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SUMMARY

SPIRAL is an autotuning, program generation and code synthesis system that offers a fully automatic
generation of highly optimized target codes, customized for the specific execution platform at hand. Initially,
SPIRAL was targeted at problem domains in digital signal processing, later also at basic linear algebra.
We open SPIRAL up to a new, practically relevant and challenging domain: multigrid solvers. SPIRAL is
driven by algebraic transformation rules. We specify a set of such rules for a simple multigrid solver with a
Richardson smoother for a discretized square 2D Poisson equation with Dirichlet boundary conditions. We
present the target code that SPIRAL generates in static single-assignment form and discuss its performance.
While this example required no changes of or extensions to the SPIRAL system, more complex multigrid
solvers may require small adaptations.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many applications in science and engineering require the solution of partial differential equations
(PDEs). Therefore, there is a huge demand for efficient solvers for discretized partial differential
equations. Multigrid methods are widely used in this application context, as they are optimal for a
large subclass of problems in the sense that the amount of work necessary to solve the discretized
PDE grows only linearly with the number of unknowns. Multigrid methods date back at least to the
early work by Fedorenko [1] and Bakhvalov [2] and were popularised in the West by the pioneering
works of Brandt [3] and Hackbusch [4]. The theoretical background of multigrid methods is well
studied [5–8] and a multitude of introductory articles [9, 10] as well as comprehensive overviews
[11] exist.

Multigrid methods encounter a large number of variabilities at several levels: at the problem level
(type of equation, boundary conditions, discretization scheme), at the algorithmic level (smoothers,
transfer operators, cycling strategy), and at the platform level (processor types, memory hierarchy,
communication network). To identify, code and manage the appropriate members of the huge space
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of possible variants efficiently, we would like to use the autotuning, program generation and code
synthesis system SPIRAL [12, 13] for the automatic generation of multigrid solvers. SPIRAL has
been used successfully in other limited but well delineated domains, in particular signal processing.
Here, we provide a proof of concept that the SPIRAL approach can effectively be applied to the
domain of multigrid methods. At this point, we can demonstrate that straightforward, performance-
competitive code of a full-fledged—albeit simple—multigrid solver can be generated completely
automatically. Based on this, we claim that more sophisticated solvers and more sophisticated
optimizations can follow.

We limit ourselves to constant coefficient problems in the unit square, resulting in systems
whose system matrix is Toeplitz. The Toeplitz structure allows for a straightforward formulation
of multigrid in the language of linear algebra that is suitable for implementation using SPIRAL.
Multigrid methods for Toeplitz matrices have been studied by Fiorentino and Serra [14, 15] and by
Serra-Capizzano [16].

Multigrid methods consist of a smoother and a multilevel representation of the solution at the
finest level, and of the error on the coarser levels. This multilevel representation poses challenges
for the implementation on modern computer architectures. On the one hand, the amount of work is
relatively small compared to the number of memory accesses, i.e., multigrid has a low arithmetic
intensity. On the other hand, the memory access pattern—while being highly structured—is usually
not optimized automatically by the compiler. Thus, the use of a program generator for multigrid
methods that incorporates domain-specific optimizations has potential, which we explore.

In summary, we make the following contributions:

• We show how the mathematical formulation of the multigrid method, using structured sparse
matrix operators, can be used by SPIRAL to generate efficient code and that, by exploiting
this representation, we enable a rich set of further optimizations.

• Concretely, we observe that the mathematical formulation of a multigrid solver with a
Richardson smoother for a discretized square 2D Poisson equation with Dirichlet boundary
conditions is precisely in the form that SPIRAL needs as input. In particular, the multigrid
solver can be expressed as sparse matrix vector multiplication described as parameterized
recursive decomposition.

• We propose, as a proof of concept, a set of equational transformation rules for a multigrid
solver that enable SPIRAL to generate optimized static single-assignment target code. The
resulting scalar C code is highly optimized and mirrors code properties and style found in
high-performance computational mathematical libraries.

• We present performance results of this code on an Intel SandyBridge platform that
demonstrate the potential of our proposed approach.

For this particular example, no changes or extensions had to be made to the SPIRAL system –
the current formal language is sufficient to capture the example. For more complicated multigrid
solvers, extensions may be required.

The paper is structured as follows. In Section 2 the SPIRAL program generation and code
synthesis systems as well as the signal processing language SPL are described. Multigrid methods
for structured grids are introduced in Section 3 and described using matrix notation. This matrix
notation is used in Section 4 to derive an algebraic description that is suitable for an implementation
in the functional language SPL. The necessary breakdown rules are provided in Section 5. The
resulting expansion of a small example, as well as first performance results, can be found in
Section 6. Finally, we conclude and provide a discussion of possible future work.
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ALGEBRAIC DESCRIPTION AND AUTOMATIC GENERATION OF MULTIGRID METHODS IN SPIRAL 3

2. SPIRAL

2.1. Overview

The SPIRAL† autotuning, program generation and code synthesis system [12,13] has demonstrated
that it is possible to synthesize automatically high-quality implementations of mathematical kernels
from high-level specifications [17].

So far, the problems targeted by SPIRAL have been in the domain of digital signal
processing (DSP) algorithms, e.g., linear transforms [13] like the ubiquitous discrete Fourier
transform, filters, the wavelet transform, and other DSP kernels such as Viterbi decoders [18], the
image formation algorithm in synthetic aperture radar (SAR) [19], space-time adaptive processing
(STAP), and components of JPEG 2000. A further domain explored is basic linear algebra [20].
Target platforms include mobile devices, multicore and manycore CPUs [21], SIMD vector
extensions [22], the Cell BE processor [23], FPGAs [24], and GPUs. SPIRAL has demonstrated
that it can be configured in minimal time for novel architectures and produce code competitive with
the best human-produced code.

