact numbers.

• They can be used to investigate arbitrary parts of huge programs.

• They do not affect program speed or results, or the behavior of other pro-
grams.

• They can be used in multi-tasking environments to measure the influence
of other programs.

• They are cheap to use in resources and time.

They have disadvantages as well:
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• Only a limited number of events can be counted, typically two. When
counting more events, the counts have to be multiplexed and they are not
exact any more.

• Extra instructions have to be inserted, re-coding and re-compilation is nec-
essary.

• Documentation is sometimes insufficient and difficult to obtain.

• Usage is sometimes difficult and tricky.

• The use of the counters is different on any architecture.

Performance Relevant Events. All processors, which provide performance
counters, count different types of events. There is no standard for implementing
such counters, and many events are named differently. But one will find most of
the important events on any implementation.

Cycles: Cycles needed by the program to complete. This event type depends
heavily on the underlying architecture. It can be used, for instance, to
achieve high resolution timing.

Graduated instructions, graduated loads, graduated stores: In-
structions, loads and stores completed.

Issued instructions, issued loads, issued stores: Instructions started,
but not necessarily completed. The number of issued loads is usually far
higher than the number of graduated ones, while issued and graduated
stores are almost the same.

Primary instruction cache misses: Cache misses of the primary instruction
cache. High miss counts can indicate performance deteriorating loop struc-
tures.

Secondary instruction cache misses: Cache misses of the secondary instruc-
tion cache. Usually, this count is very small and is therefore not a crucial
performance indicator.

Primary data cache misses: One of the most crucial performance factors is
the number of primary data cache misses. It is usually far higher than the
number of instruction cache misses.

Secondary data cache misses: When program input exceeds a certain
amount of memory, this event type will dominate even the primary data
cache misses.
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Graduated floating-point instructions: Once used as main performance in-
dicator, the floating-point count is together with precise timing results still
one of the most relevant indicators of the performance of a numerical pro-
gram.

Mispredicted branches: Number of mispredicted branches. Affects memory
and cache accesses, and thus can be a reason for high memory latency.

Platform Independent Interfaces

Every processor architecture has its own set of instructions to access its perfor-
mance monitor counters. But the basic PMC operations, i. e., selecting the type
of event to be measured, starting and pausing the counting process, and reading
the final value of the counters, are the same on every computer system.

This lead to the development of application programming interfaces (APIs)
that unify the access behavior to the PMCs on different operating systems. Ba-
sically, the APIs provide the same library calls on every operating system—then
the called functions transparently access the underlying hardware with the pro-
cessor’s specific instruction set.

This makes the usage of PMCs easier, because the manufacturers interfaces
to the counters were designed by engineers, whose main goal was to gain raw
performance data without worrying of an easy-to-use interface.

Then, PMCs finally can be accessed the same way on every architecture. This
makes program packages, which include PMC access, portable and their code gets
more readable.

PAPI. The PAPI project is part of the PTools effort of the Parallel Tools Con-
sortium of the computer science department of the University of Tennessee [73].
PAPI provides two interfaces to PMCs, a high-level and a low-level interface.
Recently, a GUI tool was introduced to measure events for running programs
without recompilation.

The high-level interface will meet most demands of the most common per-
formance evaluation tasks, while providing a simple and easy-to-use interface.
Only a small set of operations are defined, like the ability to start, stop and read
specific events. A user with more sophisticated needs can rely on the low-level
and fully programmable interface in order to access even seldomly used PMC
functions.

From the software point of view, PAPI consists of two layers. The upper layer
provides the machine independent entry functions—the application programming
interface.

The lower layers exports an independent interface to hardware dependent
functions and data structures. These functions access the substrate, which can
be the operating system, a kernel extension or assembler instructions. Of course,
this layer heavily relies on the underlying hardware and some functions are not
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available on every architecture. In this case, PAPI tries to emulate the missing
functions.

A good example for such an emulation is PAPI’s capability of multiplexing
several hardware events. Multiplexing is a PMC feature common to some pro-
cessors as the MIPS R10000, which allows for counting more events than the
usual two. This is done by switching all events to be counted periodically and
estimating the final event counts based on the partial counts and the total time
elapsed. The counts are not exact any more, but in one single program run more
than the usual two events can be measured.

On processors which do not provide this functionality, PAPI emulates it.
Another PAPI feature is its counter overflow control. This is usually not pro-

vided by hardware registers alone and can produce highly misleading data. PAPI
implements 64 bit counters to provide a portable implementation of this advanced
functionality. Another feature is asynchronous user notification when a counter
value exceed some user defined values. This makes histogram generation easy,
but even allows for advanced real-time functionality far beyond mere performance
evaluation.

PCL. The Performance Counter Library (PCL) is a common interface for access-
ing performance counters built into modern microprocessors in a portable way.
PCL was developed at the Central Institute for Applied Mathematics (ZAM) at
the Research Centre Juelich [11]. PCL supports query for functionality, start
and stop of counters, and reading the current values of counters. Performance
counting can be done in user mode, system mode, or user-or-system mode.

PCL supports nested calls to PCL functions to allow hierarchical performance
measurements. However, nested calls must use exactly the same list of events.
PCL functions are callable from C, C++, Fortran, and Java. Similar to PAPI,
PCL defines a common set of events across platforms for accesses to the memory
hierarchy, cycle and instruction counts, and the status of functional units then
translates these into native events on a given platform where possible. PAPI
additionally defines events related to SMP cache coherence protocols and to cycles
stalled waiting for memory access.

Unlike PAPI, PCL does not support software multiplexing or user- defined
overflow handling. The PCL API is very similar to the PAPI high-level API and
consists of calls to start a list of counters and to read or stop the counter most
recently started.
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Short Vector Instruction Sets

This appendix summarizes the intrinsic API provided for SSE and SSE 2 by the
Intel C++ compiler and the AltiVec enabled Gnu C compiler 2.96.

The semantics of the intrinsics provided by the compilers is expressed using
the C language, but the displayed code is pseudo code. Vector elements are
denoted using braces {}.

B.1 The Intel Streaming SIMD Extensions

This section summarizes the relevant part of the SSE API provided by the In-
tel C++ compiler and the Microsoft Visual C compiler. The Gnu C compiler
3.x provides a built-in function interface with the same functionality. The SSE
instruction set is described in the IA-32 manuals [49, 50].

Short Vector Data Types

Two new data types are introduced. The 64 bit data type __m64 maps half
a XMM register, the smallest newly introduced quantity that can be accessed.
Variables of type __m64 are 64 bit wide and 8 byte aligned. __m64 is a vector of
two float variables. Although these components cannot be accessed directly in
code, in the pseudo code the components of variable __m64 var will be accessed
by var{0} and var{1}.

The 128 bit data type __m128 maps a XMM register in four-way single-
precision mode. Variables of type __m128 are 128 bit wide and 16 byte aligned.
__m128 is a vector of four float variables. Although these components can-
not be accessed directly in code, in the pseudo code the components of variable
__m128 var will be accessed by var{0} through var{3}.

Components of variables of type __m64 and __m128 can only be accessed by
using float variables. To ensure the correct alignment of float variables, the
extended attribute __declspec(align(16)) for qualifying storage-class informa-
tion has to be used.

__declspec(align(16)) float[4] var = {1.0, 2.0, 3.0, 4.0};
__m128 *pvar = &var;

175



176 B. Short Vector Instruction Sets

Arithmetic Operations

The arithmetic operations are implemented using intrinsic functions. For each
supported arithmetic instruction a corresponding function is defined. In the con-
text of this thesis only vector addition, vector subtraction and pointwise vector
multiplication is required.

The Pointwise Addition mm add ps. The intrinsic function _mm_add_ps

abstracts the addition of two XMM registers in four-way single-precision mode.

__m128 _mm_add_ps(__m128 a, __m128 b)
{

__m128 c;
c{0} = a{0} + b{0};
c{1} = a{1} + b{1};
c{2} = a{2} + b{2};
c{3} = a{3} + b{3};
return c;

}

The Pointwise Subtraction mm sub ps. The intrinsic function _mm_sub_ps

abstracts the subtraction of two XMM registers in four-way single-precision mode.

