
Big Data Computation of Taxi Movement in New York City

Joya A. Deri, Franz Franchetti, and José M.F. Moura
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213 USA
Email: {jderi,franzf,moura}@ece.cmu.edu

Abstract—We seek to extract and explore statistics that char-
acterize New York City traffic flows based on 700 million taxi
trips in the 2010-2013 New York City taxi data. This paper
presents a two-part solution for intensive computation: space
and time design considerations for estimating taxi trajectories
with Dijkstra’s algorithm, and job parallelization and schedul-
ing with HTCondor. Our contribution is to present a solution
that reduces execution time from 3,000 days to less than a day
with detailed analysis of the necessary design decisions.

Index Terms—New York City open data, design, performance,
high-throughput computing, HTCondor

I. INTRODUCTION

Understanding traffic flow in cities has significant ramifi-
cations, from optimizing daily commutes to facilitating evac-
uations in the case of emergencies and natural disasters [1],
[2]. In particular, the tempo and pattern of traffic flow need
to be known in order to implement policies that can handle
traffic congestion or unforeseen events. With the advent of
smart city initiatives such as New York City’s Open Data
project [3], traffic data such as camera data [4] and taxi
data [5] provide new ways of examining the movement of
city traffic, opening new research in areas such as big urban
data visualization and analytics [1], [2], [6], [7].

This paper focuses on designing software tools to extract
features from 2010–2013 New York City taxi data, which
consists of 700 million taxi trips for 13,000 medallions (taxi
cabs) with data fields including pick-up and drop-off GPS
coordinates and timestamps [5]. Since the raw data does
not include taxi trajectories, computation of the taxi paths
is essential to extract features that reflect taxi movement at
each node and edge of a road network. Other studies based
on tracking taxi GPS data over a road network include [8],
[9], [10], [11]. Some of these studies use GPS traces to dis-
cover anomalous trajectories; others use GPS data to model
and predict traffic and its evolution. In [12], betweenness
centrality measures that incorporate traffic levels inferred
from GPS data are computed over a transportation network
in order to determine optimal locations of traffic monitoring
units.

This work was partially supported by NSF grant CCF-1513936.

Figure 1. Dijkstra shortest path of a single taxi trip from Times Square
to the Rockefeller Center. Our problem requires computing 700 million
such paths and extracting relevant statistics with a low-latency, workable
solution. (Map data: Google [14])

Our objective is to leverage the entirety of the data to
extract taxi-based statistics over the Manhattan grid, such
as taxi concentrations at road intersections. Such intensive
data processing, which is necessary to learn and extract
knowledge from large data sets or historical repositories
such as the taxi data, requires solutions that are efficient in
both memory utilization and execution time so that the large
scale nature of the available data can be fully exploited [13].
In particular, we design a low-latency, memory-efficient
solution to compute statistics to describe New York City
taxi movement.

Dynamic representation. A dynamic representation of
the taxi trips is needed in order to represent taxi movement
in New York City. Since the available data provides only
static (start and end) information for each trip, taxi trajec-
tories along the road network are estimated. These trips are
approximated by shortest paths computed with Dijkstra’s
algorithm, as shown in Figure 1. These paths are used to
extract statistics of interest, such as the average number of
trips that pass through a given location at a given time of
day, the average number of passengers of these trips, and
the average tip paid. Figure 2 illustrates such statistics.

Figure 2. Examples of four-year average statistics computed at an inter-
section close to Rockefeller Center: average number of trips (top right),
average number of passengers (middle right), and average tip fraction
(bottom right). The hour index corresponds to an hour of the week with
index 0 corresponding to Sunday 12am, index 12 to Sunday 12pm, index
24 to Monday 12pm, etc.

Data discovery. The richness of the New York City taxi
data permits us to extract statistics that provide an in-depth
characterization of taxi trips. Since the statistic of interest
may vary with the research question, we desire an efficient
solution for feature extraction that enables interactive data
discovery.

Our goal is to design a feature extraction scheme for the
taxi data so that the time to solution is reasonable. On one
hand, real-time solutions are desirable, although they may
not be necessary for data discovery on a historical repository.
On the other hand, waiting weeks or months for statistics
is not practical. For our research application, a computation
that takes less than a day is acceptable and can be reduced
with more resources (e.g., more powerful cluster machines
or more cluster machines). Our solution design takes this
constraint into account.

For extracting features from the New York City taxi
data, the shortest path computation becomes a bottleneck. To
illustrate, a Python implementation on a 64-bit, 16-core, 16
GB RAM machine takes one hour to compute Dijkstra paths
for 10,000 taxi trips, which scales to 3,000 days to compute
all 700 million trips. The computation time can be reduced
to a few weeks by parallelizing with high-throughput com-
puting resources such as HTCondor [15], [16]. However, this
turnaround is not ideal for a data discovery problem such as
the one we aim to solve. Instead, we would like to have the
time to solution to be less than a day as discussed above. In
this paper, we present such a solution in the C programming
language and illustrate parallelization considerations on a
memory-constrained computer cluster of 32 16-core/16 GB
and 8-core/8 GB machines.

Contributions. This paper makes the following contri-
butions:

∙ We demonstrate a solution that reduces computation
from 3,000 days to less than a day.

∙ We recast the problem as a two-pass problem.
∙ We present our solution for a space-efficient,

portable C implementation.
∙ Our solution is parallelizable for HTCondor.

Related software tools and approaches are discussed
in Section II. The problem formulation and engineering
constraints are described in detail in Section III. Section IV
provides the implementation with experimental results in
Section V. Results that demonstrate fine-grained, localized
taxi trip descriptors as a function of spatial coordinates and
time are shown in Section VI.

II. BACKGROUND

This section provides background on computing plat-
forms and path planning algorithms related to efficient com-
putation of Dijkstra shortest paths.

Related frameworks. Scientific computing languages
such as Python [17] and MATLAB [18] as well as new
computing languages such as Julia [19] provide platforms
for modeling complex data structures such as graphs and
for computing statistics. One of our primary constraints
at runtime is memory, which requires an implementation
that eschews data structures in favor of simple array-based
representations. For this reason, we implement our solution
in the C programming language.