2.2. SPIRAL’s Signal Processing Language (SPL)

SPIRAL’s Signal Processing Language (SPL) [25] extends the Kronecker Product Formalism [26]
that was initially developed to capture fast algorithms for signal processing transforms like the
discrete Fourier transform [21], sine/cosine transforms, and the Walsh-Hadamard transform [13].

The key idea of SPL is to represent linear transforms as matrix-vector products, where the input
and output is a vector and the operation is given by the matrix. Direct application of the matrix-
vector product would requireO(n2) operations for a problem of size n. However, for fast algorithms,
the matrix can be factorized into O(log n) sparse matrices with O(n) non-zero elements, leading to
O(n log n) operations. Since the matrix factorization does not depend on the input or output vector,
they are dropped in SPL, which makes SPL a declarative, point-free representation of algorithms
for linear transforms.

Consider the 4-point discrete Fourier transform (DFT). As shown in (1), it can be represented as
a 4× 4 matrix of 4th roots of unity and can be factorized into 4 sparse matrices with O(n) entries
(8 entries for size 4),1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1)

Multiplication of the DFT matrix of size n, denoted by DFTn, with a signal vector x of length n
leads to the Fourier transform of the signal vector, y = DFTn x. The fast Fourier transform (FFT)
is obtained by successive multiplication of the signal vector with the four factors of the DFT matrix,
i.e., by performing four sparse vector multiplications instead of a single but dense one, and by
applying this factorization recursively. The small size and simplicity of SPL enables a highly concise
specification of the four factors. For the above example of a 4-point DFT, the SPL expression is given
by

DFTmn → (DFTm⊗ In) Tmnn (Im⊗DFTn) Lmnm , (2)

the famous general radix Cooley-Tukey factorization of a discrete Fourier transform of size m·n
into m discrete Fourier transforms of size n, followed by the application of the twiddle factors,
followed by n discrete Fourier transforms of size m [26]. For our purposes, the exact definitions of
the components of (2) are not important. The key to (2) is that it is written as a so-called breakdown
rule using “→” instead of “=” and that the Kronecker product “⊗”, see below, is used to construct
the sparse matrices from smaller DFTs and the identity matrix In. This expresses both repetition
and provides recursion needed for efficient implementations [13].

†www.spiral.net
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Multigrid methods can be viewed as parameterized linear operators, and can be expressed in SPL
with minimal extensions to the language. The core contribution of this paper is to develop this SPL
representation of a prototypical multigrid method. SPL is a machine-readable (LISP-like) language
that mirrors the usual mathematical notation for matrices and vectors, and their associated operators
and operations. We will use the mathematical notation to show the full description of multigid
methods in SPL.

Let us now define the mathematical notation for SPL. An m× n matrix A is denoted by Am×n,
but the subscript is dropped whenever the size is clear from the context. We write In for the n× n
identity matrix. 0n is the n× n zero matrix. The Kronecker product of matrices Am×n and Bp×q is
defined as

Am×n ⊗Bp×q = [ak,`B], for Am×n = [ak,`] .

It replaces every entry ak,` of Am×n by a block ak,`B resulting in a matrix of dimensions mp× nq.
Most important are the cases in which A or B is the identity. Tridiagn(a, b, c) is a tridiagonal matrix
given by

Tridiagn(a, b, c) =


b c
a b c

. . . . . . . . .
a b c

a b

 ∈ Rn×n.

In SPIRAL, a tridiagonal matrix is represented as a zero-extended filter [13], which is a signal
processing construct already available in SPIRAL and which, thus, can be reused out of context.
For two compatible matrices A and B, we denote horizontal stacking by[

A B
]

and vertical stacking by [
A
B

]
.

We denote the n-dimensional canonical basis vector with a 1 at the ith location by eni . A gather
matrix Gn×N

b,s is an n×N matrix and gathers data from the input vector x = (x0, . . . , xN−1)T ∈ RN
starting at base b with stride s, i.e., resulting in the vector(

xb, xb+s, . . . , xb+(n−1)s
)T ∈ Rn.

A scatter matrix SN×nb,s performs the inverse operation of Gn×N
b,s and scatters the entries xi of a

vector x = (xi)0≤i<n ∈ Rn into a vector y ∈ RN at locations b+ is, 0 ≤ i < n while setting all
other elements of y to 0. Formally,

SN×nb,s =
[
eNb eNb+s . . . eNb+(n−1)s

]
and Gn×N

b,s =
(

SN×nb,s

)T
.

Using the usual arithmetic operations for matrices, the matrices defined above can be combined
to form matrix formulas. In particular, we use the operations

A+B, A ·B, A⊗B, and
k−1∏
i=0

Ai

for compatible matrices A, B, and Ai. Such matrix formulas represent a data flow graph that
SPIRAL translates into highly efficient code.

