
A 3D-Stacked Memory Manycore Stencil
Accelerator System

Jiyuan Zhang, Tze Meng Low, Qi Guo, Franz Franchetti
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, USA

Email: {jiyuanz, lowt, qguo1, franzf}@andrew.cmu.edu

Abstract—Stencil operations are an important class of sci-
entific computational kernels that are pervasive in scientific
simulations as well as in image processing. A key characteristic
of this class of computation is that they have a low operational
intensity, i.e., the ratio of the number of memory accesses to
the number of floating point operations it performs is high. As
a result, the performance of stencil operations implemented on
general purpose computing systems is bounded by the memory
bandwidth. Technologies such as 3D stacked memory can pro-
vide substantially more bandwidth than conventional memory
systems and can enhance the performance of memory intensive
computations like stencil kernels. In this paper, we leverage this
3D stacked memory technology to design an accelerator for
stencil computations. We show that for the best efficiency one
needs to find the balance between computation and memory
accesses to keep all components consistently busy. We achieve
this by exploring how blocking and caching schemes to control
the compute-to-memory ratio. Finally, we identify optimal design
points that maximize performance.

I. INTRODUCTION

Stencil operations are an important class of kernels in the
scientific domain. They constitute an integral component of fi-
nite differential methods to solve partial differential equations,
which are applied in a wide range of scientific areas like heat
diffusion, fluid dynamics, and electromagnetics[1], [2]. Stencil
kernels are also ubiquitous in image processing in performing
image denoising and variational models [3].

Implementing stencil kernels on general purpose computers
is a challenging task. Stencil computations perform iterative
operations on a large data set and feature a low computational
intensity, i.e., the amount of floating point operations (FLOPs)
is small compared to the memory access operations [4]. As a
result, the performance of stencil kernels on general computing
system is severely hampered by the memory bandwidth.

Software and compiler techniques have been developed to
improve the performance of stencil computation. The idea
is to exploit the data locality characteristics of the stencil
computation to enhance the compute-to-memory ratio [5], [6],
[7], [8]. This is helpful to increase the number of operations
performed per memory access. Yet it can only compensate for
the low bandwidth of the general purpose systems to some
extent. Stencils in higher dimensional grids which demand
more memory bandwidth or stencils in multigrid methods
which possess less locality or require fewer iterations are still
hard to optimize.

The recently emerging 3D stacked memory promises to
deliver higher bandwidth and thus a solution to the memory

bottleneck problems. Using this technique, memory chips
are stacked vertically and connected using short and fast
Through-Silicon-Vias (TSVs), resulting in substantially higher
bandwidth than conventional memory systems. In addition, 3D
stacking enables the integration of logic dies with memory
dies. This feature allows the implementation of computa-
tion near the memory for memory access latency reduction
and higher bandwidth. For data-intensive but logic-simple
computation, this near data computing system can provide
orders of magnificient improvement on performance and power
efficiency [9], [10]. In this work, we leverage the 3D-stacked
memory system to accelerate stencil computations. The con-
tributions are as follows:

• A many-core stencil accelerator. We propose a
many-core parallel stencil accelerator integrated on the
logic layer of a 3D-stacked memory system. The ac-
celerator architecture is designed for better parallelism
and to fully exploit the internal bandwidth of the
stacked memory system. The 3D stacked accelerator
system overall is able to reach orders of magnitude
improvement on the performance compared to general
computing systems.

• Computation and bandwidth tradeoff. In order to
achieve the peak floating point computational capabil-
ity we show that a balance between computation and
memory access is necessary. We analyze how spatial
and temporal blocking schemes affect the compute-to-
memory ratio and system performance.

• Design space exploration. Based on the above anal-
ysis, we perform design space exploration to identify
optimal design points that maximize performance un-
der different system configurations.

The paper is organized as follows. Section II provides the
background of stencil computation and 3D stacking memory.
Section III elaborates on the details of stencil accelerator
system. Section IV introduces the model for performance
estimation. The experiments are discussed in Section V and
we conclude in Section VI.