In addition, a low-latency, high-throughput platform
is desired in order to run many jobs in parallel. High-
throughput computing platforms for Big Data include
MapReduce [20], Hadoop [21], and Spark [22]. The GraphX
library in Spark can be used for parallel and distributed
graph processing [23]. The individual jobs are designed
to handle the required graph processing in order to use
HTCondor, an open-source software tool that provides a
high throughput computing environment on a cluster of
machines [15]. HTCondor works well when each job is
designed to have a low memory footprint.

Path planning algorithms. Dijkstra’s algorithm [24]
is related to shortest path algorithms such as breadth-first
search, the Bellman-Ford algorithm, and the Floyd-Warshall
algorithm [25], [26]. Breadth-first search can be used to
find a shortest path on an unweighted, directed graph. The
Bellman-Ford algorithm finds shortest paths from a single
source on graphs that are both weighted and directed, but
it computes distances to multiple destination nodes. The
Floyd-Warshall algorithm computes all-pairs shortest paths,
takes 𝑂(|𝑉 |3) time, and can be optimized as in [26]; it can
be modified to find a single path but is usually used for
dense graphs.

This paper focuses on Dijkstra’s algorithm [24],
[25], which performs single-source single-destination path-
finding on a sparse, directed network with distances as
(non-negative) edge weights. Dijkstra’s algorithm can run
in 𝑂(|𝐸| log |𝑉 |) time for sparse, strongly connected net-
works; more details are provided in Section III-B. Variations

on Dijkstra’s algorithm include the A* algorithm, which
partially computes a tree of paths to guide the search to
the destination node [27], [28], [29]. In addition, methods
such as pre-computing distance oracles [29], creating a hier-
archical representation of the road network with contraction
hierarchies [30], [31], or predicting subnetworks that contain
the desired path by pre-computing cluster distances [27]
have been shown to improve performance with a space
trade-off. Furthermore, Google Maps [14] can be queried
for trajectories that account for congestion and other param-
eters, although these queries would reflect current instead of
historical (2010-2013) traffic patterns.

We select Dijkstra’s algorithm [24], [25] to estimate taxi
trajectories because the benefits of storing pre-computed
paths to accelerate computation were outweighed by the
utility of implementing an algorithm with a low memory
footprint for the purpose of parallelizing on the available
cluster with HTCondor. While Dijkstra’s algorithm may not
reflect a true taxi trajectory, it provides an approximation
that demonstrates the challenges of intensive data process-
ing. Methods for improving the Dijkstra path computation
to reflect true trajectories are discussed in Section VI.
Related evaluations of Dijkstra’s algorithm include [32],
which provides a probabilistic analysis to compare priority
queue implementations, and [33], which compares serial and
parallel implementations of Dijkstra’s algorithm.

This paper focuses on the design considerations for
implementing Dijkstra’s algorithm in a high-throughput en-
vironment that requires a low memory footprint. The nec-
essary design decisions for the problem formulation are
provided in the next section.

III. PROBLEM FORMULATION

This section presents the problem of computing statis-
tics for New York City taxi data over a road network.
Section III-A discusses memory constraints and necessary
design decisions to make the problem memory-efficient.
The expected computation time and design decisions to
reduce latency are discussed in Section III-B. Section III-C
highlights the high-throughput nature of the problem.

Overall objective. Our goal is to extract features that
characterize taxi movement through New York City from
four years (2010-2013) of New York City taxi data [5].
However, since the path of each taxi trip is unknown, an
additional processing step to estimate taxi trajectories is
required before extracting statistics of interest. For example,
if a taxi picks up passengers at Times Square and drops them
off at the Rockefeller Center, the statistics of interest would
capture not only trip data at the landmarks, but also at the
intermediate locations as depicted in Figure 1.

Estimating tax trajectories requires overlaying the taxi
data on the New York City road network. The taxi data and
network are described next.

NYC taxi data. The 2010-2013 taxi data consists of
700 million trips for 13,000 medallions [5]. Each trip has

about 20 descriptors including pick-up and drop-off times-
tamps, latitude, and longitude, as well as the passenger
count, trip duration, trip distance, fare, tip, and tax paid.
The data is available as 16.7 GB of compressed CSV files.

Road network. The road network 𝐺 = (𝑉,𝐸) con-
sists of a set 𝑉 of |𝑉 | = 79, 234 nodes and a set 𝐸 of
|𝐸| = 223, 966 edges that can be represented as a |𝑉 |× |𝑉 |
adjacency matrix 𝐴. The nodes in 𝑉 represent intersections
and points along a road based on geo-data from [34]. Each
edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , corresponds to a road
segment on which traffic may flow from geo-location 𝑣𝑖
to geo-location 𝑣𝑗 as determined by Google Maps [14]. An
edge of length 𝑑𝑖𝑗 > 0 is represented by a nonzero entry
in the adjacency matrix so that [𝐴]𝑖𝑗 = 𝑑𝑖𝑗 . A zero entry
corresponds to the absence of an edge; i.e., no edges of
length zero are present in the network.

The network 𝐺 is directed since the allowed traffic
directions along a road segment may be asymmetric. In
addition, 𝐺 is strongly connected since a path (trajectory)
exists from any geo-location to any other geo-location.

Initially, computing statistics along each taxi trajectory
appears to be a single-pass problem. However, as this section
shows, performance can be improved by separating the
trajectory estimation and statistics computation. The rest of
the section discusses the reasons for such a workflow.

A. Memory-Efficient Design

The design choices are discussed for the backbone work-
flow, which consists of computing a taxi trajectory through
the road network and then computing statistics from the
path. A memory-efficient design is first demonstrated.