__m128 _mm_add_ps(__m128 a, __m128 b)
{

__m128 c;
c{0} = a{0} - b{0};
c{1} = a{1} - b{1};
c{2} = a{2} - b{2};
c{3} = a{3} - b{3};
return c;

}

The Pointwise Multiplication mm mul ps. The intrinsic function
_mm_mul_ps abstracts the pointwise multiplication (Hadamard product) of two
XMM registers in four-way single-precision mode.

__m128 _mm_add_ps(__m128 a, __m128 b)
{

__m128 c;
c{0} = a{0} * b{0};
c{1} = a{1} * b{1};
c{2} = a{2} * b{2};
c{3} = a{3} * b{3};
return c;

}
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Vector Reordering Operations

SSE features three vector reordering operations _mm_shuffle_ps,
_mm_unpacklo_ps, and _mm_unpackhi_ps. They have to be used to build
the required permutations. All three operations feature certain limitations and
thus no general recombination can be done utilizing only a single permutation
instruction. These intrinsics recombine elements from their two arguments of
type __m128 into one result of type __m128. A macro _MM_TRANSPOSE4_PS for a
four-by-four matrix transposition is defined in the Intel API.

The Shuffle Operation mm shuffle ps. This operation is the most general
permutation supported by SSE. The first two elements of the result variable can
be any element of the first parameter and the second two elements of the result
variable can be any element of the second parameter. The choice is done according
to the third parameter. The SSE API provides the macro _MM_SHUFFLE to encode
these choices into the integer i.

__m128 _mm_shuffle_ps(__m128 a, __m128 b, int i)
{

__m128 c;
c{0} = a{i & 3};
c{1} = a{(i>>2) & 3};
c{2} = b{(i>>4) & 3};
c{3} = b{(i>>6) & 3};
return c;

}

The Unpack Operation mm unpacklo ps. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE codes. The first two elements of the result variable are the zeroth element
of the input variables and the second half is filled by the first elements of the
input variables.

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)
{

__m128 c;
c{0} = a{0};
c{1} = b{0};
c{2} = a{1};
c{3} = b{1};
return c;

}

The Unpack Operation mm unpackhi ps. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE codes. The first two elements of the result variable are the second element
of the input variables and the second half is filled by the third elements of the
input variables.
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__m128 _mm_unpackhi_ps(__m128 a, __m128 b)
{

__m128 c;
c{0} = a{2};
c{1} = b{2};
c{2} = a{3};
c{3} = b{3};
return c;

}

Memory Access Functions

Although SSE also features unaligned memory access (introducing a penalty), in
this thesis only aligned memory access is used. SSE features aligned access for
64 bit quantities (half a XMM register) and for 128 bit quantities (a full XMM
register).

64 bit Memory Operations. The SSE API provides intrinsic functions for
loading and storing the lower and upper half of the XMM registers. The target
memory location has to be 8 byte aligned.

__m128 _mm_loadl_pi(__m128 a, __m64 *p)
{

__m128 c;
c{0} = *p{0};
c{1} = *p{1};
c{2} = a{2};
c{3} = a{3};
return c;

}

__m128 _mm_loadh_pi(__m128 a, __m64 *p)
{

__m128 c;
c{0} = a{0};
c{1} = a{1};
c{2} = *p{2};
c{3} = *p{3};
return c;

}

__m128 _mm_storel_pi(__m64 *p, __m128 a)
{

*p{0} = a{0};
*p{1} = a{1};

}

__m128 _mm_storeh_pi(__m64 *p, __m128 a)
{

*p{0} = a{2};
*p{1} = a{3};

}
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128 bit Memory Operations. The SSE API provides intrinsic functions for
loading and storing XMM registers. The target memory location has to be 16 byte
aligned. XMM loads and stores are implicitly inserted when __m128 variables
which do not reside in registers are used.

__m128 _mm_load_ps(__m128 *p)
{

__m128 c;
c{0} = *p{0};
c{1} = *p{1};
c{2} = *p{2};
c{3} = *p{3};
return c;

}

void _mm_store_ps(__m128 *p, __m128 a)
{

*p{0} = a{0};
*p{1} = a{1};
*p{2} = a{2};
*p{3} = a{3};

}

Initialization Operations. The SSE API provides intrinsic functions for ini-
tializing __m128 variables. The intrinsic _mm_setzero_ps sets all components to
zero while _mm_set1_ps sets all components to the same value and _mm_set_ps

sets each component to a different value.

__m128 _mm_setzero_ps()
{

__m128 c;
c{0} = 0.0;
c{1} = 0.0;
c{2} = 0.0;
c{3} = 0.0;
return c;

}

__m128 _mm_set1_ps(float f)
{

__m128 c;
c{0} = f;
c{1} = f;
c{2} = f;
c{3} = f;
return c;

}

void _mm_set_ps(float f3, float f2, float f1, float f0)
{
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__m128 c;
c{0} = f0;
c{1} = f1;
c{2} = f2;
c{3} = f3;
return c;

}

B.2 The Intel Streaming SIMD Extensions 2

This section summarizes the relevant part of the SSE 2 API provided by the Intel
C++ compiler and the Microsoft Visual C compiler. The Gnu C compiler 3.x
provides a built-in function interface with the same functionality. The SSE 2
instruction set is described in the IA-32 manuals [49, 50].

Short Vector Data Types

A new data type is introduced. The 128 bit data type __m128d maps a XMM
register in two-way double-precision mode. Variables of type __m128d are 128 bit
wide and 16 byte aligned. __m128 is a vector of two double variables. Although
these components cannot be accessed directly in code, in the pseudo code the
components of variable __m128d var will be accessed by var{0} and var{1}.

Components of variables of type __m128d can only be accessed by using
double variables. To ensure the correct alignment of double variables, the ex-
tended attribute __declspec(align(16)) for qualifying storage-class informa-
tion has to be used.

__declspec(align(16)) double[2] var = {1.0, 2.0};
__m128d *pvar = &var;

Arithmetic Operations

The arithmetic operations are implemented using intrinsic functions. For each
supported arithmetic instruction a corresponding function is defined. In the con-
text of this thesis only vector addition, vector subtraction and pointwise vector
multiplication is required.

The Pointwise Addition mm add pd. The intrinsic function _mm_add_pd

abstracts the addition of two XMM registers in two-way double-precision mode.

__m128d _mm_add_pd(__m128d a, __m128d b)
{

__m128d c;
c{0} = a{0} + b{0};
c{1} = a{1} + b{1};
return c;

}
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The Pointwise Subtraction mm sub pd. The intrinsic function
_mm_sub_pd abstracts the subtraction of two XMM registers in two-way double-
precision mode.

__m128d _mm_add_pd(__m128d a, __m128d b)
{

__m128d c;
c{0} = a{0} - b{0};
c{1} = a{1} - b{1};
return c;

}

The Pointwise Multiplication mm mul pd. The intrinsic function
_mm_mul_pd abstracts the pointwise multiplication (Hadamard product) of two
XMM registers in two-way double-precision mode.

__m128d _mm_add_pd(__m128d a, __m128d b)
{

__m128d c;
c{0} = a{0} * b{0};
c{1} = a{1} * b{1};
return c;

}

Vector Reordering Operations

SSE 2 features three vector reordering operations: _mm_shuffle_pd,
_mm_unpacklo_pd, and _mm_unpackhi_pd. They have to be used to build the
required permutations. All three operations feature certain limitations and thus
no general recombination can be done utilizing only a single permutation in-
struction. These intrinsics recombine elements from their two arguments of type
__m128d into one result of type __m128d.

The Shuffle Operation mm shuffle pd. This operation is the most general
permutation supported by SSE 2. The first two elements of the result variable can
be any element of the first parameter and the second two elements of the result
variable can be any element of the second parameter. The choice is done according
to the third parameter. The SSE 2 API provides the macro _MM_SHUFFLE2 to
encode these choices into i.