II. BACKGROUND

A. Stencil Operation

Stencil operations are an important motif in scientific
computation. The computation involves iteratively updating
every element in a data grid by using its neighboring elements.
One round of updates across the entire grid is called one time

Listing 1: Example of 2D-5 point Jacobi stencil code
for (t=0; t<Tmax; t++)

for (i=0; i<Xdim; i++)
for (j=0; j<Ydim; j++) {
A[t+1][i][j]=a*A[t][i][j] + b*(

A[t][i-1][j] + A[t][i][j-1] +
A[t][i][j-1] + A[t][i][j+1]);

}

step. Different stencils may use a different number of elements
for updating. Listing 1 shows an example of a Jacobi 2D 5-
point stencil. The outer loop is the time loop. Within one time
iteration, the code sweeps through the entire 2-dimensional
data domain, updating each element using its North, East, West
and South nearest neighbors. This code is common in finite
differential methods for partial differential equations. There
are also other Jacobi patterns, such as 3D 7-point stencil which
updates elements on a 3-dimensional grid using neighbors at
x − 1, x + 1, y − 1, y + 1, z − 1, z + 1 directions, or 3D
27-point stencil which uses all the elements at the corner, face
and edge of the surrounding 3× 3× 3 cube.

B. 3D Stacked Logic-in-Memory system

3D stacked DRAM has become a reality with the commer-
cial availability of the Micron hybrid memory cube (HMC).
The 3D-stacked DRAM adopts fine-grained rank-level stacking
[11], i.e., banks stacked in 3D fashion to form a 3D rank
(vault). This can better exploit bank-level parallelism. The
vertically-stacked banks in a rank are connected by shared
through-silicon-vias (TSVs). The system is composed of ranks
equal to the number of banks in a die. On the bottom of the 3D
stacked system is the logic die. Peripheral logic is implemented
on the logic die. The peripheral logics include the vault and
link controllers, which are in charge of moving data between
vaults or from vaults to external IO pins. Each vault controller
is associated with a vault and is placed under its corresponding
vault.

III. ACCELERATOR DESIGN

In this section, we start with an overview of the many-core
stencil accelerator system. Then we explain how the stencil
computation is performed on this accelerator with the example
of 2D 5-point stencil.

A. System Overview

As wire technology keeps scaling to smaller feature sizes,
wire delay has become a more critical issue. Utilizing clustered
and simple processing units is an effective way to mitigate the
wire issue. Our design reflects this idea. The proposed stencil
accelerator is composed of many small and simple accelerating
cores as shown in Fig. 1. Multiple cores are grouped into
a cluster. These clusters form a 2-dimensional array that is
of the same size as the vault array. Each cluster is mapped
to a vault. FIFO channels are built across neighboring cores
as well as neighboring clusters to facilitate data transferring
between neighbors. This many-core structure not only has
shorter wiring than a large monolithic core, moreover, it also
removes complex communication interconnections between

Fig. 1: 3D stacked memory system overview.

the accelerator and vault controllers [12], better exploiting
vault-level parallelism.

B. Data Partition

To perform a stencil computation on this accelerator sys-
tem, the computation needs to be partitioned and mapped
properly to each core.

Vault partition. The original data region is partitioned
into multiple small regions that are processed separately on
each cluster. These smaller regions are called vault regions. To
facilitate the mapping of vault region to vaults, the partitioning
of the original space is organized into the same structure of
the vault array: the two dimensions of the data space are
partitioned evenly to form an N-by-N array of vault regions.

C. Blocking

Spatial and temporal blocking (or tiling) are effective
techniques to optimize data reuse and reduce memory access
in stencils. In this section, we describe how the space and
temporal blocking is performed in the vault region.

Spatial blocking. Spatial blocking is an effective technique
to improve data reuse when the data size is larger than the
cache size. In our stencil accelerator, spatial blocking is applied
to transform the the vault region to small blocks that can fit the
local cache of the cluster. The block is referred as cluster block.
Unlike the blocking in matrix multiplication, blocking scheme
in stencils is different and called partial blocking. The cluster
block is blocked on N−1 dimensions (assume the vault region
is N-dimension) and takes stride 1 at the unblocked dimension.
The unblocked dimension is the streaming dimension: The
partial blocks are streamed into the accelerator cluster along
the streaming dimension. The accelerator cluster finishes one
cluster block before processing another. Multiple partial blocks
are stream buffered on chip, because of data reuse between
consecutive blocks.

