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Abstract—Multi-core CPUs with multiple levels of parallelism
(i.e. data level, instruction level and task/core level) have become
the mainstream CPUs for commodity computing systems. Based
on the multi-core CPUs, in this paper we developed a high
performance computing framework for AC contingency calcula-
tion (ACCC) to fully utilize the computing power of commodity
systems for online and real time applications. Using Woodbury
matrix identity based compensation method, we transform and
pack multiple contingency cases of different outages into a
fine grained vectorized data parallel programming model. We
implement the data parallel programming model using SIMD
instruction extension on x86 CPUs, therefore, fully taking advan-
tages of a CPU core with SIMD floating point capability. We also
implement a thread pool scheduler for ACCC on multi-core CPUs
which automatically balances the computing loads across CPU
cores to fully utilize the multi-core capability. We test the ACCC
solver on the IEEE test systems and on the Polish 3000-bus system
using a quad-core Intel Sandy Bridge CPU. The optimized ACCC
solver achieves close to linear speedup (SIMD width multiply core
numbers) comparing to scalar implementation and is able to solve
a complete N-1 line outage AC contingency calculation of the
Polish grid within one second on a commodity CPU. It enables
the complete ACCC as a real-time application on commodity
computing systems.

I. INTRODUCTION

AC contingency calculation (ACCC) is the fundamental

tool for power system steady state security assessment. It

evaluates the consequences of power grid component failures,

assesses the system security given the failures and further

helps to provide corrective or preventive actions for decision

making. ACCC is a basic module for most offline power

system planning tools [1]. It is also a critical functionality

of most SCADA/EMS systems. ACCC has also been widely

used in market applications, such as simultaneous feasibility

test for a market dispatch’s security [2]. A complete ACCC

computation on practical a power grid often requires a large

amount of load flow computation, due to the computational

burden, the complete ACCC often remains as offline / non

real-time applications on commodity computing systems.
Recent large scale integration of variable renewable genera-

tion and large variance load (such as electric vehicle charging)

introduce significant uncertainties and largely-varying grid

conditions. Moreover, the increasing loads and generations

drive today’s power grid closer to its limits, resulting in

higher possibility of contingency as well as more serious

consequences of the contingency. The largely-varying grid

conditions on already stressed power grid requires merging of

most conventional offline analyses into online even real-time

operation to satisfy the unprecedented security requirements.

Therefore, an optimized fast ACCC solver for online and real-

time operation would be an important tool given the new

security assessment challenges.
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In the computing industry, the performance capability of

the computing platform has been growing rapidly in last

several decades at a roughly exponential rate [3] [4]. The

mainstream commodity CPUs enable us to build inexpensive

systems with similar computational power comparing to su-

percomputers just ten years ago. However, these advances in

hardware performance result from the increasing complexity

of the computer architecture, thus they increase the difficulty

of fully utilizing the available computational power for a

specific application [4] [5]. In this paper, our work focuses

on fully utilizing the computing power of modern CPU by

code optimization and parallelization for specific hardware,

enabling real-time complete ACCC for practical power grids

on commodity computing system.

Related work. Contingency analysis has long since been a

joint research field of both power system and high performance

computing domains [6] [7]. In [8], a workload balancing

method is developed for massive contingency calculation on

Cray supercomputer. In [9], a hybrid approach is proposed

using Cray XMT’s graphical processing capability. A graphical

processing unit based DC contingency analysis has been

implemented in [10]. Recently, some commercial packages

such as PSS/E also work actively to include parallel processing

on multi-core CPU to boost the performance of ACCC [1].

However, most previous approaches are focusing on task

level parallelism, or using specified parallel math solver. In

order to fully utilize the computing power of commodity

CPU with multi-level parallel hardware and other performance

enhancement features, a specific algorithmic transform with

code optimization for ACCC is presented in this paper.

Contribution. In this paper, we presented an accelerated

ACCC that builds upon several algorithmic and computer

architectural optimizations. At data level, we use Woodbury

matrix identity with fast decoupled power flow algorithm to

formulate a fine grain vectorized implementation of ACCC.