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)
{

__m128d c;
c{0} = a{i & 1};
c{1} = b{(i>>1) & 1};
return c;

}
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The Unpack Operation mm unpacklo pd. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE 2 codes. The first two elements of the result variable are the zeroth element
of the input variables and the second half is filled by the first elements of the input
variables.

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)
{

__m128d c;
c{0} = a{0};
c{1} = b{0};
return c;

}

The Unpack Operation mm unpackhi pd. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE 2 codes. The first two elements of the result variable are the second element
of the input variables and the second half is filled by the third elements of the
input variables.

__m128d _mm_unpackhi_ps(__m128d a, __m128d b)
{

__m128d c;
c{0} = a{1};
c{1} = b{1};
return c;

}

Memory Access Functions

Although SSE 2 also features unaligned memory access (introducing a penalty),
in this thesis only aligned memory access is used. SSE 2 features aligned access
for 128 bit quantities (a full XMM register).

128 bit Memory Operations. The SSE API provides intrinsic functions for
loading and storing XMM registers in two-way double-precision mode. The target
memory location has to be 16 byte aligned. XMM loads and stores are implicitly
inserted when __m128d variables which do not reside in registers are used.

__m128d _mm_load_pd(__m128d *p)
{

__m128d c;
c{0} = *p{0};
c{1} = *p{1};
return c;

}
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void _mm_store_pd(__m128d *p, __m128d a)
{

*p{0} = a{0};
*p{1} = a{1};

}

Initialization Operations. The SSE 2 API provides intrinsic functions for ini-
tializing __m128 variables. The intrinsic _mm_setzero_pd sets all components to
zero while _mm_set1_pd sets all components to the same value and _mm_set_pd

sets each component to a different value.

__m128d _mm_setzero_ps()
{

__m128 c;
c{0} = 0.0;
c{1} = 0.0;
return c;

}

__m128d _mm_set1_ps(double f)
{

__m128 c;
c{0} = f;
c{1} = f;
return c;

}

void _mm_set_pd(double f1, double f0)
{

__m128 c;
c{0} = f0;
c{1} = f1;
return c;

}

B.3 The Motorola AltiVec Extensions

This section summarizes the relevant part of the AltiVec API provided by Mo-
torola. This API is supported by most C compilers that feature a C language
extension. The Gnu C Compiler 3.x provides a built-in function interface with
the same functionality. Technical details are given in the Motorola AltiVec man-
uals [70, 71].

Short Vector Data Types

A new data type modifier is introduced. The keyword vector transforms any
supported scalar type into the corresponding short vector SIMD type. In the
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context of this thesis only the 128 bit four-way floating-point type vector float

is considered. Variables of type vector float are 16 byte aligned. Although
components of variables of type vector float cannot be accessed directly in
code, in the pseudo code the components will be accessed by var{0} through
var{3}.

vector float var = (vector float) (1.0, 2.0, 3.0, 4.0);

Arithmetic Operations

The arithmetic operations are implemented using intrinsic functions. For each
supported arithmetic instruction a corresponding function is defined. In the con-
text of this thesis only vector addition, vector subtraction and versions of the
pointwise vector fused multiply-add operation is required. AltiVec does not fea-
ture a pointwise stand alone vector multiplication.

The Pointwise Addition vec add. The intrinsic function vec_add abstracts
the addition of two AltiVec registers in four-way single-precision mode.

vector float vec_add(vector float a, vector float b)
{

vector float c;
c{0} = a{0} + b{0};
c{1} = a{1} + b{1};
c{2} = a{2} + b{2};
c{3} = a{3} + b{3};
return c;

}

The Pointwise Subtraction vec sub. The intrinsic function vec_sub abstracts
the subtraction of two AltiVec registers in four-way single-precision mode.

vector float vec_sub(vector float a, vector float b)
{

vector float c;
c{0} = a{0} - b{0};
c{1} = a{1} - b{1};
c{2} = a{2} - b{2};
c{3} = a{3} - b{3};
return c;

}

Pointwise Fused Multiply-Add Operations. The intrinsic functions
vec_sub and map the fused multiply-add operations supported by AltiVec.

vector float vec_madd(vector float a, vector float b, vector float c)
{

vector float d;
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d{0} = a{0} * b{0} + c{0};
d{1} = a{1} * b{1} + c{1};
d{2} = a{2} * b{2} + c{2};
d{3} = a{3} * b{3} + c{3};
return d;

}

vector float vec_nmsub(vector float a, vector float b, vector float c)
{

vector float d;
d{0} = -(a{0} * b{0} - c{0});
d{1} = -(a{1} * b{1} - c{1});
d{2} = -(a{2} * b{2} - c{2});
d{3} = -(a{3} * b{3} - c{3});
return d;

}

Vector Reordering Operations

AltiVec features the four fundamental vector reordering operations vec_perm,
vec_splat, vec_mergel, and vec_mergeh. These intrinsics recombine elements
from their one or two arguments of type vector float into one result of type
vector float. The operation vec_perm can perform all permutations but re-
quires an permutation vector. Thus, the other operations can be used for special
permutations to avoid the need for an additional register.

The Shuffle Operation vec perm. This operation is the most general permu-
tation supported by AltiVec. Any element in the result can be any element of
the two input vectors. This instruction internally operates on bytes and requires
a 16 byte vector to describe the permutation.

vector float vec_perm(vector float a, vector float b,
vector unsigned char c)

{
vector unsigned char ac = (vector unsigned char) a,

bc = (vector unsigned char) b,
dc;

for (i=0; i < 16; i++)
{

j = c{i] >> 4;
if (c{i} & 8)

dc{i} = a{j};
else

dc{i} = b{j};
}
return (vector float) dc;

}

vector float vec_splat(vector float a, int b)
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{
vector float c;
c{0} = a{b};
c{1} = a{b};
c{2} = a{b};
c{3} = a{b};
return c;

}

The Unpack Operation vec mergel. This operation is required for easy un-
packing of complex numbers and additionally appears in different contexts in
AltiVec codes. The first two elements of the result variable are the second ele-
ment of the input variables and the second half is filled by the third elements of
the input variables.

vector float vec_mergel(vector float a, vector float b)
{

vector float c;
c{0} = a{2};
c{1} = b{2};
c{2} = a{3};
c{3} = b{3};
return c;

}

The Unpack Operation vec mergeh. This operation is required for easy un-
packing of complex numbers and additionally appears in different contexts in
AltiVec codes. The first two elements of the result variable are the zeroth ele-
ment of the input variables and the second half is filled by the first elements of
the input variables.

vector float vec_mergeh(vector float a, vector float b)
{

vector float c;
c{0} = a{0};
c{1} = b{0};
c{2} = a{1};
c{3} = b{1};
return c;

}

Memory Access Functions

AltiVec only supports aligned memory access. Unaligned access has to be built
from two access operation plus a permutation operation. Here the permutation
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generator functions vec_lvsl and vec_lvsr provide the required permutation
vector without a conditional statement.