Fig. 2 shows the partition and blocking for the 2D 5-point
stencil problem. The original 2D data space is partitioned into
a 2D array of vault regions. In a vault region, the cluster
block is formed by partially blocking the x dimension. The
resultant cluster block is a one dimension row. A core block
is a chunk of the row assigned to each core. The blocks are
streamed into the accelerator cluster along the y dimension.
Stencil operations are performed on every element of the block.
The results are streamed out to memory in blocks. Since the
5-point stencil operation involves elements of three different y

Fig. 2: Data space partition for 2D stencil.

indexes, they are scattered across three consecutive blocks. The
computation on the latest streaming block requires the previous
two blocks, which are thus buffered on chip. A hardware
circular buffer can be adopted to implement the streaming
buffer function.

Temporal blocking. In addition to spatial blocking, we
can further reduce the memory bandwidth requirement by
performing time blocking. Compared to spatial blocking which
exploits data reuse only at spatial iterations, temporal blocking
further reduces memory bandwidth by leveraging data reuse
across time iterations. The idea of temporal blocking is as
follows. Spatial blocking computes results of one time step
based on the data read from memory. Instead of writing
the computed results immediately to memory, they are kept
in a cache and are reused to compute results of later time
steps. Only the data at the last time blocking step is written
to memory. Fig. 3 shows the time blocking process with
a blocking parameter of four. Temporal blocking requires a
larger cache to keep the intermediate blocks. It has to keep in
cache the two latest blocks for every time step. The blocks are
stream buffered similarly as in the spatial blocking method.

Communication. Cores have to communicate with their
neighbors to get elements to support computing at the bound-
ary region, so called ghost region. There are two circumstances
that need communication. Inter-core communication happens
when cores process elements at the core block boundary. Inter-
vault communication happens when processing elements at
the vault region boundary. Inter-core communication happens
whenever the core reaches the last few elements of each row.
Inter-vault communication happens after the accelerator has
finished computing the entire vault region for a certain time
(based on the time blocking parameter). The Inter-vault com-
munication volume depends on the time blocking parameter.
The larger the time blocking parameter, the larger the ghost
region that needs to be transferred between clusters.

D. Banking Scheme

Temporal blocking requires caching the values of elements
at intermediate time steps. The intermediate values of one
element cannot be stored at the same location, since this will
result in a new value at a later time step replacing the old
value that are still required. To avoid this, the storing of the
intermediate values should be staggered. For instance, in a
2D stencil the updated value of element (x, y) (denoted as
(x, y)t+1) cannot be stored at the same place as the old value
(x, y)t, because computing a later element (e.g., (x, y+1)t+1)
will need the old value of (x, y)t. But (x, y)t+1 can be stored
at the location of (x− 2, y − 2)t because (x− 2, y − 2)t will
no longer be used by the later element. Generally a value at
a later time step is stored with a staggerred distance equal to
the stencil operation range.

Fig. 3: Temporal blocking of 2D stencil for four time steps. The
blocks of intermediate time steps are cached in local SRAM.
Each time step stores two latest blocks.

Another problem in the stencil computation is the simul-
taneous data access. One stencil operation requires multiple
elements as inputs and whether they can be accessed simul-
taneously is critical to the performance. Utilizing multiple
memory banks and mapping the data points to disjoint banks
is an effective way to eliminate the access conflicts. In the
2D 5-point stencil example, one stencil operation requires five
elements as input and outputs one element every iteration (e.g.,
the stencil operation on element (x, y) requires read from five
locations (x, y)(x−1, y)(x+1, y)(x, y−1)(x, y+1) and write
to one location (x− 2, y − 2)). But (x− 1, y) and (x, y) are
overlapping inputs with previous operations. Therefore only
locations of (x + 1, y)(x, y − 1)(x, y + 1) need to be read.
Therefore a 4-banked scratchpad SRAM is adopted here, where
consecutive cluster blocks are stored at different banks. In this
way, all the reads and writes of one stencil operation can be
simultaneously performed.

E. Accelerator Core Architecture

Fig. 4 shows the core architecture customized for a given
stencil computation. The architecture consists of the scratch-
pad SRAM, a computation unit and a control module. The
scratchpad SRAM is composed of multiple banks. The bank
number is determined by the specific stencil pattern. It is equal
to the operand number of one stencil operation excluding the
operands overlapping with previous operation. The computa-
tion logic is the floating point computation logic for this stencil
pattern. The control of these functional units is driven by the
controller. The controller is implemented as state machines
whose transitions are based on the stencil context registers in
the sequencer unit. The control signals to all these functional
units are encoded as microcodes and stored in the micoprogram
memory.