In SPIRAL, algorithms are defined via breakdown rules. A breakdown rule breaks a non-terminal
(a symbol that is not yet fully, i.e., terminally, expanded) into smaller non-terminals of equal or
different type and provides a matrix formula that expresses the initial non-terminal as an SPL
expression parameterized by the smaller non-terminals. Termination rules explain a non-terminal in
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ALGEBRAIC DESCRIPTION AND AUTOMATIC GENERATION OF MULTIGRID METHODS IN SPIRAL 5

terms of an SPL formula. A rewriting system expands a specification given as a non-terminal using
breakdown rules and termination rules until all non-terminals are terminated, i.e., nothing is left
to be expanded. By recursively substituting the SPL expressions for the respective non-terminals,
SPIRAL derives an SPL formula for the initial non-terminal (the specification). This process may
require a backtracking search, as more than one breakdown rule may match a given non-terminal,
but not all non-terminals can be terminated. An example of such a breakdown rule is the Kronecker
product identity

An ⊗Bn =
(
An ⊗ In

)
·
(

In⊗Bn).

SPL defines a non-terminal Tensor(., .) and a breakdown rule

Tensor(An, Bn)→
(
An ⊗ In

)
·
(

In⊗Bn). (3)

In this case, SPIRAL first expands the child non-terminals An and Bn completely via their
respective rules and eventually substitutes the resulting expressions for An and Bn into (3) to build
the final SPL expression for Tensor(An, Bn) = An ⊗Bn.

Next, we explain how SPL (matrix) formulas are translated to code by SPIRAL’s SPL
compiler [25]. Table I shows how to translate matrix formula fragments to basic sequential loop
code. These translation rules are applied recursively until the complete formula is translated to
code. This is only the first step in code translation and optimization. SPIRAL then applies loop
optimizations [27] and basic block optimizations [25] to obtain the final code. However, these
additional optimizations are beyond the scope of this paper.

3. MULTIGRID METHODS

Multigrid methods are used to solve linear systems of the form

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (4)

usually arising from the discretization of a partial differential equation (PDE). Unlike direct solvers
like Gaussian elimination, multigrid methods are iterative: starting from an initial guess x(0), they
yield a sequence of approximations x(k), k = 0, 1, . . . . The efficacy of multigrid methods relies on
the following observation: if a few iterations of a simple iterative method, like Gauss-Seidel, are
applied to a linear system arising from the discretization of an elliptic PDE, the error is not reduced
very efficiently, but it is smooth. As a consequence, this error can be represented very well using
fewer degrees of freedom on a coarser discretization mesh, and so can be the residual that is given
by r = b−Ax. The error is given as the solution of the system

Ae = r

and, as the error is smooth and well represented on a coarser discretization mesh, this equation can
be solved on the coarser grid. This reduces the number of unknowns substantially: in the case of
geometric multigrid methods, like the ones considered in this work, a factor of 4 in 2D and 8 in
3D is common. After the coarse-grid solution has been obtained, the approximation of the error
is transferred back to the fine grid and the current approximation of the solution is updated by
adding the interpolated coarse-grid error. To get rid of high-frequency error components that are
introduced by this update, a second round of smoothing steps is performed. This procedure can
be applied recursively until the number of unknowns is small enough to solve the system either
directly or accurately enough using a simple iterative method. In contrast to many other iterative
methods, multigrid methods are optimal in the sense that the convergence rate, i.e., the decay of
the norm of the residual, is linear and independent of the system size for a large class of problems.
This class includes, e.g., finite difference or finite element discretizations of elliptic PDEs defined
on sufficiently smooth domains. As these discretizations result in sparse system matrices, the cost
of each iteration is O(n). As a result, the overall cost of reducing the residual by a given factor is
linear in the data size and, thus, optimal.
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6 BOLTEN, FRANCHETTI, KELLY, LENGAUER, MOHR

Table I. From matrix formulas to code. The subscript of matrices A and B specifies the (square) matrix size.
x[b:s:e] denotes the subvector of x starting at b, ending at e, extracted at stride s.

Matrix formula Matlab-style pseudo code

y = In x
for (i=0; i<n; i++)

y[i] = x[i];

y = 0n x
for (i=0; i<n; i++)

y[i] = 0.0;

y = Gn×N
b,s x

for (i=0; i<n; i++)

y[i] = x[b+i*s];

y = SN×nb,s x
y = 0.0;

for (i=0; i<n; i++)

y[b+i*s] = x[i];

y = Tridiagn(a, b, c)x

y[0] = b*x[0]+c*x[1];

for (i=1; i<n-1; i++)

y[i] = a*x[i-1]+b*x[i]+c*x[i+1];

y[n-1] = a*x[n-2]+b*x[n-1];

y = (An +Bn)x y[0:1:n-1] = A(x[0:1:n-1]) + B(x[0:1:n-1]);

y = (An ·Bn)x
t[0:1:n-1] = B(x[0:1:n-1]);

y[0:1:n-1] = A(t[0:1:n-1]);

y = [An|Bn]x y[0:1:n-1] = A(x[0:1:n-1]) + B(x[n:1:2*n-1]);

y =
[
An

Bn

]
x

y[0:1:n-1] = A(x[0:1:n-1]);

y[n:1:2*n-1] = B(x[0:1:n-1]);

y =

(
k−1∏
i=0

Ai

)
x

y = x;

for (i=0; i<k; i++)

{x = y; y = A(i, x);}

y = (Im⊗An)x
for (i=0; i<m; i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0; i<n; i++)

y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n]);

The efficient implementation of multigrid methods is tedious as it requires knowledge of the
target platform like cache sizes, number of registers, etc. Insofar, the implementation of multigrid
methods, in a way, optimized for the target platform, shares the same problems and challenges as
algorithms in signal processing, e.g., the fast Fourier transform, to which code generation techniques
and the automated optimization of the implementations have been applied before.

In order to reuse previously known techniques in the signal processing language SPL [25–27] as
part of SPIRAL [12,13,17], a description of multigrid methods in the form of linear transformations
is needed. We provide this description and a prototypical implementation.