Alignment Support Operations. AltiVec provides instructions to generate
permutation vectors required for loading elements from misaligned arrays. These
intrinsics return a vector unsigned char that can be used with the vec_perm

to load and store e. g., misaligned vectors floats . These intrinsics can be used
to swap the upper and the lower two elements of a vector float if needed.

vector unsigned char vec_lvsl(int a, float *b)
{

int sh = (a + b) >> 28;
vector unsigned char r;

switch (sh)
{

case 0x0: r = 0x000102030405060708090A0B0C0D0E0F; break;
case 0x1: r = 0x0102030405060708090A0B0C0D0E0F10; break;
case 0x2: r = 0x02030405060708090A0B0C0D0E0F1011; break;
...
case 0xF: r = 0x0F101112131415161718191A1B1C1D1E; break;

}
return r;

}

vector unsigned char vec_lvsl(int a, float *b)
{

int sh = (a + b) >> 28;
vector unsigned char r;

switch (sh)
{

case 0x0: r = 0x101112131415161718191A1B1C1D1E1F; break;
case 0x1: r = 0x0F101112131415161718191A1B1C1D1E; break;
case 0x2: r = 0x0E0F101112131415161718191A1B1C1D; break;
...
case 0xF: r = 0x0102030405060708090A0B0C0D0E0F10; break;

}
return r;

}

Memory Operations. The AltiVec API provides intrinsic functions for loading
and storing AltiVec registers. The target memory location has to be 16 byte
aligned. If the memory location is not properly aligned, the next aligned address
is taken. AltiVec loads and stores are implicitly inserted when vector float

variables which do not reside in registers are used. The intrinsic vec_ste stores
only one element but the memory address determines which element is stored.
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vector float vec_ld(int a, float *b)
{

vector float c;
vector float *p = (a + b) & 0xFFFFFFFFFFFFFFF0;
c{0} = *p{0};
c{1} = *p{1};
c{2} = *p{2};
c{3} = *p{3};
return c;

}

void vec_st(vector float a, int b, float *c)
{

vector float *p = (b + c) & 0xFFFFFFFFFFFFFFF0;
*p{0} = a{0};
*p{1} = a{1};
*p{2} = a{2};
*p{3} = a{3};

}

void vec_ste(vector float a, int b, float *c)
{

int i = (b + c) % 0x10;
*c:=a{i};

}



Appendix C

The Portable SIMD API

This appendix contains the definition of the portable SIMD API for SSE and
SSE 2—both for the Intel C compiler and the Microsoft Visual C compiler—and
for AltiVec as provided by the AltiVec enabled Gnu C compiler 2.96.

C.1 Intel Streaming SIMD Extensions

/* simd_api_sse_icl.h

SIMD API for SSE
Intel C++ Compiler

*/

#ifndef __SIMD_API_SSE_H
#define __SIMD_API_SSE_H

#include "xmmintrin.h"

#define SIMD_FUNC __forceinline void

/* -- Data types --------------------------------------------- */
typedef __m128 simd_vector;
typedef __m64 simd_complex;
typedef float simd_real;

/* -- Constant handling -------------------------------------- */
#define DECLARE_CONST(name ,r) \

static const __declspec(align(16)) float (name)[4]={r,r,r,r}
#define DECLARE_CONST_4(name, r0, r1, r2, r3) \

static const __declspec(align(16)) \
float (name)[4]={r0, r1 ,r2 , r3}

#define LOAD_CONST(name) (*((simd_vector *)(name)))
#define LOAD_CONST_4(name) (*((simd_vector *)(name)))
#define LOAD_CONST_VECT(ptr_v) (ptr_v)
#define LOAD_CONST_SCALAR(ptr_r) (_mm_set1_ps(ptr_r))
#define SIMD_SET_ZERO() _mm_setzero_ps()

/* -- Arithmetic operations ---------------------------------- */
#define VEC_ADD(v0, v1) _mm_add_ps(v0, v1)
#define VEC_SUB(v0, v1) _mm_sub_ps(v0, v1)
#define VEC_MUL(v0, v1) _mm_mul_ps(v0, v1)

189
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#define VEC_UMINUS_P(v, v0) \
(v) = _mm_sub_ps(_mm_setzero_ps(), v0);

#define COMPLEX_MULT(v0, v1, v2, v3, v4, v5) \
{ \

(v0) = _mm_sub_ps(_mm_mul_ps(v2, v4), \
_mm_mul_ps(v3, v5)); \

(v1) = _mm_add_ps(_mm_mul_ps(v2, v5), \
_mm_mul_ps(v3, v4)); \

}

/* -- Load operations ---------------------------------------- */
#define LOAD_VECT(t, ptr_v) \

(t) = _mm_load_ps((float *)(ptr_v))

#define LOAD_L_8_2(t0, t1, ptr_v0, ptr_v1) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = _mm_load_ps(ptr_v0); \
tmp2 = _mm_load_ps(ptr_v1); \
t0 = _mm_shuffle_ps(tmp1, tmp2, \

_MM_SHUFFLE(2, 0, 2, 0)); \
t1 = _mm_shuffle_ps(tmp1, tmp2, \

_MM_SHUFFLE(3, 1, 3, 1)); \
}

#define LOAD_L_16_4(t0, t1, t2, t3, \
ptr_v0, ptr_v1, ptr_v2, ptr_v3) \

{ \
simd_vector ti0 = _mm_load_ps(ptr_v0), \

ti1 = _mm_load_ps(ptr_v1), \
ti2 = _mm_load_ps(ptr_v2), \
ti3 = _mm_load_ps(ptr_v3), \

_MM_TRANSPOSE4_PS(ti0, ti1, ti2, ti3); \
t0 = ti0; \
t1 = ti1; \
t2 = ti2; \
t3 = ti3; \

}

#define LOAD_L_8_2_C(t0, t1, ptr_c0, ptr_c1, ptr_c2, ptr_c3) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = _mm_loadl_pi(tmp1, ptr_c0); \
tmp1 = _mm_loadh_pi(tmp1, ptr_c1); \
tmp2 = _mm_loadl_pi(tmp2, ptr_c2); \
tmp2 = _mm_loadh_pi(tmp2, ptr_c3); \
t0 = _mm_shuffle_ps(tmp1, tmp2, \

_MM_SHUFFLE(2, 0, 2, 0)); \
t1 = _mm_shuffle_ps(tmp1, tmp2, \
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_MM_SHUFFLE(3, 1, 3, 1)); \
}

#define LOAD_R_4(t, ptr_r0, ptr_r1, ptr_r2, ptr_r3) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
tmpp[0] = *(ptr_r0); \
tmpp[1] = *(ptr_r1); \
tmpp[2] = *(ptr_r2); \
tmpp[3] = *(ptr_r3); \
t = _mm_load_ps((float *)(tmpp)); \

}

/* -- Store Operations --------------------------------------- */
#define STORE_VECT(ptr_v, t) \

_mm_store_ps((float *)(t), ptr_v)

#define STORE_L_8_4(ptr_v0, ptr_v1, t0, t1) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = _mm_unpacklo_ps(t0, t1); \
tmp2 = _mm_unpackhi_ps(t0, t1); \
_mm_store_ps(ptr_v0, tmp1); \
_mm_store_ps(ptr_v1, tmp2); \

}

#define STORE_L_16_4(ptr_v0, ptr_v1, ptr_v2, ptr_v3, \
t0, t1, t2, t3) \

{ \
simd_vector to0 = t0, \

to1 = t1, \
to2 = t2, \
to3 = t3; \

_MM_TRANSPOSE4_PS(to0, to1, to2, to3); \
_mm_store_ps(ptr_v0, to0); \
_mm_store_ps(ptr_v0, to1); \
_mm_store_ps(ptr_v0, to2); \
_mm_store_ps(ptr_v0, to3); \

}

#define STORE_L_8_4_C(ptr_c0, ptr_c1, ptr_c2, ptr_c3, t0, t1) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = _mm_unpacklo_ps(t0, t1); \
tmp2 = _mm_unpackhi_ps(t0, t1); \
_mm_storel_pi(ptr_c0, tmp1); \
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_mm_storeh_pi(ptr_c2, tmp1); \
_mm_storel_pi(ptr_c3, tmp2); \
_mm_storeh_pi(ptr_c4, tmp2); \

}

#define STORE_R_4(ptr_r0, ptr_r1, ptr_r2, ptr_r3, t) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
_mm_store_ps((float *)tmpp, t); \
*(ptr_r0) = tmpp[0]; \
*(ptr_r1) = tmpp[1]; \
*(ptr_r2) = tmpp[2]; \
*(ptr_r3) = tmpp[3]; \

}

#endif

C.2 Intel Streaming SIMD Extensions 2

/* simd_api_sse2_icl.h

SIMD API for SSE 2
Intel C++ Compiler

*/

#ifndef __SIMD_API_SSE2_H
#define __SIMD_API_SSE2_H

#include "emmintrin.h"

#define SIMD_FUNC __forceinline void

/* -- Data types --------------------------------------------- */
typedef __m128d simd_vector;
typedef __m128d simd_complex;
typedef double simd_real;