Road network. Methods such as creating a represen-
tation of the road network with contraction hierarchies or
pre-computing cluster distances to predict subnetworks that
contain the shortest path may be implemented so that the
entire network is not in memory for each computation [27],
[30]. On the other hand, for a machine cluster that does not
provide a shared memory space, parallelizing shortest path
computations requires the entire road network to be known
at runtime to compute shortest paths, or that hierarchies
or subnetworks are pre-computed and loaded at runtime.
For the purpose of this paper, we focus on the case when
the entire network is needed at runtime and discuss the
necessary steps to design memory-efficient solutions.

One key requirement of our method is a low memory
footprint in order to enable parallelization with HTCondor.
As a result, using data abstraction to represent the road net-
work is not ideal since it introduces unnecessary overhead.
Therefore, our implementation is developed in the C pro-
gramming language with memory-efficient representations
of the road network via C structs and arrays.

The road network can be represented as an adjacency list
instead of an adjacency matrix since the network is highly
sparse. An adjacency matrix takes 𝑂(|𝑉 |2) memory, while

(a) Array of linked lists. (b) Array of arrays.

Figure 3. Adjacency list implementations.

typedef struct point_t{
double lat,lon;

} point_t;
typedef struct edge_t{

int n1idx, n2idx;
double len;
double minlat,minlon, maxlat,maxlon;

} edge_t;
point_t nodearr[max_nodes];
edge_t edgearr[max_edges];
int degarr[max_nodes];
int adjlist[max_nodes][max_degree*2];

Figure 4. Road network representation. Variables max_nodes,
max_edges, and max_degree are set to |𝑉 |, |𝐸|, and the maximum
out-degree of the road network, respectively.

an adjacency list takes 𝑂(|𝑉 | + |𝐸|) memory [25]. Since
the adjacency matrix is highly sparse(|𝐸| << |𝑉 |2), an
adjacency list representation is preferable.

A common implementation of an adjacency list is an
array of linked lists as in Figure 3a. However, this imple-
mentation requires calling malloc for each node in the
array and storing pointers between the elements in the linked
lists, each of which is 8 bytes assuming IEEE 754 standard
double-precision floating point (64 bit). For our problem, the
maximum degree of the network can be computed a priori in
order to implement the adjacency list as a two-dimensional
C array as in Figure 3b. In this way, pointers are not needed
and memory is allocated only once.

The road network is defined by point_t and edge_t
structures shown in Figure 4. The full representation consists
of four elements: an array of point_t structs to store the
nodes, and an array of edge_t structs to store the edges,
an int array to store the out-degree of each node, and a
two-dimensional array to store the adjacency list. The node
and edge arrays allow for constant-time lookup of node and
road segment properties, which is necessary for both shortest
path computation and feature extraction.

In order to conserve memory, the second dimension of
the adjacency list array (the width of the array in Figure 3b,
e.g.) is extended by a factor of two. This enables encoding of
both the node index and the edge index for each neighbor so
that Dijkstra’s algorithm can traverse the road network with
constant-time lookup of node and road segment properties.
The number of neighbors of each node in the adjacency list
is encoded in the degree array.

Assuming double= 8B, int=4B, and 3B compiler

TABLE I: Memory required for road network representation.

Struct name Memory Array name Memory

point_t 19B nodearr 1.5MB
edge_t 51B edgearr 11MB

degarr 320KB
adjlist 6MB
Total 20MB

typedef struct node_t{
int taxicount, tripcount;
int taxicount_t[TIMERES];
int taxicountS_t[TIMERES];
int taxicountD_t[TIMERES];
int tripcount_t[TIMERES];
int tripcountS_t[TIMERES];
int tripcountD_t[TIMERES];
double tipfracsum_nt[TIMERES];
double tipfracsumS_nt[TIMERES];
double tipfracsumD_nt[TIMERES];
int passcount_nt[TIMERES];
int passcountS_nt[TIMERES];
int passcountD_nt[TIMERES];

} node_t;

Figure 5. Example C structure to extract taxi and trip counts, tips, and
number of passengers for pickups (“S”), dropoffs (“D”), and along the
Dijkstra paths. Variable TIMERES refers to the number of time points to
track, e.g., 168 for each hour of the week.

padding of C structs, a point_t struct takes 19 bytes while
an edge_t struct takes 51 bytes. As a result, the node array
takes 1.5 MB, the edge array is 11 MB, the degree array
is 320 KB, and the adjacency list is 6 MB as shown in
Table I, for a total of 20 MB. Although the network is too
large to be stored as a local variable, it is small enough to
be stored as a global variable.

Shortest path computation. The full road network
in Figure 4 as well as an additional fixed-length array
to store the current path is required for the shortest path
computation. The taxi data provides the pick-up and drop-
off coordinates to compute the paths. The data takes about
16.7 GB space, which is small enough to be stored on a
desktop hard drive but is infeasible to load it at runtime on
the available cluster machines, which have 8 GB or 16 GB
RAM. For this reason, the data is read line by line as a
filestream to compute each shortest path.

Feature extraction. In order to calculate statistics on
the taxi movement at each road network node over time,
the taxi data needs to be matched with its corresponding
shortest path data. This is accomplished by writing the
shortest paths to file, and then opening two filestreams to
compute statistics.

In addition, computing statistics requires storing coun-
ters that track the statistic at each location captured by the

NYC road network. For this purpose, a node_t struct is
defined as in Figure 5. Assuming double=8B and int=4B
as well as 3B padding, this struct takes 10 MB and the
full array takes about 800 MB to store. In practice, more
statistics can be tracked simultaneously so that the full array
is on the order of 2 or 3 GB. In this way, the statistics
computation has a much larger memory footprint than the
shortest path computation, which only has the 20 MB road
network as a major memory requirement. The difference in
memory footprints is one reason to separate the steps into
pre- and post-processing jobs to submit to HTCondor.

B. Algorithm Design

The algorithms used for the backbone workflow are
presented. The first step is to estimate the taxi trajectory,
which is approximated as the path between a trip’s start-
and end-coordinates that minimizes the distance traveled.
Then statistics along the trajectory are computed.

Shortest paths. As discussed in Section II, the mem-
ory constraints of the available cluster and the road net-
work properties (sparse and directed with non-negative edge
weights) lead to the choice of Dijkstra’s algorithm for the
implementation, with the Euclidean distance of road seg-
ments 𝑒 ∈ 𝐸 as the weights.