While multigrid methods can be applied to a large variety of problems, here, we limit ourselves to
the simplest possible example, the Poisson equation with Dirichlet boundary conditions in the unit
cube of arbitrary dimension, i.e., the partial differential equation

−∆u(x) = f(x), x ∈ Ω := [0, 1]d,

u(x) = 0, x ∈ ∂Ω.
(5)
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ALGEBRAIC DESCRIPTION AND AUTOMATIC GENERATION OF MULTIGRID METHODS IN SPIRAL 7

In two dimensions, discretization on an m× n grid with 2nd-order finite differences yields the
system matrix

A = Im ⊗
1

(n+ 1)2
Tridiagn(−1, 2,−1) +

1

(m+ 1)2
Tridiagm(−1, 2,−1)⊗ In.

Note that we have here eliminated the boundary values from the system, as is standard procedure
in the Dirichlet case. Thus, our m× n grid encompasses only interior nodes. For a given right-
hand side b ∈ Rm·n, which is obtained by sampling the function f at equidistant points on the
two-dimensional grid, the task is to solve (4) and obtain an approximate solution x of (5). The
generalization to d-dimensional cubes is straightforward.

3.1. Multigrid methods

As introduced earlier, multigrid methods make use of the following basic observation. If an iterative
method like the Gauss-Seidel method is applied to a linear system arising from the discretization
of a partial differential equation and the development of the error is observed, one notices that,
while the error is not reduced much, it is smoothed out after a few iterations. A smooth error is
well represented on a coarser grid. Therefore, it is reasonable to calculate the residual of the current
approximation x

r = b−Ax

and solve the residual equation
Ae = r

approximately on the coarser grid. The approximate error is then used to update the current guess on
the fine grid. In multigrid terminology, this step is denoted as coarse-grid correction. Subsequently,
an iterative method can be used to smooth the current approximation again. To apply this idea, in
addition to an iterative method as a smoother, we also need grid transfer operators and a coarse
representation of our problem. Two grid transfer operators are required: a restriction to transfer the
residual from the fine to the coarse grid and a prolongation that transfers the approximate error
from the coarse to the fine grid. For the latter, usually, interpolation routines are used. As restriction,
either (weighted) injection or the adjoint of the prolongation are common. The coarse representation
of the system matrix that represents the problem is often chosen as a coarse rediscretization of the
underlying problem, or by using variational principles. In most cases, the coarse problem is still too
large to be solved directly, so the procedure is applied recursively until the problem is small enough
to be solved directly. This results in a multigrid method. In summary, the multigrid methodMGi,
whose index i represents the level withMG0 denoting the original system, is given by Algorithm 1.

Algorithm 1 Multigrid cycle xni
=MGi(xni

, bni
)

xni ← S
ν1
i (xni , bni) {pre-smoothing}

rni
← bni

−Aixni
{calculate residual}

rni+1
← Rirni

{restrict residual}
eni+1

← 0 {initialize coarse-level error approximation}
if i+ 1 = lmax then
enlmax

← A−1lmax
rnlmax

{direct solve}
else

for j = 1, . . . , γ do
eni+1

←MGi+1(eni+1
, rni+1

) {recursive call}
end for

end if
eni ← Pieni+1 {prolongate coarse-level error approximation}
xni
← xni

+ eni
{update current approximate solution}

xni
← S̃ν2i (xni

, bni
) {post-smoothing (possibly with a different smoother)}
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8 BOLTEN, FRANCHETTI, KELLY, LENGAUER, MOHR

In the simplest case, we restrict ourselves to grid sizes m and n, each some power of 2 minus 1,
and to a coarsening by a factor of 2. If m = n this allows the system to be coarsened to one single
unknown, allowing for an easy direct solution of the coarsest 1× 1 “system”. For our problem (5),
this means that the system matrix A = A0 on the finest grid is given by

A0 = I(2k−1)2 ⊗
1

(2`)2
Tridiag2`−1(−1, 2,−1) +

1

(2k)2
Tridiag2k−1(−1, 2,−1)⊗ I2`−1 .

In the following, we assume that m = n = 2`max − 1, i.e.,

A0 = I2`max−1⊗
1

(2`max)2
Tridiag2`max−1(−1, 2,−1) +

1

(2`max)2
Tridiag2`max−1(−1, 2,−1)⊗ I2`max−1 .

3.2. Smoother

Often splitting methods are used as smoothers. This includes Richardson, damped Jacobi or
successive over-relaxation (SOR). One of the simplest methods, the Richardson method, is given
by

x(k+1) = SRichardson,ω(x(k), b) = x(k) + ω
(
b−Ax(k)

)
,

where ω is chosen suitably. Due to its simplicity, this is our method of choice for our proof of
concept.

3.3. Restriction

The simplest restriction operator is the injection. Injection assigns to every coarse grid point the
value at the corresponding fine grid point. In one dimension, this means taking every other grid
point, starting with the second one, and can be expressed as

Rinj =


0 1 0 0 0 . . . 0 0 0
0 0 0 1 0 . . . 0 0 0

...
. . .

...
0 0 0 0 0 . . . 0 1 0

 ∈ R
n−1
2 ×n.

Higher-dimensional versions are obtained by taking Kronecker products of the one-dimensional
restriction. Note that the injection matrix is a gather matrix,

Rinj = G
(n−1)/2×n
1,2 .

The injection matrix also plays a vital role in defining the other grid transfer operators. For instance,
the full-weighting operator that is the transpose of the linear interpolation times 1

2 in one dimension
is given by

Rfw = Rinj · Tridiagn

(
1

4
,

1

2
,

1

4

)
.