It solves multiple cases simultaneously using SIMD (Single

Instruction Multiple Data) floating point units of the modern

CPU core. At the task/core level, we implement a thread pool

scheduler on multi-core CPUs that automatically balances the

computing loads across CPU cores. Together with some other

aggressive code optimizations for data structure, sparse kernels

and instruction level parallelism, as a result, our solver is able

to complete a full line outages ACCC of a Polish 3120-bus

system within a second. It enables real-time complete ACCC

for a practical grid on inexpensive computing system.

Synopsis. The paper is organized as follows: the feature

of computing platforms are reviewed in Section II. The SIMD

transformation of ACCC is described in Section III. The multi-

core and other optimizations are in Section IV. We report

the performance results of the optimized solver in Section V.

Section VI concludes the paper.
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II. MODERN COMPUTING PLATFORM

Fig. 1 shows the structure of the quadcore Intel Core i7

2670 QM Sandy Bridge CPU for mid-range laptops. It has

4 physical cores (Core P#0-4), three levels (L1-L3) of CPU

cache memory. It also supports Intel’s new AVX (Advanced

Vector eXtension) instruction set for single instruction multiple

data (SIMD) operations. It has a clock rate of 2.2 GHz. The

theoretical single precision peak performance is 140 Gflop/s

(or Gflops, 109 floating point operations per second) [11]. In

terms of this value, this performance oriented CPU in 2012

has the similar performance as the fastest supercomputer in

the world in just year 2001 (Cray T3E1200, 138 Gflop/s on

Top500 List) [3]. However, the peak hardware performance

assumes that one can fully utilize all the performance enhance-

ment features of the CPU, which becomes very difficult on

modern CPUs given the more and more complicated hardware.

We mainly look into the following hardware aspects explicitly

available to software development:
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Fig. 1. Core i7 2670QM CPU system structure: 4-core, 3-level cache
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Fig. 2. Illustration of scalar add versus SIMD add

Multiple levels of parallelism have become the major

driving force for the hardware performance. The following

are two explicit parallelism on modern CPU:

1) Single Instruction Multiple Data (SIMD) uses special in-

structions and registers to perform same operation on multiple

data at the same time: The Streaming SIMD Extensions (SSE)

or the new Advanced Vector eXtensions (AVX) instruction sets

on Intel or AMD CPUs perform floating point operations on 4

floating point or 8 floating point data packed in vector register

at the same time (single precision). As illustrated in Fig. 2

for example, the scalar fadd performs add operation on one

data slot, the SSE version addps or AVX version vaddps

instruction performs the add operation on four or eight data

slots simultaneously. Many new or under-developing micro-

architectures such as Intel’s new Xeon Phi architecture further

expands the SIMD processing width to 16 data. With the help

of SIMD, the performance can be significantly increased for

particular formed problems.
2) Multithreading on multi-core CPUs enables multiple

threads to be executed simultaneously and independently on

different CPU cores while communicate via shared memories.

A proper scheduling and load balancing strategy is necessary

to fully utilize multiple CPU cores.
Memory hierarchy, e.g. multiple levels of caches, should

also be considered for performance tuning. The cache is a

small but fast memory that automatically keeps and manages

copies of the most recently used and the most adjacent data

from the main memory locations in order to bridge the speed

gap between fast processor and slow main memories. There

could be multiple levels of caches (L1, L2, L3 in Fig. 1), the

levels closer to CPU cores are faster in speed but smaller in

size. An optimized data storage and access pattern is important

to utilize the caches functions to increase the performance,

instead of the slow memories.
Given the hardware features, proper parallelization model

and code optimization techniques are of crucial importance

to fully utilize the computing power for ACCC performance.

In the following sections, we show programming model,

code optimization methods, and the benefit we can obtain by

applying performance tuning and parallel programming model

on modern multi-core hardware platforms for ACCC.

III. MAPPING CONTINGENCIES TO DATA PARALLELISM

The basic computation of contingency calculation is solving

multiple cases of power flow considering the component

failure such as transmission line or generator outage.