IV. PERFORMANCE ANALYSIS

Best performance is achieved when the computation’s
operation-to-memory ratio matches with the system. In this
section, we model and analyze the performance of the accel-
erator system and identify the best design points.

A. Performance Model

We first explain the relevant parameters for estimation.

Problem parameters. The stencil problem can be rep-
resented with parameters D, Dim, R and P . The D is the

Fig. 4: Stencil accelerator core architecture.

dimension of the stencil. Dim is the size of each dimension.
R is the radius of the stencil operation region (i.e., the distance
from the farthest element to the center). P is the total number
of elements used to compute a new value.

Blocking parameters. Bvault denotes the size of the
vault region. The original data space is partitioned into 2
dimensional array of vault regions and each vault region is
mapped to a vault. The partition is performed on 2 dimensions
out of the D dimensions with the parameter Bvault.

Bcluster denotes the cluster block parameter. The vault
region is usually larger than the local SRAM size of the
accelerator cluster. The vault region is partitioned into smaller
cluster blocks that can fit into the scratch SRAM size. The
blocking parameter is Bcluster. The dimension that is not
blocked is referred to as the streaming dimension.

Bcore is the core block parameter. The cluster block is
evenly split into core blocks for every core in the cluster.
The splitting is done along 1 dimension with parameter Bcore.
Btime denotes the temporal blocking parameter.

B. Memory-to-Computation Analysis

Blocking parameters have an important impact on the
performance by affecting the computation-to-memory balance
of the system. In the 2D stencil example, without any opti-
mization, the computation of one element requires five ele-
ments. That is 48 bytes for double precision memory accesses
compared to 5 floating point operations. The bytes-to-op ratio
(memory-to-computation ratio) is 4.6, which is relatively high.
After applying spatial blocking, the computation reads in one
block of data, performs stencil operations and writes out one
data block of a later time step. That is 16Bcluster bytes of
memory accesses counting both reads and writes compared
to 5Bcluster operations. With temporal blocking, the memory-
to-computation ratio is further reduced by a factor of Btime

because a data block read from memory can support computing
Btime blocks.

More generally, the memory-to-compute ratio for an ar-
bitrary stencil problem is shown in Table I. For the baseline
version, the p-point stencil needs P elements to compute one
new value. The memory bytes is 8(P + 1) (P reads and
1 write, double precision). The memory-to-compute ratio is
thus 8(P +1)/P . Spatial blocking can reduce the algorithm’s

TABLE I: Computation and memory ratio.

Blocking scheme Bytes-to-Ops
ratio SRAM/core (Bytes)

No Blocking 8(P + 1)/P 0
Space Blocking 16/P 16RBcoreB

D−2
cluster

Time Blocking 16/(PBtime) 16RBtimeBcoreB
D−2
cluster

memory-to-compute ratio. In a D dimension stencil, the cluster
block is of size BD−1

cluster. The memory transfer for the block is
16BN−1

cluster counting both reads and writes (double precisions).
This block allows to perform PBN−1

cluster floating point oper-
ations. With time blocking, the memory-to-compute ratio is
further reduced by the time blocking factor.

C. Design Space Exploration

The increase in the time blocking parameter allows an
increase on the operations performed for a certain memory
access, reducing the bandwidth requirement of the computa-
tion. But larger blocking comes with the price of larger cache
size. Table I shows the corresponding SRAM size of different
blocking strategies. Spatial blocking requires buffering several
cluster blocks for reuse by subsequent clusters: for a stencil
operation that touches element in R distances, 2R blocks need
to be buffered. If the time blocking is counted in, more blocks
need to be cached: 2R blocks for each time step.

With a fixed area constraint, the blocking degrades the
performance because the cache used for blocking takes up
the area for computation logic. Therefore, the blocking pa-
rameter needs to be carefully chosen to build a balanced
computation in order to achieve the optimal performance. We
use an example below to exhibit how the balance affects the
performance. Table II gives three different implementations on
a total accelerator area of 25 mm2. The memory layers consist
of 4 dies partitioned into 16 vaults whose peak bandwidth
is 400GB/s. The spatial blocking parameter is 32 elements.
The first implementation with a cache size of 512 Bytes
each core has performance bounded by memory. The attained
performance is far below the peak performance the system
can provide. A large number of accelerator cores are idle. The
second implementation with a cache size 8KB per core has
performance bounded by computation. There is still margin to
the peak memory bandwidth but the system has reached the
maximum computation capability. The third design is a more
balanced design in terms that it enables more computation with
the bandwidth. It achieves the highest performance among the
three configurations. This table demonstrates how the choices
of computation and storage affect the final performance. We
see that only when the computation and memory access is
balanced, the optimal performance can be achieved.