The min-priority queue implementation of Dijkstra’s
algorithm may be implemented in 𝑂(|𝑉 |2+ |𝐸|) = 𝑂(|𝑉 |2)
time [25]. Figure 6 shows the inner loop of the algorithm.
The runtime depends on the implementation of the min-
priority queue and has been shown to be faster with bi-
nary heaps or Fibonacci heaps [25], [32]. Since the road
network is sparse, binary heap implementations can run
in 𝑂(|𝐸| log |𝑉 |) time on a strongly connected graph, as-
suming |𝐸| = 𝑜(|𝑉 |2 /log(|𝑉 |)) [25]. A Fibonacci heap
implementation runs in 𝑂(|𝐸|+ |𝑉 | log |𝑉 |) time [25]. Our
implementation implements binary heaps since they have
been shown to perform better in practice [32], [35].

We analyze the computational requirement for the short-
est path algorithm in terms of floating point operations per
second (FLOPS). Since the NYC road network is sparse,
Dijkstra’s algorithm is expected to run in 𝑂(|𝐸| log |𝑉 |)
time, which then requires about 300K · log(79K) or 1.5M
floating-point operations. For a single core of an Intel Core
i5-6500T processor using x87 scalar code (2 flops per cycle
at 2.5 GHz, or 5 GFLOPS), the corresponding runtime is
about 300𝜇s. Running 700 million computations requires
about 1015 floating point operations for a runtime of about
57 hours or 2.4 days. Assuming 20% of peak performance
(1 GFLOPS), the 700 million computations would run in
about 290 hours, or 12 days.

Feature extraction. On the other hand, extracting statis-
tics from a taxi trajectory is approximately linear as 𝑂(|𝑉 |)
since the computation is, to first order, a constant-time
operation at each node of the shortest path. Scaling to the
700 million trips, the theoretical runtime on the same Core

for (i=0; i<degarr[v]; i++){
w = adjlist[v][i*2];
e = adjlist[v][i*2 + 1];
currdist = dist[v] + edgearr[e].len;
if (!visited[w] || currdist < dist[w]){

dist[w] = currdist;
endq = (endq + 1) % numnodes;
insert_by_priority(distQ,Q,currdist,w);
paths[w] = v;

}}

Figure 6. Dijkstra inner loop at node v showing min-priority queue imple-
mentation with arrays Q and distQ.

i5-6500T 2.5 GHz processor using x87 scalar code is about 3
hours, or 15 hours assuming 20% peak performance.

Compared to the 12 days needed to run the Dijkstra
algorithm, the computation time of the statistics is relatively
short. We expect to run Dijkstra’s algorithm once assuming
the underlying road network is stable over time, while the
post-processing step can be repeated many times as new
research questions necessitate further queries. In this way,
splitting the workflow into a pre-processing step consisting
of the Dijkstra computations and a post-processing step
for the statistics computations is appropriate for knowledge
discovery for the NYC taxi data.

To summarize, an analysis that justifies separating the
solution workflow into pre- and post-processing steps is
presented. Pre-processing requires loading the 20 MB road
network and computing Dijkstra’s algorithm with expected
runtime of 12 days for 700 million computations. The post-
processing requires loading a 2 or 3 GB struct array in
addition to the road network but can complete in 15 hours.

Section III-C next discusses how to shorten the 12-day
shortest path computation and 15-hour feature extraction by
exploiting the high-throughput nature of the problem.

C. High Throughput Computing

The path and feature computations fit a high-throughput
paradigm since they can be separated into independent jobs.
Sections III-B and III-A show that the Dijkstra implementa-
tion computes a single taxi path in 300𝜇s assuming reason-
able memory resources. Therefore, the path computations
can be run in parallel in order to shorten the 12-day expected
runtime.

Our parallelized computation utilizes HTCondor, an
open-source tool that provides a high throughput comput-
ing environment [15]. A user submits a series of jobs to
HTCondor, which waits until a machine on the dedicated
cluster is idle to start a job. The cluster we use has 32
machines that are either 16-core, 16 GB RAM or 8-core,
8 GB RAM. Assuming 8-core machines with the same Core
i5 processors in Section III-B, the 57 CPU-hour estimate
can be reduced to about 0.2 wall clock hours; at 20% peak
performance, an HTCondor implementation is expected to

reduce the runtime from 290 CPU-hours (12 days) to 1 or 2
wall clock hours. Note that these projections do not account
for overhead such as the time to load the road network into
RAM, which makes high-throughput computing even more
essential for reducing the time to solution. This analysis
shows the impact of exploiting the high-throughput nature
of the workflow.

The design decisions described in this section are crucial
to attain a workable solution because of the large scale of the
research problem. The primary design decisions for memory
efficiency have been discussed. The implementation choices
for Dijkstra’s algorithm and its expected runtime have been
described. In addition, the impact of implementing a high-
throughput solution for reducing the time to solution has
been analyzed. The next section provides the high-level steps
in the solution workflow.

IV. IMPLEMENTATION

We provide the implementation of the code workflow.
Section IV-A describes the parallelization of the Dijkstra
and statistics computations with HTCondor. Sections IV-B
and IV-C detail the steps and additional design decisions
for the shortest path computation and feature extraction
implementations.

A. Parallelization

The overall workflow of the solution is the following:
1: function MAIN
2: SHORTEST PATH COMPUTATION
3: FEATURE EXTRACTION
4: AVERAGING
5: end function

Lines 2 and 3 are separate high-throughput problems that
can be run in HTCondor. Here the steps to run the shortest
path computations and feature extraction as jobs on HT-
Condor are described. The job submission requirements, the
number of jobs to run per machine, and handling input and
output are described.

Shortest paths on HTCondor. The first step is to
determine the requirements of the cluster machines in an
HTCondor ClassAd. Since HTCondor writes the output as
a text file to the scheduled machine, machines with enough
physical memory to store uncompressed output are required.
Assuming that a job computes 500,000 shortest paths, the
output file requires at most 3 GB of physical memory. In
addition, machines that are either 32-bit or 64-bit with a
Linux operating system are requested. A sample ClassAd is
shown in Figure 7.