Again, higher-dimensional variants are obtained by taking the d-fold Kronecker product of the one-
dimensional variant.

3.4. Interpolation

An example interpolation operator is the linear interpolation, given in one dimension by

Plin = Tridiagn

(
1

2
, 1,

1

2

)
·RTinj.

Also, in the interpolation case, the corresponding higher-dimensional versions can be obtained by
forming Kronecker products as in the restriction case.
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ALGEBRAIC DESCRIPTION AND AUTOMATIC GENERATION OF MULTIGRID METHODS IN SPIRAL 9

3.5. Coarse-grid operator

As mentioned before, in the simplest case, the coarse-grid operator is just a rediscretization of the
original continuous problem. In our case, this means that the operators are given by

Ai = I2k−i−1⊗
1

2k−i
Tridiag2k−i−1(−1, 2,−1) +

1

2k−i
Tridiag2k−i−1(−1, 2,−1)⊗ I2k−i−1,

i = 0, 1, . . . , k − 1.

4. ALGEBRAIC DESCRIPTION

The basic operations used in Algorithm 1 are, in principle, not linear but affine, involving not
only the current approximate solution but also the right-hand side. To overcome this limitation,
the approximation is stacked on top of the right-hand side and the transformations are expressed
such that the right-hand side is not changed.

The grid transfer operators do not act on the current approximation and the right-hand side but
rather on the residual or the approximation of the error on the coarse grid.

4.1. Multigrid Method

Following the description in Section 3 and Algorithm 1 we can represent a multigrid method as an
operator

MG` = Sν2` · CGC` · S
ν1
` , (6)

composed of three components. The application of the smoothing operator S` in ν1 pre-smoothing
and ν2 post-smoothing steps and a coarse-grid correction CGC` in between. Following our block
approach, a single application of the operator MG`, i.e., a single multigrid cycle, will map a pair
consisting of old approximate solution and right-hand side onto a pair consisting of a new, improved
approximate solution and the right-hand side(

x(k+1)

b

)
= MG`

(
x(k)

b

)
.

The subscript ` is to remind us that one of the central multigrid ideas is to employ the same solution
approach recursively for the problems on the coarser grids. Below, we derive an explicit algebraic
representation of MG` by considering its individual components.

4.2. Smoother

The Richardson smoother is described by the following block matrix(
x(k+1)

b

)
=

[
I − ωA ωI

0 I

]
︸ ︷︷ ︸
=: SRichardson,ω

·
(
x(k)

b

)
.

4.3. Coarse-Grid Correction

Let us derive a representation of the coarse-grid correction step of the multigrid method as a linear
operator. This is a little more sophisticated than with the smoother. Thus, we first perform it for the
case of a hierarchy consisting only of two grid levels.

4.3.1. Two-level case In the two-level case, the coarse-grid correction calculates the residual by

r = b−Ax.

Then, the residual is restricted to obtain the coarse residual, i.e.,

rc = Rr
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10 BOLTEN, FRANCHETTI, KELLY, LENGAUER, MOHR

and the coarse error is obtained as the solution of the system

Acec = rc. (7)

The coarse error is then prolongated by
e = Pec

and the current approximation is updated by adding this approximation

x = x+ e.

Combining everything yields

x = x+ PA−1c R(b−Ax) = (I − PA−1c RA)x+ PA−1c Rb. (8)

Following the above convention, we obtain(
x(k+1)

b

)
=

[
I − PA−1c RA PA−1c R

0 I

]
︸ ︷︷ ︸

=: CGC

·
(
x(k)

b

)
. (9)

4.3.2. Multilevel case In a real multigrid method, with a hierarchy consisting of more than two
levels, the solution of the linear system (7) is replaced by a recursive call to the multigrid method
applied to the coarse system of smaller size.

Let CGC` be the coarse-grid correction at level ` within operator (6). The application of the
inverse problem matrix A−1c on the coarser level to solve (7) will now be replaced by a recursive
invocation of multigrid. Effectively the inverse is approximated by

A−1c ≈
[
I 0

]
·MGγk+1 ·

[
0
I

]
.

Here, γ is the number of iterations used to solve the coarse system, cf. Algorithm 1. A choice of
γ = 1 corresponds to a V-cycle, while γ = 2 corresponds to a W-cycle. Note that, in the coarse-grid
correction scheme, it is essential that one always starts with a zero intial guess for the approximate
error on the coarser grids. Hence the top zero block in the vertically stacked operator on the right.

With n` for the system size at level `, we obtain

CGCi =

Ini − Pi
[
Ini+1

0
]
MGγi+1

[
0

Ini+1

]
RiAi Pi

[
Ini+1

0
]
MGγi+1

[
0

Ini+1

]
Ri

0 Ini

 ,
for i = 0, 1, . . . , k − 3, where k is the number of levels, and

CGCk−2 =

[
Ink−2

−Pk−2A−1k−1Rk−2Ak−2 Pk−2A
−1
k−1Rk−2

0 Ink−2

]
.

Although these definitions contain two applications of the specified number of iterations of the
multigrid method at the next level, the applications can be combined as in (8).