/* -- Constant handling -------------------------------------- */
#define DECLARE_CONST(name ,r) \

static const __declspec(align(16)) double (name)[2]={r,r}
#define DECLARE_CONST_2(name, r0, r1) \

static const __declspec(align(16)) \
double (name)[2]={r0, r1}

#define LOAD_CONST(name) (*((simd_vector *)(name)))
#define LOAD_CONST_2(name) (*((simd_vector *)(name)))
#define LOAD_CONST_VECT(ptr_v) (ptr_v)



C.2 Intel Streaming SIMD Extensions 2 193

#define LOAD_CONST_SCALAR(ptr_r) (_mm_set1_pd(ptr_r))
#define SIMD_SET_ZERO() _mm_setzero_pd()

/* -- Arithmetic operations ---------------------------------- */
#define VEC_ADD(v0, v1) _mm_add_pd(v0, v1)
#define VEC_SUB(v0, v1) _mm_sub_pd(v0, v1)
#define VEC_MUL(v0, v1) _mm_mul_pd(v0, v1)
#define VEC_UMINUS_P(v, v0) \

(v) = _mm_sub_pd(_mm_setzero_pd(), v0);
#define COMPLEX_MULT(v0, v1, v2, v3, v4, v5) \
{ \

(v0) = _mm_sub_pd(_mm_mul_pd(v2, v4), \
_mm_mul_pd(v3, v5)); \

(v1) = _mm_add_pd(_mm_mul_pd(v2, v5), \
_mm_mul_pd(v3, v4)); \

}

/* -- Load operations ---------------------------------------- */
#define LOAD_VECT(t, ptr_v) \

(t) = _mm_load_pd((double *)(ptr_v))

#define LOAD_L_4_2(t0, t1, ptr_v0, ptr_v1) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = _mm_load_pd(ptr_v0); \
tmp2 = _mm_load_pd(ptr_v1); \
t0 = _mm_shuffle_pd(tmp1, tmp2, \

_MM_SHUFFLE2(0, 0)); \
t1 = _mm_shuffle_pd(tmp1, tmp2, \

_MM_SHUFFLE(1, 1)); \
}

#define LOAD_R_2(t, ptr_r0, ptr_r1) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
tmpp[0] = *(ptr_r0); \
tmpp[1] = *(ptr_r1); \
t = _mm_load_pd((double *)(tmpp)); \

}

/* -- Store Operations --------------------------------------- */
#define STORE_VECT(ptr_v, t) \

_mm_store_pd((double *)(t), ptr_v)

#define STORE_L_4_2(ptr_v0, ptr_v1, t0, t1) \
{ \



194 C. The Portable SIMD API

simd_vector tmp1, tmp2; \
tmp1 = _mm_unpacklo_pd(t0, t1); \
tmp2 = _mm_unpackhi_pd(t0, t1); \
_mm_store_pd(ptr_v0, tmp1); \
_mm_store_pd(ptr_v1, tmp2); \

}

#define STORE_R_4(ptr_r0, ptr_r1, t) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
_mm_store_pd((double *)tmpp, t); \
*(ptr_r0) = tmpp[0]; \
*(ptr_r1) = tmpp[1]; \

}

#endif

C.3 Motorola AltiVec Extensions

/* simd_api_altivec_gcc.h

SIMD API for AltiVec
AltiVec enabled GNU C Compiler 2.96

*/

#ifndef __SIMD_API_ALTIVEC_H
#define __SIMD_API_ALTIVEC_H

#define SIMD_FUNC __inline__ void

/* -- Data types --------------------------------------------- */
typedef vector float simd_vector;
typedef struct c{float re,im;} simd_complex;
typedef float simd_real;

/* -- Constant handling -------------------------------------- */
#define VEC_NULL (FFTW_SIMD_VECT)(0.0,0.0,0.0,0.0)

#define DECLARE_CONST(name ,r) \
static const vector float (name) = \
(vector float)(r, r, r, r)

#define DECLARE_CONST_4(name, r0, r1, r2, r3) \
static const vector float (name) = \
(vector float)(r0, r1, r2, r3)

#define LOAD_CONST(name) (name)
#define LOAD_CONST_4(name) (name)
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#define LOAD_CONST_VECT(ptr_v) (ptr_v)
#define LOAD_CONST_SCALAR(ptr_r) vec_splat(ptr_r)
#define SIMD_SET_ZERO() VEC_NULL

/* -- Arithmetic operations ---------------------------------- */
#define VEC_ADD(a,b) vec_add((a),(b))
#define VEC_SUB(a,b) vec_sub((a),(b))
#define VEC_MUL(a,b) vec_madd((a),(b),VEC_NULL)
#define VEC_MADD(a,b,c) vec_madd((a),(b),(c))
#define VEC_NMSUB(a,b,c) vec_nmsub((a),(b),(c))
#define VEC_NMUL(a,b) vec_nmsub((a),(b),VEC_NULL)
#define SIMD_UMINUS_P(v, v0) \

(v) = vec_sub(VEC_NULL, v0);
#define COMPLEX_MULT(v0, v1, v2, v3, v4, v5) \
{ \

(v0) = VEC_SUB(VEC_MUL(v2, v4), VEC_MUL(v3, v5)); \
(v1) = VEC_ADD(VEC_MUL(v2, v5), VEC_MUL(v3, v4)); \

}

/* -- Load operations ---------------------------------------- */
#define LOAD_VECT(t, ptr_v) \

(t) = vec_ld(0,(float *)(ptr_v));

#define LOAD_L_8_2(t0, t1, ptr_v0, ptr_v1) \
{ \

simd_vect tmp1, tmp2, tmp3, tmp4; \
LOAD_VECT(tmp1, ptr_v0); \
LOAD_VECT(tmp2, ptr_v1); \
tmp3 = vec_mergeh(tmp1, tmp2); \
tmp4 = vec_mergel(tmp1, tmp2); \
(t0) = vec_mergeh(tmp3, tmp4); \
(t1) = vec_mergel(tmp3, tmp4); \

}

#define LOAD_L_16_4(t0, t1, t2, t3, \
ptr_v0, ptr_v1, ptr_v2, ptr_v3) \

{ \
simd_vector ti0, t0o, \

ti1, t1o, \
ti2, t2o, \
ti3, t3o; \

LOAD_VECT(t0i, ptr_v0); \
LOAD_VECT(t1i, ptr_v1); \
LOAD_VECT(t2i, ptr_v2); \
LOAD_VECT(t3i, ptr_v3); \
to0 = vec_mergeh(ti0, ti2); \
to1 = vec_mergeh(ti1, ti3); \
to2 = vec_mergel(ti0, ti2); \
to3 = vec_mergel(ti1, ti3); \
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(t0) = vec_mergeh(to0, to1); \
(t1) = vec_mergel(to0, to1); \
(t2) = vec_mergeh(to2, to3); \
(t3) = vec_mergel(to2, to3)); \

}

#define LOAD_COMPLEX(tc ,ptr_c) \
{ \

simd_vector tmp; \
tmp = vec_ld(0,(float *)(ptr_c)); \
(tc) = vec_perm(tmp,tmp,vec_lvsl(0,(float *)(ptr_c))); \

}

#define LOAD_L_8_2_C(t0, t1, ptr_c0, ptr_c1, ptr_c2, ptr_c3) \
{ \

simd_vector tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; \
LOAD_COMPLEX(tmp0, (simd_complex*)(ptr_v0)); \
LOAD_COMPLEX(tmp1, (simd_complex*)(ptr_v1)); \
LOAD_COMPLEX(tmp2, (simd_complex*)(ptr_v2)); \
LOAD_COMPLEX(tmp3, (simd_complex*)(ptr_v3)); \
tmp4 = vec_mergeh(tmp0, tmp2); \
tmp5 = vec_mergeh(tmp1, tmp3); \
(t0) = vec_mergeh(tmp4, tmp5); \
(t1) = vec_mergel(tmp4, tmp5); \