The cluster has 32 machines that are either 16-core,
16 GB RAM or 8-core, 8 GB RAM, so there are 300
to 500 available cores depending on the demand and the
machines that HTCondor chooses for scheduling. However,
since the HTCondor output is written to the submit machine,
the output needs to be compressed and transferred to a local

Requirements = (Arch == \"INTEL\"
|| Arch == \"X86_64\")
&& OpSys == \"LINUX\"

Request_Memory = 3G

Figure 7. Example HTCondor ClassAd for shortest path computation.

machine. The submit machine and local machine both have
limited physical memory, so it is not possible to compute
all 700 million shortest paths before compressing the data.
In addition, the machine cannot compress many files at
once since the process consumes RAM and slows down
the cluster. Since fewer shortest paths per job decreases
execution time per job but increases the number of jobs,
there is a trade-off between the paths computed per job and
the execution time on the high throughput platform.

To account for these issues, each job is assigned to
about 500,000 shortest paths, which takes about an hour
to complete (see Table II). The total computation for 700
million taxi trips requires 1,500 jobs. Since 30 CSV files of
size 3 GB can be compressed at a time without noticeably
slowing the cluster, 30 jobs are submitted at a time with
shell scripts that monitor the status of the HTCondor jobs
and start output compression once a job completes. After
half of the original jobs are complete, another set of 30
jobs is added to the batch queue.

Feature extraction on HTCondor. A node_t struct
for feature extraction as specified in Figure 5 takes
about 2 GB of memory assuming 64-bit (see Section III-A).
For this reason, the ClassAd of Figure 7 is modified to
account for this memory requirement.

The feature extraction runs over the shortest path results
so that each extraction job corresponds to one shortest
path file. As in the shortest path computation, 30 jobs are
submitted at a time. A new batch of 30 jobs is submitted
every 10 minutes since the each job runs in 10-15 minutes.

The design considerations for implementing Dijkstra’s
algorithm and feature extraction in C are detailed below.
Section IV-B presents the pre-processing solution. Sec-
tion IV-C presents the post-processing solution.

B. Pre-processing implementation

The pre-processing workflow is as follows:
1: function SHORTEST PATH COMPUTATION
2: Define NYC map.
3: Load NYC road network.
4: Open taxi data filestream.
5: for each line in taxi data do
6: Check for errors.
7: Match coordinates to map.
8: Compute shortest path.
9: Write path to file.

10: end for
11: end function

These steps are presented in detail below.

Defining the New York City map. The region of New
York City is modeled as a union of rectangular bounding
boxes that are defined by the top-left, top-right, bottom-left,
and bottom-right coordinates. Other geography representa-
tions include ESRI Shapefiles [36], which have the benefit of
providing more detailed models for geographic boundaries
such as coastlines and city boundaries. OpenStreetMaps [37]
represents geographical areas as points, lines and polygons
in Geographic Data Files. We choose to represent the geog-
raphy with the rough approximation provided by an array of
bounding boxes since it takes less time to load at runtime.

Loading the road network. As discussed in Sec-
tion III-A, the shortest path implementation loads the road
network at runtime. The network is represented in terms
of an adjacency list as described in Section III-A and
illustrated in Figures 3b and 4. Additional preprocessing of
the network such as sorting the array of nodes nodearr in
Figure 4 facilitates mapping the taxi data to the NYC map,
as discussed later in this section.

Reading the taxi data. A single line of the NYC taxi
data is parsed to obtain the start- and end-coordinates of a
taxi trip as input to the Dijkstra algorithm.

Handling data errors. One important issue is the pres-
ence of errors in the NYC taxi data. These errors appear
as invalid geo-coordinates and timestamps as well as in-
valid trip distances and durations. For example, certain geo-
coordinates lie in the middle of Hudson River or on top of
the Empire State building. We develop a set of criteria to
determine whether a trip is spurious or not.

Our error checking works as follows. The start- and
end-coordinates of a trip are first verified to be contained
in the New York City bounding boxes as defined above.
Trips with geo-locations that lie outside these boxes are
discarded. Other GPS errors include zero geo-coordinates
and trip distances that are reported as less than the Euclidean
distance between the start and end points. Trips of duration
less than a minute are discarded, as well as trips of distance
less than 0.2 miles since the road network resolution is such
that each road segment is at least 0.2 miles long.

If both coordinates of a taxi trip satisfy the error-
checking conditions, they are mapped to the road network.
The map-matching method is described next.

Map matching. The geo-coordinates in the taxi data are
mapped to the road network coordinates stored in nodearr
in Figure 4 with a map-matching technique known as per-
pendicular mapping, or nearest-point estimation. Other map-
matching methods are discussed in [38], [39], [40]. This
map-matching method finds the “closest” point in the road
network by computing the orthogonal distance to the road
segments in the road network. The initial step involves
finding a small subset 𝑉𝑠 ⊂ 𝑉 of nodes with the same
latitude as the given coordinate; using binary search on the
sorted node array, this takes 𝑂(log |𝑉 |)) time.

The next step is to compute the orthogonal distance from
the geo-coordinate to each road segment that has at least one
endpoint contained in the node subset; i.e., the distance is
computed for all (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 such that 𝑣𝑖 ∈ 𝑉𝑠 or 𝑣𝑗 ∈ 𝑉𝑠.
If (𝑣*𝑖 , 𝑣

*
𝑗) is the road segment that minimizes the distance,

then the coordinate from the taxi data is mapped to the
closest endpoint. Map matching is performed for both the
pick-up coordinate and the drop-off coordinate.

In some cases, the distance between the original coor-
dinate and the matched coordinate is very large. The trip is
discarded if this distance is greater than 0.2 miles for either
the start- or the end-coordinate.