A. Fast decoupled power flow formulation

Fast decoupled power flow (FDPF) is a widely used power

flow solution for ACCC. FDPF is originated from full Newton-

Raphson (NR) method, by considering some unique properties

of transmission network [12]. FDPF method often has fewer

total floating point operation comparing to NR method [13].

In each iteration of FDPF, following equations are solved one

after another to update the state (θ,V). Suppose the state

of current iteration is (θk,V(k)), the state of next iteration

(θ(k+1),V(k+1)) is computed as following:

∆V(k) = −B′′−1
∆Q(θ(k),V(k))/V(k)

V(k+1) = V(k) +∆V(k)
(1)

∆θ(k) = −B′−1
∆P(θ(k),V(k+1))/V(k+1)

θ(k+1) = θ(k) +∆θ(k)
(2)

In equation (2) and (1), ∆Q(·) and ∆P(·) compute the

power mismatch by matrix-vector product styled operations.
Two linear systems of B′ and B′′ (the inverse in above

equations) are solved to obtain the adjustment ∆θ and ∆V.

Using direct linear solver, the B′ and B′′ are pre-factorized

into the product of lower triangle (L) and upper triangle (U )

matrices before the iteration: B′ = L′U ′,B′′ = L′′U ′′. During

the iteration, only forward and backward substitutions using

LU factors are needed to solve the linear systems.
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B. Contingency calculation using FDPF

The core computation of ACCC is to solve multiple cases

of AC power flow given different component failures. These

contingency cases can be considered as a same power flow

base case without failure, plus different modifications on the

equation and/or parameters to consider contingencies. The

ACCC can be formulated as modified base case load flow

solutions. Following shows the typical modifications:

Line outage cases. In these cases, the system parameters

keeps unchanged, suppose the failed line section from bus i to

bus j is taken out of the system. As a result, a 2×2 matrix ∆y
is added to corresponding slot of original admittance matrix

Y to form the new admittance matrix Ỹ .

M =

[

0, ..., 1
i
, 0...0, 0, ..., 0

0, ..., 0, 0...0, 1
j
, ..., 0

]T

(3)

Ỹ = Y +M∆yMT (4)

∆y =

[

yij + bij −yij
−yij yij + bij

]

(5)

In FDPF computation, this will affect the mismatch using the

admittance matrix in the matrix-vector product and the linear

solver using modified B′ and B′′:

B̃′ = B′ +M ′∆b′M ′T (6)

B̃′′ = B′′ +M ′′∆b′′M ′′T (7)

PV bus outage cases. Such case happens when the gen-

erator fails to maintain the voltage of a PV bus. The PV bus

changes to PQ bus. The admittance matrix Y does not change.

While in the iteration steps (1), another equation for new

PQ bus’ Q and the unknown voltage will be added. Resulting

another column and row added to the bottom and right of B′′:

B̃′′ =

[

B′′ N
NT a

]

(8)

Generator outage without PV bus outage cases. These

cases only affect the specified active power injection on PV

bus, without modifying the power flow equation system.

C. Data parallelism using compensation method

Transform ACCC into data level parallelism is based on the

Woodbury matrix identity in matrix theory or Compensation

method in circuit simulation. Suppose:

Ã = A+MaNT (9)

The inverse of Ã is

Ã−1 = A−1
−A−1M(a−1 +NTA−1M)−1NTA−1 (10)

Based on above formula, we can compute the contingency

using the base case factorization result with minimal extra

computation. Take B′ as example, B′ is pre-factorized as:

B′ = L′U ′ (11)

Handling line outage: In the base case, we need to solve x
for B′x = b in each iteration. While in the line outage cases,

we need to solve x for:

(B′ +M ′∆b′M ′T )x = b (12)

Based on Woodbury matrix identity, the solution for (12)

can be formulated as following steps:

Forward substitution:

F = L′−1
b (13)

Compensate:

W = L′−1
M ′ (14)

W̃T = M ′TU ′−1 (15)

c = (∆b−1 + W̃TW )−1 (16)

∆F = −WcW̃TF (17)

F = F +∆F (18)

Backward substitution:

x̃ = U ′−1F̃ (19)

Note in compensation steps (14) to (17), the computation

only related to the new system topology, therefore, these

compensation matrices can be pre-computed before the ACCC.