}

#define LOAD_R_4(t, ptr_r0, ptr_r1, ptr_r2, ptr_r3) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
tmpp[0] = *(ptr_r0); \
tmpp[1] = *(ptr_r1); \
tmpp[2] = *(ptr_r2); \
tmpp[3] = *(ptr_r3); \
LOAD_VECT(t, tmpp); \

}

/* -- Store Operations --------------------------------------- */
#define STORE_VECT(ptr_v, t) \

vec_st((t), 0, (float *)(ptr_v))

#define STORE_L_8_4(ptr_v0, ptr_v1, t0, t1) \
{ \

simd_vector tmp1, tmp2; \
tmp1 = vec_mergeh((t0), (t1)); \
tmp2 = vec_mergel((t0), (t1)); \
STORE_VECT((ptr_v0), tmp1); \
STORE_VECT(((ptr_v1)), tmp2); \
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}

#define STORE_L_16_4(ptr_v0, ptr_v1, ptr_v2, ptr_v3, \
t0, t1, t2, t3) \

{ \
simd_vector to0 = vec_mergeh(t0, t2), \

to1 = vec_mergeh(t1, t3); \
to2 = vec_mergel(t0, t2); \
to3 = vec_mergel(t1, t3); \

STORE_VECT(ptr_v0, vec_mergeh(to0, to1)); \
STORE_VECT(ptr_v1, vec_mergel(to0, to1)); \
STORE_VECT(ptr_v2, vec_mergeh(to2, to3)); \
STORE_VECT(ptr_v3, vec_mergel(co2,co3)); \

}

#define STORE_COMPLEX_1(ptr_c, tc) \
{ \

simd_vect tmp; \
tmp = vec_perm((tc), (tc), vec_lvsr(0, (float *)(ptr_c))); \
vec_ste(tmp, 0, (float *)(ptr_c)); \
vec_ste(tmp, 4, (float *)(ptr_c)); \

}

#define STORE_COMPLEX_2(ptr_c, tc) \
{ \

simd_vect tmp; \
tmp = vec_perm((tc), (tc), vec_lvsr(8, (float *)(ptr_c))); \
vec_ste(tmp, 0, (float *)(ptr_c)); \
vec_ste(tmp, 4, (float *)(ptr_c)); \

}

#define STORE_L_8_4_C(ptr_c0, ptr_c1, ptr_c2, ptr_c3, t0, t1) \
{ \

simd_vect tmp0, tmp1; \
tmp0 = vec_mergeh((t0), (t1)); \
tmp1 = vec_mergel((t0), (t1)); \
STORE_COMPLEX_1((tmp0),(simd_vector *)(ptr_c0)); \
STORE_COMPLEX_2((tmp0),(simd_vector *)(ptr_c1)); \
STORE_COMPLEX_1((tmp1),(simd_vector *)(ptr_c2)); \
STORE_COMPLEX_2((tmp1),(simd_vector *)(ptr_c3)); \

}

#define STORE_R_4(ptr_r0, ptr_r1, ptr_r2, ptr_r3, t) \
{ \

simd_vector tmp; \
simd_real *tmpp = &tmp; \
STORE_VECT((float *)tmpp, t); \
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*(ptr_r0) = tmpp[0]; \
*(ptr_r1) = tmpp[1]; \
*(ptr_r2) = tmpp[2]; \
*(ptr_r3) = tmpp[3]; \

}

#endif



Appendix D

SPIRAL Example Code

This appendix displays a scalar and a short vector SIMD code example for the
DFT16 which was obtained by utilizing the scalar Spiral version and the newly
developed short vector SIMD extension for Spiral. In addition, the respective
SPL program is displayed.

D.1 Scalar C Code

This section shows the scalar single-precision code of a DFT16 generated and
adapted on an Intel Pentium 4. The formula translated is

DFT16 = (((DFT2 ⊗ I2) T4
2(I2 ⊗DFT2) L4

2) ⊗ I4) T16
4

(I4 ⊗(DFT2 ⊗ I2) T4
2(I2 ⊗DFT2) L4

2)) L16
4 .

SPL Program

( compose
( tensor
( compose
( tensor
( F 2 )
( I 2 )

)
( T 4 2 )
( tensor
( I 2 )
( F 2 )

)
( L 4 2 )

)
( I 4 )

)
( T 16 4 )
( tensor
( I 4 )
( compose
( tensor
( F 2 )
( I 2 )

)
( T 4 2 )

199
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( tensor
( I 2 )
( F 2 )

)
( L 4 2 )

)
)
( L 16 4 )

)

Scalar C Program

void DFT_16(float *y, float *x)
{

float f91;
float f92;
float f93;
...
float f230;

f91 = x[2] - x[30];
f92 = x[3] - x[31];
f93 = x[2] + x[30];
f94 = x[3] + x[31];
f95 = x[4] - x[28];
f96 = x[5] - x[29];
f97 = x[4] + x[28];
f98 = x[5] + x[29];
f99 = x[6] - x[26];
f100 = x[7] - x[27];
f101 = x[6] + x[26];
f102 = x[7] + x[27];
f103 = x[8] - x[24];
f104 = x[9] - x[25];
f105 = x[8] + x[24];
f106 = x[9] + x[25];
f107 = x[10] - x[22];
f108 = x[11] - x[23];
f109 = x[10] + x[22];
f110 = x[11] + x[23];
f111 = x[12] - x[20];
f112 = x[13] - x[21];
f113 = x[12] + x[20];
f114 = x[13] + x[21];
f115 = x[14] - x[18];
f116 = x[15] - x[19];
f117 = x[14] + x[18];
f118 = x[15] + x[19];
f119 = x[0] - x[16];
f120 = x[1] - x[17];
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f121 = x[0] + x[16];
f122 = x[1] + x[17];
f123 = f93 - f117;
f124 = f94 - f118;
f125 = f93 + f117;
f126 = f94 + f118;
f127 = f97 - f113;
f128 = f98 - f114;
f129 = f97 + f113;
f130 = f98 + f114;
f131 = f101 - f109;
f132 = f102 - f110;
f133 = f101 + f109;
f134 = f102 + f110;
f135 = f121 - f105;
f136 = f122 - f106;
f137 = f121 + f105;
f138 = f122 + f106;
f139 = f125 - f133;
f140 = f126 - f134;
f141 = f125 + f133;
f142 = f126 + f134;
f143 = f137 - f129;
f144 = f138 - f130;
f145 = f137 + f129;
f146 = f138 + f130;
y[16] = f145 - f141;
y[17] = f146 - f142;
y[0] = f145 + f141;
y[1] = f146 + f142;
f151 = 0.7071067811865476 * f139;
f152 = 0.7071067811865476 * f140;
f153 = f135 - f151;
f154 = f136 - f152;
f155 = f135 + f151;
f156 = f136 + f152;
f157 = 0.7071067811865476 * f127;
f158 = 0.7071067811865476 * f128;
f159 = f119 - f157;
f160 = f120 - f158;
f161 = f119 + f157;
f162 = f120 + f158;
f163 = f123 + f131;
f164 = f124 + f132;
f165 = 1.3065629648763766 * f123;
f166 = 1.3065629648763766 * f124;
f167 = 0.9238795325112866 * f163;
f168 = 0.9238795325112866 * f164;
f169 = 0.5411961001461967 * f131;
f170 = 0.5411961001461967 * f132;
f171 = f165 - f167;
f172 = f166 - f168;
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f173 = f167 - f169;
f174 = f168 - f170;
f175 = f161 - f173;
f176 = f162 - f174;
f177 = f161 + f173;
f178 = f162 + f174;
f179 = f159 - f171;
f180 = f160 - f172;
f181 = f159 + f171;
f182 = f160 + f172;
f183 = f91 + f115;
f184 = f92 + f116;
f185 = f91 - f115;
f186 = f92 - f116;
f187 = f99 + f107;
f188 = f100 + f108;
f189 = f107 - f99;
f190 = f108 - f100;
f191 = f185 - f189;
f192 = f186 - f190;
f193 = f185 + f189;
f194 = f186 + f190;
f195 = 0.7071067811865476 * f191;
f196 = 0.7071067811865476 * f192;
f197 = f183 - f187;
f198 = f184 - f188;
f199 = 1.3065629648763766 * f183;
f200 = 1.3065629648763766 * f184;
f201 = 0.9238795325112866 * f197;
f202 = 0.9238795325112866 * f198;
f203 = 0.5411961001461967 * f187;
f204 = 0.5411961001461967 * f188;
f205 = f199 - f201;
f206 = f200 - f202;
f207 = f201 + f203;
f208 = f202 + f204;
f209 = f95 - f111;
f210 = f96 - f112;
f211 = f95 + f111;
f212 = f96 + f112;
f213 = 0.7071067811865476 * f211;
f214 = 0.7071067811865476 * f212;
f215 = f213 - f103;
f216 = f214 - f104;
f217 = f213 + f103;
f218 = f214 + f104;
f219 = f205 - f217;
f220 = f206 - f218;
f221 = f205 + f217;
f222 = f206 + f218;
f223 = f195 - f209;
f224 = f196 - f210;
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f225 = f195 + f209;
f226 = f196 + f210;
f227 = f215 - f207;
f228 = f216 - f208;
f229 = f215 + f207;
f230 = f216 + f208;
y[30] = f177 + f222;
y[31] = f178 - f221;
y[2] = f177 - f222;
y[3] = f178 + f221;
y[28] = f155 + f226;
y[29] = f156 - f225;
y[4] = f155 - f226;
y[5] = f156 + f225;
y[26] = f181 + f230;
y[27] = f182 - f229;
y[6] = f181 - f230;
y[7] = f182 + f229;
y[24] = f143 + f194;
y[25] = f144 - f193;
y[8] = f143 - f194;
y[9] = f144 + f193;
y[22] = f179 - f228;
y[23] = f180 + f227;
y[10] = f179 + f228;
y[11] = f180 - f227;
y[20] = f153 + f224;
y[21] = f154 - f223;
y[12] = f153 - f224;
y[13] = f154 + f223;
y[18] = f175 + f220;
y[19] = f176 - f219;
y[14] = f175 - f220;
y[15] = f176 + f219;