V. EXPERIMENTS

In this section we evaluate the design space of the stencil
accelerator architecture on 3D stacked DRAM and identify
the optimal design points for different system and problem
configurations. CACTI 6.5 [13] is used to evaluate the power
and area of the scratchpad SRAM. The 3D DRAM power and
the bandwidth is evaluated using CACTI-3DD [14]. The area

TABLE II: Attainable performance for three different imple-
mentations on a total accelerator area of 25 mm2.

Btime
SRAM

size

Area
/core

[mm2]

Cores
/vault

Peak
GFLOPS

Attained
GFLOPS

Required
BW

[GB/s]

1 512B 0.10 30 2400 125 400
16 8KB 0.16 10 800 800 160
8 4KB 0.13 12 960 960 380

TABLE III: 3D-stacked DRAM configuration examples.

Conf Nstack-Nbank- Nio tRCD-tCAS-tTSV-tRP (ns) BW(GB/s)

Conf1 4-8-1024 7.9-12.1-0.67-16.8 269.2
Conf2 4-16-512 7.2-10.6-0.67-8.4 400.3
Conf3 4-32-512 7.2-10.6-0.67-8.4 608.3

and power of computation logics is estimated with Synopsis
Design Compiler with 32nm process [15].

A. Area and Bandwidth Evaluation

Performance exploration. We show the maximum perfor-
mance that can be achieved under different area and band-
width budgets in Fig. 5. The three bandwidth represents a
conservative/moderate/high 3D-DRAM configuration as shown
in TABLE III. For a certain bandwidth, the results show that
when chip area is small, the performance improves linearly
with the chip area. In this case, the computation cannot saturate
the memory bandwidth. There is no need to integrate cache in
each core. As the area budget increases and more cores can
be implemented, the memory bandwidth requirement of the
accelerator increases to more than the maximum bandwidth the
system can deliver. Then the computation becomes memory-
bound. At this point, cache is required. Larger cache size
slows down the increase of system performance as shown
in the graph. The performance improvement has diminishing
returns as the chip area increases. Comparing across different
memory bandwidths, we see that when the maximum memory
bandwidth is small, the performance becomes memory bound
at smaller chip area. In the memory bound region, smaller
memory bandwidth has more severe diminishing return as the
area increases compared to higher memory bandwidth.

Fig. 6 gives an overview of the power breakdown and
power efficiency as area varies. It shows that for large areas,
large portions of the power is spent on the local cache. The
system power efficiency (measured in GFLOPS/W) also drops
rapidly. A conclusion from this is that while a large area may
enable higher performance, it might not be desirable from a
power efficiency point of view because at larger scale the cache
can be more expensive than the 3D memory.

General stencil computation. We show the balanced
performance points for different stencil problems. Fig. 7 shows
performance and power efficiency for stencil problem of differ-
ent patterns and dimensions. The memory system configuration
is based on the Conf3 of Table III. We pick three area numbers:
60 mm2 which is close to the 3D-stacking logic die area
reported by Micron’s HMC [16], as well as 90 mm2 and
120 mm2, to show the performance sensitivity to the area.
Higher dimensional stencils achieve less performance for the
same area compared to lower dimension stencils since higher

Fig. 5: Performance on different area and bandwidth.

Fig. 6: System power efficiency as area increases.

TABLE IV: Performance results on general CPU and GPU.

System Power
[W]

Tech
[nm]

BW
[GB/s]

DP
GFlops Points Achieved

GFLOPS

Xeon
E5550 95 45nm 51.2 85.3 7 3.36

GStencil/s
Xeon
E5550 95 45nm 51.2 85.3 27 1.19

GStencil/s
Core i7 47 22nm 30 51 7 180 MFlops
GTX 285 204 55nm 159 93 7 4.6 GFlops
FPGA 9 ALTERA Stratix V FPGAs 3D 236 GFlops
Acc 60 32nm 600 2400 7 2400 GFlops

dimensional stencil computations are more memory intensive.
They require a larger cache for blocking. Stencil computations
on more points have better performance than fewer points
for the same dimension, since higher-point stencils perform
more operations for the same number of memory accesses, i.e.,
they are more computationally intensive. Stencil computations
that are more memory bound have less gain as area budget
increases, e.g., the 3D 7pt problem has less improvement
when area increases from 60 mm2 to 120 mm2 compared
to 3D 27pt, because the memory intensive problem will take
much more cache to improvement the performance.

