
Challenges in building a DBMS Resource Advisor

Dushyanth Narayanan
Microsoft Research

Cambridge, UK
dnarayan@microsoft.com

Eno Thereska
Carnegie Mellon University

Pittsburgh, PA
enothereska@cmu.edu

Anastassia Ailamaki
Carnegie Mellon University

Pittsburgh, PA
natassa@cmu.edu

Abstract

Administration increasingly dominates the total cost of ownership of database management systems.
A key task, and a very difficult one for an administrator, is to justify upgrades of CPU, memory and
storage resources with quantitative predictions of the expected improvement in workload performance.
We present a design and prototype implementation of a Resource Advisor that is able to answer “what-
if” questions about DBMS performance under hypothetical conditions. We discuss the design issues
and challenges involved in building such a Resource Advisor, as well as our experiences in building a
prototype Resource Advisor for SQL Server.

1 Introduction

Administering database management systems (DBMS) is a complex and increasingly expensive task. There is a
pressing need to raise the level of abstraction at which database administrators (DBAs) interact with the system,
by automating tasks which currently require substantial human effort and expertise [8]. In this paper we focus
on the task of resource (re)provisioning: determining the number, type, and configuration of hardware resources
most appropriate to a given workload, hardware budget, and performance goals.

Resource provisioning is typically done by human experts using experience and rules of thumb to decide
whether additional resources will improve performance [3]. The cost of such experts is significant for large
enterprises and prohibitive for small ones. Even experts find it difficult to quantify the expected benefit of a
resource upgrade. The net result is over-provisioned systems with no guarantees on performance [8].

The key technical challenge in automating resource provisioning decisions is automated prediction of perfor-
mance in hypothetical hardware configurations. In other words, we wish the system itself to provide accurate,
quantitative answers to “what-if” questions such as “what would be the increase in throughput if the server’s
main memory were doubled?” In this paper we discuss the design issues and challenges in building such a
predictive capability, and also our experiences in building a specific system, a Resource Advisor for SQL Server.

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



Instrumented
DBMS

Demand
extraction

Buffer pool
model

CPU
model

Throughput
prediction

Response
time

event
tracing

demand trace

reference trace

CPU usage

Storage
params

buffer pool size

Processor speed

I/O requests

Storage
model

prediction

I/O
time

CPU
time

per-request traces

Visualization

Figure 1: Resource Advisor architecture

2 Design principles

Large commercial databases are complex systems that depend on several physical resources such as the back end
storage system, volatile main memory and CPUs. A database administrator (DBA) must decide on a good initial
configuration of these resources, and then continuously monitor the system for new bottlenecks and changes
in workload. To do this she must have an intimate understanding of the various database components, their
interactions, and of the workload. Such experienced DBAs are expensive and even they do not have the tools to
accurately and easily predict the performance effect of any resource provisioning decision.

Consider a DBMS running multiple application workloads with different resource demands and performance
requirements. For example, DSS workloads have low concurrency and total run time is the metric of interest.
OLTP workloads have high concurrency and require not only high throughput but also bounded response time.
For any proposed resource provisioning the DBA must estimate the impact on the performance of each workload,
taking into account the resource contention between them.

The most common approach to (re)provisioning such systems is to monitor the performance counters pro-
vided by most commercial systems. These counters measure aggregate load statistics for various resources,
which is not always sufficient to find the global bottlenecks. They do not offer any insights into response time,
as they do not track per-request resource usage or distinguish between critical-path and background resource
usage. Finally, they place the heavy burden on the DBA of correctly interpreting 400+ performance counters.

We advocate a system architecture that addresses these problems by
1. Tracing per-request resource usage and control flow at fine granularity.
2. Modelling hardware resources and the algorithms that schedule or share them across multiple requests.
3. Predicting performance on hypothetical hardware by combining workload traces with hardware models.
The bottleneck in DBMS provisioning today is the human in the loop. CPU cycles are relatively abundant,

allowing fine-grained yet low-overhead tracing of the live system, as well as offline trace processing using idle
cycles. For example, SQL Server running an OLTP workload generate 500 events/transaction, with a CPU
overhead of 1000 cycles/event and generated 68 bytes/event of trace data [5]. Extrapolating to the fastest TPC-C
system as of date (3,210,540 tpmC with 64 processors at 1.9 GHz) [7], we get a CPU overhead of 5% and a trace
data rate of 8 MB/s. This could be reduced further through optimisation, sampling, and runtime event filtering.