}

D.2 Short Vector Code

This section shows the the four-way short vector SIMD code for a DFT16 gener-
ated and adapted on an Intel Pentium 4. The formula translated is

DFT16 =
(
I4 ⊗L8

4

) (
((DFT2 ⊗ I2) T4

2(I2 ⊗DFT2) L4
2) ⊗ I4

)
T

′16

4(
L8

4 ⊗ I4
) (

I2 ⊗L16
4

) (
((DFT2 ⊗ I2) T4

2(I2 ⊗DFT2) L4
2) ⊗ I4

)(
I4 ⊗L8

2

)
The respective C program using the portable SIMD API is displayed.
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#include "simd_api.h"

DECLARE_CONST_4(SCONST7, 0.000000000000, 0.923879532511,
0.707106781187, -0.382683432365);

DECLARE_CONST_4(SCONST6, 1.000000000000, 0.382683432365,
-0.707106781187, -0.923879532511);

DECLARE_CONST_4(SCONST5, 0.000000000000, 0.707106781187,
1.000000000000, 0.707106781187);

DECLARE_CONST_4(SCONST4, 1.000000000000, 0.707106781187,
0.000000000000, -0.707106781187);

DECLARE_CONST_4(SCONST3, 0.000000000000, 0.382683432365,
0.707106781187, 0.923879532511);

DECLARE_CONST_4(SCONST2, 1.000000000000, 0.923879532511,
0.707106781187, 0.382683432365);

SIMD_FUNC DFT_16_1(simd_real *y, simd_real *x)
{

simd_vector xl0;
...
simd_vector xl7;
simd_vector yl0;
...
simd_vector yl7;
simd_vector f9;
...
simd_vector f16;
__assume_aligned(x, 16);
__assume_aligned(y, 16);

LOAD_L_8_2(xl0, xl1, x + 0, x + 4);
LOAD_L_8_2(xl4, xl5, x + 16, y + 20);
f9 = VEC_SUB(xl0, xl4);
f10 = VEC_SUB(xl1, xl5);
f11 = VEC_ADD(xl0, xl4);
f12 = VEC_ADD(xl1, xl5);
LOAD_L_8_2(xl2, xl3, x + 8, x + 12);
LOAD_L_8_2(xl6, xl7, x + 24, x + 28);
f13 = VEC_SUB(xl2, xl6);
f14 = VEC_SUB(xl3, xl7);
f15 = VEC_ADD(xl2, xl6);
f16 = VEC_ADD(xl3, xl7);
yl4 = VEC_SUB(f11, f15);
yl5 = VEC_SUB(f12, f16);
yl0 = VEC_ADD(f11, f15);
yl1 = VEC_ADD(f12, f16);
yl6 = VEC_ADD(f9, f14);
yl7 = VEC_SUB(f10, f13);
yl2 = VEC_SUB(f9, f14);
STORE_L_16_4(y + 0, y + 8, y + 16, y + 24, yl0, yl2, yl4, yl6);
yl3 = VEC_ADD(f10, f13);
STORE_L_16_4(y + 4, y + 12, y + 20, y + 28, yl1, yl3, yl5, yl7);

}
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SIMD_FUNC DFT_16_0(simd_real *y, simd_real *x)
{

simd_vector xl0;
...
simd_vector xl7;
simd_vector yl0;
...
simd_vector yl7;
simd_vector ldtmp0;
...
simd_vector ldtmp7;
simd_vector f9;
...
simd_vector f16;
__assume_aligned(x, 16);
__assume_aligned(y, 16);

LOAD_VECT(xl0, x + 0);
LOAD_VECT(xl1, x + 4);
LOAD_VECT(ldtmp4, x + 16);
LOAD_VECT(ldtmp5, x + 20);
COMPLEX_MULT(xl4, xl5, ldtmp4, ldtmp5,

LOAD_CONST(SCONST4), LOAD_CONST(SCONST5));
f9 = VEC_SUB(xl0, xl4);
f10 = VEC_SUB(xl1, xl5);
f11 = VEC_ADD(xl0, xl4);
f12 = VEC_ADD(xl1, xl5);
LOAD_VECT(ldtmp2, x + 8);
LOAD_VECT(ldtmp3, x + 12);
COMPLEX_MULT(xl2, xl3, ldtmp2, ldtmp3,

LOAD_CONST(SCONST2), LOAD_CONST(SCONST3));
LOAD_VECT(ldtmp6, x + 24);
LOAD_VECT(ldtmp7, x + 28);
COMPLEX_MULT(xl6, xl7, ldtmp6, ldtmp7,

LOAD_CONST(SCONST6), LOAD_CONST(SCONST7));
f13 = VEC_SUB(xl2, xl6);
f14 = VEC_SUB(xl3, xl7);
f15 = VEC_ADD(xl2, xl6);
f16 = VEC_ADD(xl3, xl7);
yl4 = VEC_SUB(f11, f15);
yl5 = VEC_SUB(f12, f16);
STORE_L_8_4(yl4, yl5, y + 16, y + 20);
yl0 = VEC_ADD(f11, f15);
yl1 = VEC_ADD(f12, f16);
STORE_L_8_4(yl0, yl1, y + 0, y + 4);
yl6 = VEC_ADD(f9, f14);
yl7 = VEC_SUB(f10, f13);
STORE_L_8_4(yl6, yl7, y + 24, y + 28);
yl2 = VEC_SUB(f9, f14);
yl3 = VEC_ADD(f10, f13);
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STORE_L_8_4(yl2, yl3, y + 8, y + 12);
}

void DFT_16(y,x)
simd_scalar_float *restrict y, *restrict x;
{

static simd_vector t53[8];
__assume_aligned(x, 16);
__assume_aligned(y, 16);

DFT_16_1((simd_vector *)t53 + 0, x + 0);
DFT_16_0((simd_vector *)y + 0, t53 + 0);

}



Appendix E

FFTW Example

This appendix displays the Fftw framework in pseudo code as well as a scalar
and the respective short vector SIMD no-twiddle codelet of size four. The short-
vector codelet implements a part of rule (7.25) which belongs to the short-vector
Cooley-Tukey rule set (Theorem 7.5 on page 124). This is the smallest no-twiddle
that can be used for implementing this rule.