5. GENERATING MULTIGRID METHODS USING SPIRAL

In this section, we describe the SPIRAL formalization as SPL breakdown rules of a multigrid solver
for an n× n discretized 2D Poisson equation with Dirichlet boundary conditions and parameters ω,
r, and m. The solver uses a Richardson smoother with parameter ω and r iterations and injection
as restriction operator. It performs m multigrid cycles. Table II summarizes the breakdown rules in
(10)–(20).
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ALGEBRAIC DESCRIPTION AND AUTOMATIC GENERATION OF MULTIGRID METHODS IN SPIRAL 11

Table II. SPIRAL SPL breakdown rules for a multigrid solver MGSolvePDEn,ω,r,m for a n× n discretized
2D Poisson equation with Dirichlet boundary conditions and parameters ω, r, and m. The solver uses a
Richardson smoother with parameter ω and r iterations and injection as restriction operator. It performs m

multigrid cycles.

MGSolvePDEn,ω,r,m → [In2 | 0n2 ] ·

(
m−1∏
i=0

MGCyclen,ω,r

)
·
[
0n2

In2

]
(10)

MGCyclen,ω,r → CGCn,ω,r ·Richardsonn,ω,r (11)

CGCn,ω,r →
[
CoarseErrorn,ω,r

0n2 | In2

]
(12)

CoarseErrorn,ω,r → Interpolaten · Scattern · Solven,ω,r ·Gathern ·Residualn (13)

Interpolaten → Tridiagn
(√

2/2,
√
2,
√
2/2
)
⊗ Tridiagn

(√
2/2,
√
2,
√
2/2
)

(14)

Scattern → S
n×(n−1)/2
1,2 ⊗ S

n×(n−1)/2
1,2 (15)

Solven,ω,r →


1
4
I1, n = 1[
I((n−1)/2)2 | 0((n−1)/2)2

]
·MGCycle(n−1)/2,ω,r ·

[
0
((n−1)/2)2

I
((n−1)/2)2

]
, n > 1

(16)

Gathern → G
(n−1)/2×n
1,2 ⊗G

(n−1)/2×n
1,2 (17)

Residualn → [Tridiagn(1,−2, 1)⊗ In +In⊗Tridiagn(1,−2, 1) | In2 ] (18)

Richardsonn,ω,r →
r−1∏
i=0

[
ResidueLaplacen,ω ω In2

0n2 In2

]
(19)

ResidueLaplacen,ω → Tridiagn(ω, 0.5− 2ω, ω)⊗ In +In⊗Tridiagn(ω, 0.5− 2ω, ω) (20)

The entry point of the rule system is the SPL non-terminal MGSolvePDEn,ω,r,m that represents
a specification of the multigrid solver detailed above. In fact, it corresponds to m successive
applications of MG0, i.e., the multigrid operator of (6) for the finest level. (10) translates
MGSolvePDEn,ω,r,m tommultigrid cycles MGCyclen,ω,r. Next, (11) translates a multigrid cycle to
a Richardson smoother Richardsonn,ω,r followed by a coarse-grid correction CGCn,ω,r. Note that
the order in the formula is reversed, as vectors are applied from right to left. We restrict ourselves
here to pre-smoothing. However, this is only for simplicity, not a conceptual limitation.

(12) expresses the coarse-grid correction CGCn,ω,r in terms of the coarse error operator
CoarseErrorn,ω,r. (13) explains CoarseErrorn,ω,r in terms of Interpolaten, Scattern, Solven,ω,r,
Gathern, and Residualn. Thus, (13) encodes the choice of the restriction operator to be
injection. The choice of linear interpolation is encoded in (14), which terminates the non-terminal
Interpolaten. (17) and (15) encode 2D gathering and scattering of every other lattice point in a 2D
grid.

The non-terminal Solven,ω,r captures the multigrid recursion. It encodes the base case of n = 1
in which a direct solve is applied, and recurses back to the multigrid cycle MGCyclen,ω,r for n > 1.
The non-terminal Residualn computes the residual. The non-terminal Richardsonn,ω,r captures the
Richardson smoother with parameter ω and r iterations. It is reduced to the Laplace residue by (19),
which is finally reduced to tridiagonal matrices in (20).

The non-terminals Residualn, Interpolaten, and ResidueLaplacen,ω encode the problem type to
be a Poisson equation and the Dirichlet boundary condition via the entries of the tridiagonal matrix.

The rule set (10)–(20) in Table II completely specifies non-terminal MGSolvePDEn,ω,r,m in
terms of basic SPIRAL SPL objects and operators. This is all we need to generate code for
MGSolvePDEn,ω,r,m, as the next section shows. However, the rule set is highly specialized to
the particular problem (Poisson equation with Dirichlet boundary condition) and multigrid method
choices (Richardson smoother and injection as restriction).

The description of a multigrid solver for an n× n discretized 2D Poisson equation, given
by (10)–(20) in Table II, is independent of the problem size and can be applied to arbitrarily
large problems. However, SPIRAL’s code generation provides three distinct use cases. In order
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12 BOLTEN, FRANCHETTI, KELLY, LENGAUER, MOHR

of growing complexity, SPIRAL can (1) generate small fixed-size kernels, often called codelets,
(2) large but fixed-size functions that implement a particular problem size very well using SIMD
vector instructions and parallelism, and (3) a general-size library which allows the choice of some
configuration parameters and, in particular, the problem size at run time. Step (2) requires loop-
level optimizations and step (3) requires delaying of problem decompositions from compile time to
runtime and support for online autotuning, which makes these cases much harder than step (1). The
inclusion of any new domain in SPIRAL must proceed from case 1 via case 2 to case 3.