2



Event Type Arguments Description
Control Flow StartRequest SQL transaction begins

EndRequest SQL transaction ends
EnterStoredProc procname Stored procedure invocation
ExitStoredProc procname Stored procedure completion

CPU scheduling SuspendTask taskID Suspend user-level thread
ResumeTask taskID Resume user-level thread
Thread/CSwitchIn cpuID, sysTID Schedule kernel thread
Thread/CSwitchOut cpuID, sysTID Deschedule kernel thread

Buffer pool activity BufferGet pageID Fetch a page (blocking)
BufferAge pageID Reduce the “heat” of a page
BufferTouch pageID Increase the “heat” of a page
BufferDirty pageID Mark a page as dirty
BufferReadAhead startpage, numpages Prefetch pages (non-blocking)
BufferEvict pageID Evict and free page
BufferNew pageID Create a new page
BufferSteal numpages Allocate memory from free pool
BufferFree bufferID Release memory to free pool

Disk I/O DiskIO startpage, numpages Asynchronously read/write pages
DiskIOComplete startpage, numpages Signal read/write completion

Locking EnterLockAcquire resourceID, mode, timeout Attempt to lock a resource
ExitLockAcquire status Success/failure of lock acquisition
LockRelease resourceID, mode Release a held lock

Table 1: Instrumentation events

8113984086 0 XactionStart tpcc_neworder,0

8113984086 1:0 CPU 3663

8113987749 2:1 CPU 187

...

8113990027 12:11 LOCK KEY: 5:844424932360192 (e102aa462451),S,ACQUIRE

...

8114036559 269:268 MEM ALLOC,1

...

8114152008 368:367 CPU 8544

8114160900 369:368 BUF 00000005,00000001,00000170,Fetch

...

8114160900 432:368 BUF 00000005,00000001,000001AF,Fetch

8114160900 433:368 CPU 109

...

Each resource demand contains a timestamp and a “demand ID”, followed by a list of previous demands that must precede
this one, in the transaction execution. This allows us to capture any in-transaction concurrency: e.g., demands 369–432 are
asynchronous prefetch requests to the buffer manager, which are executed concurrently with demand 433, i.e. computation
is overlapped with I/O here. Each demand has additional type-specific parameters, e.g. lock demands specify a resource
ID, a mode, and an action (acquire or release).

Figure 2: Simplified snippet of demand trace

3



3 Experience

Based on the principles and high-level design described above, we have designed and implemented a Resource
Advisor for SQL Server, which predicts the performance of a live workload under hypothetical hardware up-
grades. Here we briefly describe our experiences with an early prototype based on analytic models, which was
described in detail in an earlier paper [6]. We then describe our current simulator-based approach.

3.1 Analytic modelling

Figure 1 shows the high-level design of the Resource Advisor. It relies on fine-grained, low-overhead event
tracing from an instrumented DBMS. The instrumentation points are chosen to enable end-to-end tracing [2] of
each request from the moment it enters the system to its completion. We record each use of system resources
— CPU, memory, I/O — as well as virtual resources such as locks. Table 1 shows the set of events traced by
our instrumentation. These events allow the Resource Advisor to reconstruct exactly the sequence of resource
demands issued by the workload. Since this sequence is an aggregate of many concurrently executing requests,
the Resource Advisor first separates it out into per-request demand traces. This requires instrumentation of all
context switches: points where a resource such as CPU stops working on one request and starts work on another.

The raw event trace is transformed into a per-request demand trace, where each request is represented as a
partially ordered set of resource demands, each for a specific resource. Figure 2 shows a simplified snippet of a
demand trace for an OLTP transaction. The aggregate demand on the system is then the effect of concurrently
executing these per-request demands.

Subsequent steps in processing are parametrised by the characteristics of the hypothetical “what-if” hard-
ware: the buffer cache memory size, the CPU clock speed, and disk parameters such as rotational speed. The
buffer references are processed by a cache simulator to generate an I/O trace, and the I/O and CPU traces are
fed to analytic models that predict the throughput and mean response time of each transaction type.