Also W and WT which have same dimension as M ′ and

M ′T , and with a proper ordering scheme, these two matrices

can be sparse with small floating-point operation numbers and

memory footprint.

B′′ can be treated in the similar way. Therefore, during the

contingency computation (13) and (19) are fixed procedure

for all cases. Different contingency cases can be computed

using the compensation step based on pre-computed W , W̃T ,

c and (17) (18). The mismatch is computed based on modified

admittance matrix with same instruction different data.

Handling PV bus outage. The base case solving x for

B′′x = b becomes solve x̃ for:

B̃′′x̃ =

[

B′′ N
NT a′

]

x̃ =

[

b
b′

]

(20)

In the similar way, solving above equation can be decom-

posed into following steps:

Step 1: solving x0 for

(B′′
−N(

1

a′
)NT )x0 = b − (b′/a′)N (21)

Step 2: solve x̃:

x1 =
1

a′
(b′ −NTx0) (22)

x̃ =

[

x0

x1

]

(23)

Note (21) can be solved in the same way using compensa-

tion as we solving (12) based on the same L′′ and U ′′ factor

of base case B′′ for different contingencies.

From above compensation method, the contingency cases

can be decomposed into following types of operation:

0) Pre-computation for LU factors and compensation ma-

trices for different contingencies

1) Fixed mismatch calculation using slightly changed ad-

mittance matrix

2) Fixed forward / backward substitution for all cases

3) Different compensation steps for different contingencies

The fixed computation steps in above list are mostly the

same instruction sequence on different data. Only the com-

pensation steps are different for different contingency cases
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to accurately consider the contingencies’ for the solution.

With above decomposition of computing procedure, the fixed

computation steps of the ACCC can be well mapped on to finer

grain data level parallelism and can use SIMD instructions to

performance computation on multiple cases simultaneously.

D. Programming model using SIMD instruction extensions
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Fig. 3. SIMD implementation of ACCC: basic iteration segment

The SIMD model for different contingency calculation is

showed in Fig. 3. The upper part of the figure shows the

original scalar version code on CPU’s floating-point unit: the

contingency cases are evaluated sequentially. The lower part

shows the SIMD version code using CPU’s SIMD units: the

forward/backward substitution parts of linear solver, the mis-

match computation are vectorized and 4 cases (on SSE) or 8

cases (on AVX) are processed simultaneously on SIMD units,

while the compensation for different cases are evaluated using

pre-computed compensation matrices and then are plugged

into the corresponding slots in SIMD units.

IV. MULTI-CORE TASK SCHEDULING AND OTHERS

A. Task scheduling over multiple cores

Load balancing is one of the most important considerations

for designing parallel program. It is also one of the impor-

tant target of most ACCC research projects and commercial

products [1] [8]. In our ACCC application, we deal with the

load balancing at the core level in a shared memory system:

distributing and balancing the workload among multiple CPU

cores to fully utilize the computing resources.
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Thd N

Task Queue

Post

Processing

Dispatch Thd 0

Core 0 Core 1 Core 2 Core N

Wait on 

Empty 

Queue

Wait on 

Empty 

Queue

Wait on 

Empty 

Queue

Fig. 4. Thread pool scheduler on multi-core CPU.

We implemented a thread pool based scheduler for the

ACCC. As showed in Fig. 4, a pool of worker threads (Worker

Thd 1 to N) are created and pinned to Core 1 to Core N to

process the SIMD vectorized ACCC tasks. One dispatch thread

(Dispatch Thd 0) is created and pinned to Core 0 to manage

the task queue and dispatch the work tasks into the thread pool,

as well as post process the ACCC results. The three elements

of the thread pool scheduler design are the task queue data

structure and the two types of threads:

1. Task queue data structure includes: a queue buffering the

task pointers to the SIMD ACCC cases to be processed.

2. Worker thread: wait if the queue is empty, otherwise pop

the task from the task queue to process using the SIMD

ACCC solver in Fig. 3.

3. Dispatch thread: keep dispatches the task into the task

queue, once all tasks are dispatched, wait on the queue

status. When the queue is empty, finish and clean up.