Clearly, for practical multigrid solvers, case 3 is the most desirable but also hardest case, and both
case 2 and case 3 are subject of future work. However, even case 1, as presented here, has immediate
practical use, as evidenced by previous successes in the domains of numerical linear algebra [28],
FFTs [29,30], and stencil computations [31]: by generating a large set of appropriately chosen small,
fixed-size kernels that implement particular algorithmic choices and that are very well optimized,
the following technique from the domain of the automatic performance tuning community can be
leveraged: a recursive algorithmic skeleton breaks larger problems recursively down into smaller
problems, in a divide and conquer approach. At some point, the recursion is unrolled and special
base cases for both the divide and conquer phase, that implement a small number of recursion levels,
are used. These kernels are generated automatically and make up most of the run time. By searching
for and selecting the suitable breakdown strategy, performance portability (i.e., good performance
across a wide range of platforms) is achieved, and the human tuning effort is minimized.

6. EXAMPLES AND RESULTS

6.1. Multigrid Cycle

First, we show SPIRAL-generated code for a 3× 3 point multigrid cycle. The code is in standard
C with data type double. It is fully unrolled and uses pointer dereferencing / pointer arithmetic
for all array accesses. All standard SPIRAL back-end optimizations [25] have been applied: array
scalarization, copy propagation, common subexpression elimination, algebraic simplification, and
constant folding. The code is in single static-assignment (SSA) form, but assignments can be large
expressions, i.e., we do not convert to three-address code.

We start with the specification of the code,

MGCycle3,0.125,1, (21)

which tells SPIRAL to generate code for a multigrid cycle on a grid of 3× 3 points for a 2D
Poisson equation with Dirichlet boundary conditions. The parameters ω = 0.125 and r = 1 for
the Richardson smoother are fixed (but could be run-time parameters). Further, the restriction is
injection. SPIRAL first expands specification (21) using (11) and (12), leading to

→CGC3,0.125,1 ·Richardson3,0.125,1

→
[

CoarseError3,0.125,1
[09 | I9]

]
·
[
ResidueLaplace3,0.125 0.125 I9

09 I9

]
. (22)

Next, (22) is expanded using (13) and (20), yielding

→
[

Interpolate3 ·Scatter3 ·Solve3,0.125,1 ·Gather3 ·Residual3
[09 | I9]

]
·
[
Tridiag3(0.125, 0.25, 0.125)⊗ I3 + I3⊗Tridiag3(0.125, 0.25, 0.125) 0.125 I9

09 I9

]
. (23)

In a final step, (23) is expanded using (14)–(18). We define the tridiagonal matrices

T1 = Tridiag3

(√
2/2,
√

2,
√

2/2
)

T2 = Tridiag3(1,−2, 1)

T3 = Tridiag3(0.125, 0.25, 0.125)
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and obtain the final expansion

MGCycle3,0.125,1 →
[
T1 ⊗ T1 · S3×1

1,2 ⊗ S3×1
1,2 · 14 I1, ·G1×3

1,2 ⊗G1×3
1,2 · [T2 ⊗ I3 + I3⊗T2 | I9]

09 | I9

]
·
[
T3 ⊗ I3 + I3⊗T3 0.125 I9

09 I9

]
. (24)

SPL formula (24) is an 18× 18 matrix and represents the specification (non-terminal)
MGCycle3,0.125,1 as a fully expanded (terminated) SPL formula that contains only basic SPL objects
and operators. SPIRAL then uses (3) and the code generation rules from Table I together with the
optimizations described in [25, 27] to generate the final code, which is given in Listing 1. The
function mgcycle3() requires 60 floating-point operations (additions and multiplications) and
runs in 71 clock cycles on a single core of a 3.6 GHz Intel Xeon E3-1290. It loads 18 double
precision numbers (144 bytes) of input data, as well as 5 unique double precision constants (40
bytes), and produces 18 double precision outputs (144 bytes). This results in an arithmetic intensity
of 5.45 bytes/flop. This represents good efficiency relative to the resources used, as the code is scalar
single-threaded C that does not leverage SIMD vector instructions and multicore parallelism. The
code is in style very similar to the codelets used in FFTW [29].

6.2. Performance Results

Let us now present preliminary performance results. The multigrid solver problem sizes that we
can currently produce with SPIRAL are limited to a few recursion steps (n = 1, 3, 7, 15, 31),
since we do not support loop optimization and recursive code generation for multigrid solvers, yet.
Supporting larger problem sizes is an ongoing research effort that requires internal extensions of the
SPIRAL code generation and optimization engines to support the code patterns seen in multigrid
solvers. Currently, SPIRAL generates unrolled code and inefficient loop nests and exhausts the
instruction cache for small sizes.

We generated small multigrid kernels: a single Richardson step, coarse-grid correction, a
multigrid cycle, and a complete multigrid solver for small problem sizes (n = 1, 3, 7, 15, 31). We
used r = 4 Richardson steps in the multigrid cycle, m = 10 multigrid cycles for a complete solve,
and ω = 0.2 in the Richardson step. We measured the performance of the SPIRAL-generated kernels
on a single core of a 3.6 GHz Intel Xeon E3-1290 (SandyBridge) using the Intel C++ Compiler
12.1.5 with option -O3 and SIMDization as well as parallelization turned off. The results are
summarized in Table III.

For small sizes, the performance is as expected for SPIRAL-generated L1 cache-resident code.
The code performs well for problem sizes where the code fits into the L1 instruction cache. For larger
sizes, the generated code becomes large, and the instruction cache is exhausted. At this point, the
performance deteriorates. This is an artefact of the missing loop-level and recursion optimizations.
As reference, a complete multigrid solver for the discretisation of (5) on a grid with n = 7 in 2D
generated by SPIRAL is about 3,500 lines of code when fully unrolled.