Our analytical models are able to accurately predict the effect of changing the buffer cache memory on the
throughput and response time of an OLTP workload. Figure 3 shows the prediction accuracy for two different
types of “what-if” questions. DOUBLE predicts the effect on performance of doubling the memory of the
current configuration (e.g. from 128 MB to 256 MB). TREND predicts performance over the entire range of
memory sizes, bases on observing the system with 64 MB.

Thus the models have good accuracy but restricted applicability. They make two major assumptions about
the workload, which are valid for OLTP but not for other workloads such as DSS:

• that buffer cache misses cause a random-access I/O pattern;
• that the throughput bottleneck remains the same throughout the workload execution, i.e. the workload

does not have different phases with different bottlenecks.
With analytic models based on operational analysis, it is easy to predict aggregate throughput, assuming

sufficient concurrency that the bottleneck resource is always busy. However, if there are multiple concurrent
users, each with a different workload (for example a different transaction mix), then it is difficult to predict the
throughput of each user individually.

Analytic models also make it difficult to predict response time. Our models predict mean response time
per transaction type but are specific to OLTP. They also assume that a request’s response time is dominated by
its resource demands rather than queueing and scheduling delays caused by concurrently executing requests.
To correctly model queueing and scheduling delays, and to compute second-order metrics such as variance in
response time, we need queueing models. However, analytic queueing models rely on assumptions about request
arrival time distributions that are often unrealistic.

4



0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200
Buffer pool size (MB)

T
ra

n
sa

ct
io

n
s/

se
co

n
d

Actual
TREND
DOUBLE

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
Buffer pool size (MB)

L
at

en
cy

 (
se

co
n

d
s) ACTUAL

TREND
DOUBLE

(b) “New order” response time

Figure 3: Predicting OLTP performance for hypothetical memory changes

3.2 Simulation-based modelling

The current version of the Resource Advisor is based on event-driven simulation rather than analytical through-
put and response time models. Live workload traces are decomposed into per-request demand traces as before,
and the concurrent execution of the requests on hypothetical hardware is modelled by the simulator. The result
of the simulation is a execution trace with the predicted timing information (including scheduling delays) of each
resource demand within each request. This allows us to compute the predicted throughput, response time, or any
other performance metric of interest. Unlike the analytic models, the simulation approach is workload-agnostic
and also enables a wider range and a finer granularity of performance metrics.

Each request’s demands are executed by the simulator according to the partial order specified in the de-
mand trace. Demands are executed by passing them to the appropriate resource model, which determines their
completion time by adding any queueing/scheduling delay as well as the predicted service time:

• The CPU model computes scheduling delay by simulating a non-preemptive FIFO scheduler. Service time
is computed by scaling, i.e. the speed of CPU execution is assumed to be proportional to the clock speed.

• The buffer cache model simulates an LFU eviction policy. Cache misses generate disk demands which
are handled by the disk model. Note that disk demands are not directly present in the demand trace: we
capture the workload’s reference trace above the buffer cache, so that we can model the effect of changes
in buffer cache memory.

• The disk model is a simple approximation of a single-spindle storage system without on-disk caching.
Track and sector positions are inferred from LBNs (logical block numbers) based on the known disk
geometry, and seek and rotational times are inferred from these. Based on this, the disk model is able to
simulate the SSTF (shortest seek time first) scheduling policy used by most disks.

• The lock model handles requests for locks at various granularities — page, record, etc. — and in different
modes — shared, exclusive, shared-intention, etc. It uses the same default policies as the DBMS to make
decisions on competing lock grant/upgrade requests.

We are confident that these models, although simple, can provide good accuracy for a wider range of workloads
than the analytic models. Our philosophy is to start with these simple models and refine them only if necessary
for improved accuracy.

Simulation has a higher overhead than analysis but is still typically much faster than real time: we simulate
a CPU computation of arbitrary length in constant time, and a disk access with a few cycles of computation.
For in-memory, lock-bound workloads simulation is slower than real time, as the simulator’s buffer and lock
management are no faster than that of the DBMS.