In this way, whenever any worker thread finishes the tasks

and the queue is not empty, the worker will get new task from

the queue. In our ACCC application, there are usually a large

amount of small tasks, the loads can be dynamically balanced

among worker threads on different physical cores.

B. Other code optimization

Besides explicit parallelization, we applied the following

code optimization techniques for load flow kernel on x86 CPU.

1. Sparse LU factorization using approximated minimal

degree scheme (AMD) for solving B′ and B′′ [14].

2. Optimized usage of trigonometric functions: using opti-

mized trigonometric functions to achieve same precision

with smaller number of CPU cycles [15].

3. Unrolling sparse kernel, pre-generate source code for

consecutive columns of the sparse L and U factors

to build bigger code block and using jump table to

avoid branching in the inner loop. Similar approaches

on unrolling techniques are discussed in [16] [17] [18].

V. PERFORMANCE RESULTS

In this section, we show the performance results of the

accelerated ACCC solver.
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Fig. 5. Speedup result by SIMD transformation

Fig. 5 shows the performance breakdown of the data parallel

implementation of our ACCC solver on a single CPU core for

different test systems (including IEEE standard test systems

from 14-bus to 300-bus and Polish grid of 2383 buses and

3120 buses). The performance results are showed in terms of

Gflop/s. The base algorithm is the FDPF load flow algorithm

with AMD based sparse LU factors. The lowest bar is the

baseline implementations directly using sparse kernel from

CXSparse package in SuiteSparse [19]. The second lowest bar

is the optimized scalar implementation with the optimization

techniques on sparse kernel and math functions discussed in
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Section IV-B. Based on the optimized scalar implementation,

the third bar shows the speed results of the SIMD implemen-

tation using SSE instruction extensions which are available on

most x86 CPUs. Using SSE, our accelerated implementation

processes packed 4 single precision floating point data at the

same time, a close to linear speedup can be observed. The

highest bar is the SIMD implementation using AVX instruction

extensions available on Intel Sandy Bridge CPU since 2011.

Using AVX, we pack 8 single precision floating point data

and process the packed data using AVX instruction. Another

speedup can be observed.
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Fig. 6. Thread pool performance of Polish 2383-bus system
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Fig. 7. Thread pool performance of Polish 3120-bus system

Fig. 6 and Fig. 7 shows the results in terms of how many

contingency cases can be solved every second of Polish Grid.

The maximal iteration is set to 20 and the maximal mismatch

is 1kW. Most N-1 cases converged using FDPF. We show the

test results on two machines, the darker bars are the results

on a quad-core 2.2GHz Intel Core i7 2670QM Sandy Bridge

CPU supporting AVX instructions. The lighter bars are the

results of an 8-core 2.26GHz Intel Xeon X7560 Nehalem CPU

supporting SSE 4.1 instructions. On each CPU, one thread

(one core) is reserved for scheduler and post-processing, the

rest cores are for load flow computations. In these tests on

both machines, we observed a linear speedup for ACCC with

the increased core numbers, thanks to the dynamic balance

of the thread pool design. Also, the 4-core machine is able to

achieve higher performance thanks to the AVX capability with

wider SIMD processing width. In Fig. 6 and Fig. 7, our ACCC

is able to finish a complete N-1 line outage screening for the

Polish grid using each of these two CPUs around a second.

Therefore, our implementation enables ACCC as a real-time

application for the practical sized power grid to meet the new

challenges of smart power grid.

VI. CONCLUSION

In this paper we presented a multi-core high performance

accelerated ACCC solver. By applying various performance

optimizations and multi-level parallelization, especially the

compensation based algorithm transformation, we transform

the ACCC into a fine grained data parallel model. We also

implemented a thread pool scheduler that can dynamically

balance the work loads. The proposed ACCC fully utilizes

the computing capability of the modern CPUs and the per-

formance is scalable with the hardware parallel capacity. We

tested the ACCC solver on the IEEE test system as well as

a real world national level Polish grid. Our ACCC solver is

able to do a full N-1 line outage screening of Polish network

within a second, enabling the fast ACCC solution for real-time

operation on commodity computing systems.
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