C. Post-processing implementation

In this section, the high-level implementation for feature
extraction from the NYC taxi data is described. The overall
method is as follows:

1: function FEATURE EXTRACTION
2: Update node_t.
3: Define NYC map.
4: Load NYC road network.
5: Open taxi data and shortest path filestreams.
6: for each line in taxi data do
7: Check for errors.
8: Match coordinates to map.
9: Sync line to shortest path data.

10: Compute statistics.
11: Write statistics to file.
12: end for
13: end function

Updating node_t. The node struct is updated to in-
clude statistics of interest, such as total number of trips, total
number of passenger, and total fare paid. These statistics
are defined as arrays with length corresponding to the time
resolution we desire. Weekly averages are computed and
stored in 168-element arrays such that index 0 corresponds
to Sunday 12am-1am, index 1 corresponds to Sunday 1am-
2am, index 24 corresponds to Monday 12am-1am, etc.

Error checking and syncing filestreams. As in the pre-
processing step, reading the original data requires defining
the NYC map and road network as well as implementing
identical error checks. In this way, a valid line in the pre-
processing step can be matched to its computed path in the
corresponding shortest path data file.

Algorithm. For each valid trip, the data fields of interest
are first extracted. Then, for each node on the shortest
path, the fields in the corresponding node_t struct are
updated to reflect the values from the taxi data. For a data-
specific value such as total fare, the value from the data is
extracted and used to update the corresponding node struct
value. For updating a trip count, the corresponding counter
is incremented in the node struct. These operations are
constant-time operations but have a large constant because
of the large number of paths to process.

TABLE II: Speedup across platforms for shortest path computations (pre-processing).

Platform No. trips per hour Total runtime (in hours) Speedup vs. Python Speedup vs. C

Python 10,000 72,000
C 500,000 1,440 50x
C + HTCondor 500,000 (1 job) 6.5 (1,584 jobs) 11,000x 220x

It is straightforward to modify the operations to investi-
gate other taxi features. The simplicity of these operations
is important in order to extract statistics quickly.

Writing output and computing averages. The output
is written to a CSV file through HTCondor as described
in Section IV-A. Converting the totals to average statistics
requires one more pass over the files containing the statistics.
The time to solution is described in Section V.

Our post-processing step is easy to modify for research
purposes. For example, the node_t struct can be updated to
track different statistics. Furthermore, the set of operations
in the computation algorithm can be changed. This step
is designed to be streamlined for fast feature extraction to
enable analysis of taxi movement.

This section and Section III have shown that a workable
solution can be achieved by separating the workflow into
pre- and post-processing steps that are each run in a high-
throughput environment. This design decision allows for
flexibility in the choice of taxi-based features to extract from
the data. The speed of the two-step solution is presented in
the next section.

V. EXPERIMENTAL RESULTS

This section compares our design over several frame-
works in terms of relative speedup. A two-step solution is
implemented in C and HTCondor to compute 700 million
shortest paths and to extract statistics such as average trip
counts from 2010-2013 New York City taxi data. Results
for the shortest path computations are first presented, and
then the feature extraction step is discussed.

Pre-processing. Table II summarizes the speedup results
for the pre-processing step. The initial run of this algorithm
was done in Python on a 64-bit machine with an Intel Core
i5-4300U CPU at 2.50 GHz. Computing the first 10,000
shortest paths took about one hour. Each month contains
about 15 million trips, which would take about 1,500 hours
to compute. There are 48 months in the entire data set,
so the total number of trips to compute is on the order
of 48 · 1, 500 = 72, 000 hours, or 3,000 days. The current
implementation in C returns shortest paths for 500,000 trips
in 1 hour, which corresponds to 30 hours for 1 month, or
30 · 48 = 1440 hours or 60 days to get shortest paths for
the entire data set, which is 50x speedup compared to the
Python implementation. This involved using the memory
and latency design outlined in Section III.

The execution time is further reduced by leveraging the
high-throughput environment of HTCondor to submit simul-
taneous jobs to a 32-machine cluster that are either 16-core,
16 GB RAM or 8-core, 8 GB RAM. Each job computes
500,000 paths, for a total of 1,584 jobs. The shortest paths
for the 700 million trips were computed in 6.5 hours, which
is a speedup of about 220 compared to non-simultaneous
performance of 60 days and a speedup of about 11,000
compared to the original Python implementation.

Post-processing. The node_t struct in Figure 5 is
designed to compute taxi counts, trip counts, tip, passenger
counts, return frequencies and return times for the paths
as well as pick-ups and drop-offs. The time resolution was
chosen to be each hour of the week, so the struct took
about 2 GB in memory.

The C implementation for feature extraction computes
175 million trip statistics (1 year of taxi data) in one hour,
or 700 million trip statistics in four hours. Each year is run
as a separate job on HTCondor so that the total statistics
were computed in 1 hour. Averaging required an additional 4
hours, for a total runtime of 5 hours for post-processing.
Figure 8 shows some example results.

In total, pre- and post-processing together have a run-
time of 11.5 hours, or about half a day. Compared to
the single-machine Python implementation with projected
runtime of 3,000 days, a workable solution is achieved that
can be run and rerun to study and evaluate taxi statistics on
New York City.

VI. DISCUSSION

Using the design principles discussed in this paper,
statistics that characterize taxi movement on the New York
City road network can be extracted and explored. Two
example statistics are the average number of trips and the
average number of passengers per trip at each intersection
of the Manhattan grid. Figure 8a shows that the average
number of taxis passing through Manhattan is much higher
8am–9am on Mondays compared to 8am–9am on Sundays,
which reflects the expected weekday rush hour congestion.
Figure 8b shows that taxis that pick up more passengers
tend to have trajectories around the perimeter via Hudson
River Parkway or FDR Drive instead of through the heart of
Manhattan. We also observe that the average number of pas-
sengers per trip decreases on Mondays for trips that travel
through or near the Brooklyn Bridge. Such statistics can be
analyzed with frameworks such as tensor analysis [42], [43]
and graph signal processing [7], [44], for example, in order

(a) Average number of trips (b) Average number of passengers per trip

Figure 8. Four-year average June-August statistics on Manhattan, NYC, for Sundays and Mondays 8am to 9am. Colors denote log10 bins of (a) the average
number of trips (699 log bins; white to yellow: 0–12, orange: 12–92, red: 92–320, blue: 320–280, purple: 280–880, black: 880–1,430) and (b) the average
number of passengers per trip (499 log bins; white to yellow: 0–1.6, orange: 1.6–2.1, red: 2.1–3.4, blue:3.4–4.2, purple:4.2–4.9, black: 4.9–6). The plots
were generated with ggmap [41] and OpenStreetMap [37].

to conduct fine-grained spatiotemporal analyses of taxi flows
in New York City.