As noted in Section 5, small unrolled highly optimized kernels are often used in high-performance
libraries as the base of recursion, and usually contain the bulk of the floating-point operations [29].
SPIRAL-based code generation for multigrid solvers would be able to generate highly efficient
multigrid codelets to be used in a larger solver despite the fact that code generation is limited to
unrolled code due to the missing loop-level optimizations.

7. CONCLUSION AND OUTLOOK

We have presented a first example of generating a multigrid solver with the SPIRAL code generation
and autotuning system. This shows that the SPIRAL code generator—while up to now having been
used mainly for applications in signal processing and alike—can be used to generate multigrid
methods for structured grids.
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14 BOLTEN, FRANCHETTI, KELLY, LENGAUER, MOHR

Listing 1: Code generated by SPIRAL for the SPL specification MGCycle3,0.125,1. The function
mgcycle3() requires 60 floating-point operations (additions and multiplications) and runs in 71
clock cycles on a single core of a 3.6 GHz Intel Xeon E3-1290.
// Multigrid cycle
// input: double X[18], output: double Y[18]
// n = 3, \omega = 0.125, r = 1
//
void mgcycle3(double *Y, double *X) {

double a462, a463, a464, a465, a466, a467, a468, a469,
a470, a471, a472, a473, a474, a475, a476, a477,
a478, a479, a480, s507, s508, s509, s510, s511, s514;

a462 = (0.25**(X));
a463 = (0.125**((X + 3)));
a464 = (0.125**(X));
a465 = (0.25**((X + 3)));
a466 = (0.125**((X + 6)));
a467 = (0.25**((X + 6)));
a468 = (0.25**((X + 1)));
a469 = (0.125**((X + 4)));
a470 = (0.125**((X + 1)));
a471 = (0.25**((X + 4)));
a472 = (0.125**((X + 7)));
a473 = (0.25**((X + 7)));
a474 = (0.25**((X + 2)));
a475 = (0.125**((X + 5)));
a476 = (0.125**((X + 2)));
a477 = (0.25**((X + 5)));
a478 = (0.125**((X + 8)));
a479 = (0.25**((X + 8)));
s507 = (a468 + a469 + a464 + a468 + a476 + (0.125**((X + 10))));
s508 = (a464 + a465 + a466 + a465 + a469 + (0.125**((X + 12))));
s509 = (a476 + a477 + a478 + a469 + a477 + (0.125**((X + 14))));
s510 = (a469 + a473 + a466 + a473 + a478 + (0.125**((X + 16))));
a480 = (2.0*(a470 + a471 + a472 + a463 + a471 + a475 + (0.125**((X + 13)))));
s511 = (0.25*((s507 - a480) + s510 + (s508 - a480) + s509));
s514 = (0.5*s511);
*(Y) = s514;
*((Y + 3)) = s511;
*((Y + 6)) = s514
*((Y + 1)) = s511;
*((Y + 4)) = (2.0*s511);
*((Y + 7)) = s511;
*((Y + 2)) = s514;
*((Y + 5)) = s511;
*((Y + 8)) = s514;

}

Table III. Performance Results of small multigrid kernels on a single core of a 3.6 GHz Intel Xeon E3-1290
(SandyBridge) using scalar code. All results are given in clock cycles.

Kernel n = 3 n = 7 n = 15 n = 31

Single Richardson Step 67 369 1,757 27,167
Coarse-Grid Correction 32 255 1,630 68,012
Multigrid Cycle 190 1,623 19,045 –
Complete MG Solve 1,517 24,311 – –

For this purpose, no extension of the SPIRAL generator and formal language was necessary
because we were able to formulate multigrid as a composition of linear operators. To do so, the
current approximation is stacked on top of the affine part of multigrid, which is the right-hand
side at the current level, as described at the end of Section 4. The SPIRAL implementation is
straightforward, but substantial work remains to be done to scale code generation from kernels
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to loop code and a full autotuning library. Overall, we conclude that the approach is feasible and
demonstrates that the SPIRAL code generation technique can be applied to a broader class of
applications.

This work is a first contribution to allow multigrid methods to benefit from SPIRAL’s domain-
specific code generation and performance optimization capabilities. In addition to exploitation of
vector instructions and multicore parallelism, SPIRAL provides powerful mechanisms for automatic
selection of storage layout for spatial locality, together with coordinated blocked execution for
temporal locality. Further, it applies automatic performance tuning to select good implementation
parameters like block sizes. SPIRAL currently performs all its basic block level optimizations
like common subexpression elimination, algebraic simplifications, array scalarization, and copy
propagation for multigrid code. To scale the approach to larger sizes, three key optimizations need
to be adapted to support multigrid code: code pattern specific loop merging, generation of recursive
parameterizable implementations from recursive specifications, and parallelism support.

Currently, the parametrization of the choice of restriction, smoother, and PDE are hard-coded
into the rules. A challenge for future work on multigrid will be to separate these choices from the
rule system and develop a parameterized meta rule system that allows for search over algorithmic
choices. This can be achieved by a slight generalization of the current rules and by adding
termination and breakdown rules that capture other smoothers and restrictions. Parameterizing the
PDE type and boundary conditions is a harder problem, since a number of rules depend on the
particular discretization of the PDE and its boundary conditions and, thus, more general right-hand
sides of the rules for Residualn, Interpolaten, and ResidueLaplacen,ω will be required.

In the future, we will go on to handle more complex multigrid methods, e.g., for different
problems and involving other algorithmic components. We are currently working on identifying
possible extensions of SPIRAL that allow for a more elegant formulation of the methods as well as
for generation of more efficient code.
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