E.1 The FFTW Framework

main(n, int, out)
{

complex in[n], out[n]
plan p

p:=planner(n)

fftw(in, out, p);
}

fftw(input, output, plan)
{

execute(plan.n, input, output, plan, 1, 1)
return output

}

execute(n, input, output, plan, instride, outstride)
{

if plan.type = NO_TWIDDLE
plan.notwiddlecodelet(input, output, instride, outstride)

if plan.type = TWIDDLE
r:=plan.twiddlesize
m:=n/r
for i:=0 to r-1 do
execute(m, input+i*instride, output+i*m*outstride,
plan.nextstep, instride*r, outstride)

plan.twiddlecodelet(output, plan.twiddlefactors,
m * outstride, m, outstride);

}
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notwiddlecodelet<N>(input, output, instride, outstride)
{

complex in[N], out[N]

for i:=0 to N-1 do
in[i]:=input[i*instride]

FFT(N, in, out)

for i:=0 to N-1 do
output[i*outstride]:=out[i]

return output
}

twiddlecodelet<N>(inoutput, twiddlefactors, stride, m, dist)
{

complex in[N], out[N]

for i:=0 to m-1
for j:=0 to N-1
in[i]:=inoutput[i*dist+j*stride]

apply_twiddlefactors(N, out, i, twiddlefactors)
FFT(N, in, out)

for j:=0 to N-1
inoutput[i*dist+j*stride]:=out[j]

}

E.2 Scalar C Code

This section shows a standard Fftw no-twiddle codelet of size 4. The computa-
tion done by this codelet is

update
(
y′, WN,4

output, ostride, DFT4 RN,4
input, istridex

′
)

.

void fftw_no_twiddle_4 (const fftw_complex * input, fftw_complex
*output, int istride, int ostride)

{
fftw_real tmp3;
fftw_real tmp11;
fftw_real tmp9;
fftw_real tmp15;
fftw_real tmp6;
fftw_real tmp10;
fftw_real tmp14;
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fftw_real tmp16;
{
fftw_real tmp1;
fftw_real tmp2;
fftw_real tmp7;
fftw_real tmp8;
tmp1 = c_re (input[0]);
tmp2 = c_re (input[2 * istride]);
tmp3 = (tmp1 + tmp2);
tmp11 = (tmp1 - tmp2);
tmp7 = c_im (input[0]);
tmp8 = c_im (input[2 * istride]);
tmp9 = (tmp7 - tmp8);
tmp15 = (tmp7 + tmp8);

}
{
fftw_real tmp4;
fftw_real tmp5;
fftw_real tmp12;
fftw_real tmp13;
tmp4 = c_re (input[istride]);
tmp5 = c_re (input[3 * istride]);
tmp6 = (tmp4 + tmp5);
tmp10 = (tmp4 - tmp5);
tmp12 = c_im (input[istride]);
tmp13 = c_im (input[3 * istride]);
tmp14 = (tmp12 - tmp13);
tmp16 = (tmp12 + tmp13);

}
c_re (output[2 * ostride]) = (tmp3 - tmp6);
c_re (output[0]) = (tmp3 + tmp6);
c_im (output[ostride]) = (tmp9 - tmp10);
c_im (output[3 * ostride]) = (tmp10 + tmp9);
c_re (output[3 * ostride]) = (tmp11 - tmp14);
c_re (output[ostride]) = (tmp11 + tmp14);
c_im (output[2 * ostride]) = (tmp15 - tmp16);
c_im (output[0]) = (tmp15 + tmp16);

}

E.3 Short Vector Code

This section shows a four-way SIMD vectorized Fftw no-twiddle codelet of size
4. The computation done by this short vector SIMD codelet is

update

(
y′, W

N/4,4
output/8, ostride /8 ⊗ I8,(

L8
4 ⊗ I4

) (
I2 ⊗L16

4

) (
L8

2 ⊗ I4
) (

DFT4 ⊗ I4
)(

R
N/4,4
input/8, istride /8 ⊗L8

2

)
x′
)

.
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#include "codelet.h"
#include "simd_api.h"

void fftw_no_twiddle_4_simd (const simd_vector * in,
const simd_vector * out, int is, int os)

{
simd_vector tmp3;
simd_vector tmp11;
simd_vector tmp9;
simd_vector tmp15;
simd_vector tmp6;
simd_vector tmp10;
simd_vector tmp14;
simd_vector tmp16;
{
simd_vector tmp1;
simd_vector tmp2;
simd_vector tmp7;
simd_vector tmp8;
LOAD_L_8_2(tmp1, tmp7, in + 0, in + 4);
LOAD_L_8_2(tmp2, tmp8, in + 2 * is + 9, in + 2 * is + 4);
tmp3 = ADD_VEC (tmp1, tmp2);
tmp11 = SUB_VEC (tmp1, tmp2);
tmp9 = SUB_VEC (tmp7, tmp8);
tmp15 = ADD_VEC (tmp7, tmp8);

}
{
simd_vector tmp4;
simd_vector tmp5;
simd_vector tmp12;
simd_vector tmp13;
LOAD_L_8_2(tmp4, tmp12, in + 1 * is + 0, in + 1 * is + 4):
LOAD_L_8_2(tmp5, tmp13, in + 3 * is + 0, in + 3 * is + 4):
tmp6 = ADD_VEC (tmp4, tmp5);
tmp10 = SUB_VEC (tmp4, tmp5);
tmp14 = SUB_VEC (tmp12, tmp13);
tmp16 = ADD_VEC (tmp12, tmp13);

}
{
simd_vector tmp17;
simd_vector tmp23;
simd_vector tmp18;
simd_vector tmp24;
simd_vector tmp19;
simd_vector tmp22;
simd_vector tmp20;
simd_vector tmp21;
tmp17 = SUB_VEC (tmp3, tmp6);
tmp23 = SUB_VEC (tmp15, tmp16);
tmp18 = ADD_VEC (tmp3, tmp6);
tmp24 = ADD_VEC (tmp15, tmp16);
tmp19 = SUB_VEC (tmp9, tmp10);
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tmp22 = ADD_VEC (tmp11, tmp14);
tmp20 = ADD_VEC (tmp10, tmp9);
STORE_L_16_4 (out, out + os, out + 2 * os, out + 3 * os,

tmp24, tmp19, tmp23, tmp20);
tmp21 = SUB_VECT (tmp11, tmp14);
STORE_L_16_4 (out + 4, out + 4 + os, out + 4 + 2 * os,

out + 4 + 3 * os, tmp18, tmp22, tmp17, tmp21);
}

}



Table of Abbreviations

API Application programming interface

AEOS Automatical empirical optimization of software

CISC Complex instruction set computer

CPI Cycles per instruction

CPU Central processing unit

DCT Discrete cosine transform

DFT Discrete Fourier transform

DRAM Dynamic random access memory

DSP Digital signal processing, digital signal processor

FFT Fast Fourier transform

FMA Fused multiply-add

FPU Floating-point unit

GUI Graphical user interface

ISA Instruction set architecture

PMC Performance monitor counter

RAM Random access memory

ROM Read-only memory

RISC Reduced instruction set computer

SIMD Single instruction, multiple data

SPL Signal processing language

SRAM Static random access memory

SSE Streaming SIMD extension

TLB Transaction lookaside buffer

VLIW Very long instruction word

WHT Walsh-Hadamard transform
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A. Slateff, C. Ueberhuber: Performance Evaluation of FFT Routines—
Machine Independent Serial Programs. Technical Report Aurora TR1999-
05, Institute for Applied Mathematics and Numerical Analysis, Vienna Uni-
versity of Technology, 1999.

[10] D. H. Bailey: FFTs in External or Hierarchical Memory. J. Supercomputing
4 (1990), pp. 23–35.

[11] R. Berrendorf, H. Ziegler: Pcl, 2002.
http://www.fz-juelich.de/zam/PCL
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