Such observations and subsequent analysis are highly
dependent on the route-finding algorithm, which is Dijk-
stra’s algorithm with road network distances as the weights
(see Section III-B). This particular choice explains certain
features in Figure 8, such as the high number of trips on
Broadway in Figure 8a. A possible solution is to modify the
weights of Dijkstra’s algorithm; for example, a weighting
scheme that would disperse the concentration of taxi trips
is achieved by defining for each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 the
weight 𝑤𝑖𝑗 = 𝛼𝑑𝑖𝑗 + (1 − 𝛼)𝑛𝑖𝑗 , where 𝛼 ∈ (0, 1), 𝑑𝑖𝑗
is the (normalized) Euclidean distance between 𝑣𝑖 and 𝑣𝑗 ,
and 𝑛𝑖𝑗 is the (normalized) average number of trips from 𝑣𝑖
to 𝑣𝑗 . Since 𝑛𝑖𝑗 is an output of our computation, we can run
multiple iterations such that the output 𝑛(𝑝)

𝑖𝑗 of iteration 𝑝 is
the input to the weights of iteration 𝑝+1. This may continue
until the process converges (e.g.,

⃦⃦⃦
𝑛
(𝑝+1)
𝑖𝑗 − 𝑛

(𝑝)
𝑖𝑗

⃦⃦⃦
< 𝜖 for

all 𝑖, 𝑗 and threshold 𝜖 > 0). The applicability of such
an iterative method provides additional motivation for the
development of fast, efficient solutions to compute statistics.

Furthermore, different Dijkstra cost functions must be
implemented to address different questions. For example,
historical congestion information for each NYC road, ca-
pacity of each road measured in terms of the number of
lanes, and the expected number of pedestrians that stop
traffic at each intersection at a particular time of day would
provide invaluable information as to the optimal trajectory
for a taxi to take through the city. In addition, if the problem
constraints change, such as defining optimality in terms of
the route that minimizes air pollution as addressed in [45],
the Dijkstra cost function should change to address the
problem.

VII. CONCLUSION

We provide a solution to the problem of studying taxi
movement in New York City that runs in less than a day.
Using four years of historical taxi data, static representations
of the taxi trips are converted to dynamic representations
via Dijkstra’s algorithm. These paths are used to extract
statistics, such as average trip counts, that reflect taxi flows
through the city. Our contribution is to show the details
of reducing the time-to-solution from 3,000 days to less
than a day. The latency and memory costs for the problem
are described in detail and motivate our C implementation.
Moreover, considerations for making the problem paral-
lelizable for HTCondor are discussed. Our solution enables
traffic studies on the New York City road network that take
into account 700 million taxi trips.

REFERENCES

[1] N. Ferreira, J. Poco, H.T. Vo, J. Freire, and C.T. Silva, “Visual
exploration of big spatio-temporal urban data: A study of New York
City taxi trips,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 12,
pp. 2149–2158, 2013.

[2] B. Donovan and D.B. Work, “Using coarse GPS data to quantify
city-scale transportation system resilience to extreme events,” pre-
sented at Transp. Res. Board 94th Annual Meeting (arXiv:1507.06011
[physics.soc-ph]), Jan. 2015.

[3] “NYC Open Data,” https://nycopendata.socrata.com/.

[4] New York City Dept. of Transportation, “Real time traffic informa-
tion,” URL: http://dotsignals.org/, Accessed 25-May-2016.

[5] B. Donovan and D.B. Work, “New York City Taxi Data (2010-2013),”
Dataset, http://dx.doi.org/10.13012/J8PN93H8, 2014, Accessed 30-
Jun.-2016.

[6] D. Chu, D. A. Sheets, Y. Zhao, Y. Wu, J. Yang, M. Zheng, and
G. Chen, “Visualizing hidden themes of taxi movement with semantic
transformation,” in 2014 IEEE Pacific Visualization Symp., Mar. 2014,
pp. 137–144.

https://nycopendata.socrata.com/
http://dotsignals.org/
http://dx.doi.org/10.13012/J8PN93H8

[7] J.A. Deri and J.M.F. Moura, “Taxis in New York City: A network
perspective,” in Proc. 49th Asilomar Conf. Signals, Syst., and Com-
put., Nov. 2015, pp. 1829–1833.

[8] C. Chen, D. Zhang, P.S. Castro, N. Li, L. Sun, and S. Li, “Real-
time detection of anomalous taxi trajectories from GPS traces,” in
Mobile and Ubiquitous Syst.: Computing, Networking, and Services,
pp. 63–74. Springer, 2012.

[9] X. He and H.X. Liu, “Modeling the day-to-day traffic evolution
process after an unexpected network disruption,” Transp. Res. Part
B: Methodological, vol. 46, no. 1, pp. 50–71, 2012.

[10] P.S. Castro, D. Zhang, and S. Li, “Urban traffic modelling and
prediction using large scale taxi GPS traces,” in Pervasive Computing,
pp. 57–72. Springer, 2012.

[11] Y. Zheng, Y. Liu, J. Yuan, and X. Xie, “Urban computing with
taxicabs,” in Proc. 13th Int. Conf. Ubiquitous Computing. ACM,
2011, pp. 89–98.

[12] R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, and A. Pent-
land, “Augmented betweenness centrality for environmentally aware
traffic monitoring in transportation networks,” J. Intell. Transp. Syst.,
vol. 17, no. 1, pp. 91–105, 2013.