Comparison. We compare our design against the state-
of-art stencil implementations on modern CPUs and GPUs as
well as FPGAs. The comparison is shown in Table IV. The
performance on the Xeon processor is collected from [17]. The
performance result is measured in GStencil/s as the number of
points updated per second. The power of the Intel architecture
is the TDP power collected from [18]. The performance on
GTX and Core i7 is collected from [19]. The power of the
GTX card is the maximum dissipating power reported on [20].

Fig. 7: System power efficiency.

The FPGA implementation uses 9 ALTERA Stratix V FPGAs
[21]. The last entry is the results of our accelerator. Coarse-
grained as the data is, we can still see that our implementation
has an order of magnititude improvement on performance and
energy efficiency due to the higher density and more efficient
design implementation.

VI. CONCLUSION

This paper presents a 3D stacked memory based accelerator
design for stencil computation. The accelerator consists of
many small processing cores working concurrently on the logic
die of the 3D memory system. The cache size of the accelera-
tors need to be designed properly to balance the computation
and memory access. Only then can the optimal performance
be achieved on the system. Overall the proposed accelerator
can achieve an order of magnititude higher performance than
conventional computing system.

ACKNOWLEDGMENT

The work was sponsored by Defense Advanced Research
Projects Agency (DARPA) under agreement No. HR0011-13-
2-0007. The content, views and conclusions presented in this
document do not necessarily reflect the position or the policy
of DARPA or the U.S. Government. No official endorsement
should be inferred.

REFERENCES

[1] T. Porsching, “Numerical solution of partial differential equations:
Finite difference methods (GD Smith),” SIAM Review, vol. 22, no. 3,
pp. 376–376, 1980.

[2] B. Lippmeier and G. Keller, “Efficient parallel stencil convolution in
Haskell,” SIGPLAN Not., vol. 46, no. 12, pp. 59–70, Sep. 2011.

[3] H. Köstler, “Platform-independent description of imaging algorithms,”
PAMM, vol. 14, no. 1, pp. 945–946, 2014.

[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[5] D. Wonnacott, “Achieving scalable locality with time skewing,” Int. J.
Parallel Program., vol. 30, Jun. 2002.

[6] M. E. Wolf, “Improving locality and parallelism in nested loops,” Ph.D.
dissertation, Stanford, CA, USA, 1992, uMI Order No. GAX93-02340.

[7] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3D scientific
computations,” in proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2000.

[8] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” ACM
SIGPLAN Notices, vol. 43, no. 6, pp. 101–113, 2008.

[9] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi,
and F. Franchetti, “A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 3D Systems Integra-
tion Conference, 2013, pp. 1–7.

[10] F. Sadi, B. Akin, D. T. Popovici, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Algorithm/hardware co-optimized SAR image reconstruction with 3D-
stacked logic in memory,” 2014.

[11] G. Loh, “3D-stacked memory architectures for multi-core processors,”
in Proceedings of the International Symposium on Computer Architec-
ture,, June 2008, pp. 453–464.

[12] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “A logic-base interconnect
for supporting near memory computation in the hybrid memory cube.”

[13] “CACTI 6.5, HP labs,” http://www.hpl.hp.com/research/cacti/.
[14] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.

Jouppi, “CACTI-3DD: Architecture-level modeling for 3D die-stacked
DRAM main memory,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2012, pp. 33–38.

[15] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Transactions on Computers,, vol. 60, no. 7, pp. 913–922, July
2011.

[16] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in 2012 Symposium on VLSI
Technology (VLSIT),. IEEE, 2012, pp. 87–88.

[17] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2008, pp. 1–12.

[18] “Intel architecture,” http://ark.intel.com/.
[19] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-

D blocking optimization for Stencil computations on modern CPUs
and GPUs,” in proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2010,
pp. 1–13.

[20] “GTX 285,” http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-285/specifications.

[21] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-FPGA accelerator for
scalable Stencil computation with constant memory bandwidth,” IEEE
Transactions on Parallel and Distributed Systems,, vol. 25, no. 3, pp.
695–705, March 2014.