[13] B. Furht and A. Escalante, Handbook of Data Intensive Computing,
New York, NY, USA: Springer Science & Business Media, 2011.

[14] Google, “Google Map of New York, New York,” https://goo.gl/maps/
57U3mPQcdQ92, Accessed 31-Aug.-2014.

[15] HTCondor, version 8.2.10, Center for High Throughput Computing,
Univ. of Wisconsin-Madison, 2015.

[16] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing
in practice: the Condor experience,” Concurrency – Practice and
Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[17] Python, version 2.7, Python Software Foundation, 2015.

[18] MATLAB, version 8.5.0 (R2015a), The MathWorks Inc., Natick,
Massachusetts, 2015.

[19] J. Bezanson, S. Karpinski, V.B. Shah, and A. Edelman, “Julia: A
Fast Dynamic Language for Technical Computing,” arXiv:1209.5145
[cs.PL], Sep. 2012.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proc. 6th USENIX Symp. Operating Syst. Design
and Implementation, 2004, p. 10.

[21] Hadoop, version 2.6.4, Apache Software Foundation, 2015.

[22] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conf. Hot Topics in Cloud Computing, 2010, p. 10.

[23] R.S. Xin, J.E. Gonzalez, M.J. Franklin, and I. Stoica, “GraphX: A re-
silient distributed graph system on Spark,” in 1st ACM Int. Workshop
Graph Data Management Experiences and Syst. (GRADES), 2013,
pp. 2:1–2:6.

[24] E.W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[25] T.H. Cormen, C. Stein, R.L. Rivest, and C.E. Leiserson, Introduction
to Algorithms, McGraw-Hill, 2nd edition, 2001.

[26] S. Han, F. Franchetti, and M. Püschel, “Program generation for the
all-pairs shortest path problem,” in Proc. 15th Int. Conf. Parallel
Architectures and Compilation Techn. (PACT), 2006, pp. 222–232.

[27] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering
route planning algorithms,” in Algorithmics of Large and Complex
Networks, pp. 117–139. Springer, 2009.

[28] A.V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in Proc. 16th Annual ACM-SIAM Symp.
Discrete Algorithms (SODA), 2005, pp. 156–165.

[29] C. Sommer, “Shortest-path queries in static networks,” ACM Com-
puting Surveys, vol. 46, no. 4, pp. 45:1–45:31, Apr. 2014.

[30] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in Experimental Algorithms, vol. 5038, pp. 319–333. Springer Hei-
delberg, 2008.

[31] J. Zhang, “Efficient frequent sequence mining on taxi trip records
using road network shortcuts,” in Big Data: Techniques and Tech-
nologies in Geoinformatics, H.A. Karimi, Ed., pp. 193–206. CRC
Press, 2014.

[32] A.V. Goldberg and R.E. Tarjan, “Expected performance of Dijkstra’s
shortest path algorithm,” NEC Res. Inst. Rep., Jun. 1996.

[33] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Noso-
vic, “Dijkstra’s shortest path algorithm serial and parallel execution
performance analysis,” in Proc. 35th Int. Conv. Inform. and Commu-
nication Technol., Electronics and Microelectronics (MIPRO), May
2012, pp. 1811–1815.

[34] Baruch College: Baruch Geoportal, “NYC Geodatabase,” URL:
https://www.baruch.cuny.edu/confluence/display/geoportal/NYC+
Geodatabase, Accessed 31-Aug.-2014.

[35] B.V. Cherkassky, A.V. Goldberg, and T. Radzik, “Shortest paths al-
gorithms: Theory and experimental evaluation,” Math. Programming,
vol. 73, no. 2, pp. 129–174, 1996.

[36] ESRI, “ESRI Shapefile Technical Description,” Tech. Rep., ESRI,
Jul. 1998.

[37] OpenStreetMap contributers, “OpenStreetMap,” http:
//www.openstreetmap.org/, Accessed 09-Jun.-2016.

[38] F.C. Pereira, H. Costa, and N.M. Pereira, “An off-line map-matching
algorithm for incomplete map databases,” Eur. Transport Res. Rev.,
vol. 1, no. 3, pp. 107–124, 2009.

[39] M.A. Quddus, W.Y. Ochieng, L. Zhao, and R.B. Noland, “A general
map matching algorithm for transport telematics applications,” GPS
Solutions, vol. 7, no. 3, pp. 157–167, 2003.

[40] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in Proc. 31st Int. Conf. Very Large Data Bases
(VLDB), 2005, pp. 853–864.

[41] D. Kahle and H. Wickham, “ggmap: Spatial visualization with
ggplot2,” The R Journal, vol. 5, no. 1, pp. 144–161, 2013.

[42] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs:
Dynamic tensor analysis,” in Proc. 12th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2006, pp. 374–383.

[43] K. Maruhashi, F. Guo, and C. Faloutsos, “MultiAspectForensics:
Pattern mining on large-scale heterogeneous networks with tensor
analysis,” in Proc. Int. Conf. Advances in Social Networks Analysis
and Mining (ASONAM), Jul. 2011, pp. 203–210.

[44] A. Sandryhaila and J.M.F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31,
no. 5, pp. 80–90, Aug. 2014.

[45] M.H. Sharker and H.A. Karimi, “Computing least air pollution
exposure routes,” Int. J. Geographical Inform. Sci., vol. 28, no. 2,
pp. 343–362, 2014.

https://goo.gl/maps/57U3mPQcdQ92
https://goo.gl/maps/57U3mPQcdQ92
https://www.baruch.cuny.edu/confluence/display/geoportal/NYC+Geodatabase
https://www.baruch.cuny.edu/confluence/display/geoportal/NYC+Geodatabase
http://www.openstreetmap.org/
http://www.openstreetmap.org/

	Introduction
	Background
	Problem Formulation
	Memory-Efficient Design
	Algorithm Design
	High Throughput Computing

	Implementation
	Parallelization
	Pre-processing implementation
	Post-processing implementation

	Experimental Results
	Discussion
	Conclusion
	References