5



4 Ongoing challenges

There are many open questions on designing, building, and deploying systems such as the Resource Advisor.
Here we present some of these questions and our thoughts on answering them.

Granularity. What is the best granularity to represent resource demands? For example, we represent a CPU
“demand” as a single number: the number of cycles of computation. Including information such as L2 cache
misses and the integer/floating point instruction mix could allow “what-if” questions about different processor
architectures rather than just different clock speeds. However, this finer granularity comes at the cost of increased
complexity in instrumentation and modelling.

We envision a need for models at multiple levels of complexity, with the DBA using a “drill-down” approach
to increase complexity where needed. For example, crude CPU and disk models might suffice to indicate that a
faster CPU would be more valuable than a faster disk. The DBA could then use a more refined CPU model to
exactly quantify the performance benefits of different processor upgrade options.

Scope. How much of the system should we model? The key insight that makes performance prediction feasible
is that we only need to model those aspects of the system that affect performance and are affected by resource
availability. Aspects which are essential to the correct functioning of the system but independent of resource
availability can be ignored. For example, when simulating a disk access we need to predict its timing but not the
contents of the accessed block.

Thus we must trace the system at a level above that of the resource manager but below that of any resource-
agnostic components, to avoid the complexity of modelling them. For example, in the Resource Advisor, we
trace page accesses above the buffer cache rather than below, since the latter will change with the size of the
buffer cache. In contrast, we trace the physical execution of query plans, i.e. below the query optimiser. This
frees us from the task of modelling the query optimiser and tracing all its run-time inputs. However, it limits
us to modelling resource-agnostic query optimisers that are not adaptive to changes in resource availability but
make decisions solely based on data statistics and cardinality estimates.

Evolution. When building a Resource Advisor for a legacy DBMS, we chose to insert only passive instru-
mentation, while maintaining the simulation/analytic models separately. However, this introduces the additional
burden of keeping the models consistent with the DBMS components as they evolve. For example, if the lock
scheduling algorithm changes in the DBMS, a corresponding change must be made to the lock model. If the code
itself is restructured, then the tracing instrumentation points may need to be changed; if this results in a change
in the semantics of the traced events, this will cause a change in the models as well. We surmise that tighter
integration of predictive models with DBMS components, i.e. making each component truly self-predictive, will
help to alleviate this problem. However, we currently lack the programming tools and techniques for developers
to maintain a performance model for each component in tandem with its functionality.

Hierarchical models. The drill-down approach also requires us to ask and answer “what-if” questions at
different component granularities. For example, the storage component could be a file server with a network
RAID back end. For the initial phase of resource planning, the DBA might simply ask “What if the entire storage
subsystem were twice as fast?” If the predicted benefits of this look promising, she might investigate different
ways to achieve this speedup, for example “What if I made the file server 4-way SMP” or “What if I moved from
mirroring to RAID-5?” This hierarchical approach would avoid the need for asking “what-if” questions about
all possible hardware configurations.

6



Administrative boundaries. In a typical 2- or 3-tier architecture, there are multiple components — applica-
tion servers, database servers, networked storage — typically from different vendors and possibly with different
administrators. We could hope that in the future each of these would be self-predicting, but it is likely that they
will provide this prediction as a “black-box” functionality that does not expose model internals. Thus the tight
integration of different predictive components that we use in the Resource Advisor may not be feasible. Rather
than predict the performance of individual resource demands, we might have to process the entire workload trace
with the DBMS to create a “storage access trace” and pass that to the storage model to get the timings of the
I/Os generated. Since the I/O timings would affect the timings of the entire workload, we would have to iterate
this process to converge on a solution.

Distributed modelling. End-to-end performance prediction for large distributed systems is a significant chal-
lenge. Individual hosts can efficiently generate local trace information; however, a request in a multi-tiered or
clustered configuration might trigger activity on multiple hosts. Backhauling all event traces to a centralised lo-
cation is a simple but non-scalable solution, and hence we need distributed modelling and prediction algorithms.

5 Related work

Our work on end-to-end tracing in SQL Server was directly inspired by the Magpie project [2], which used end-
to-end tracing in 2-tier web services to model workload resource demand and control flow. Our broad aim —
automated resource provisioning — is one of many self-tuning scenarios suggested by Weikum et al [8]. Other
researchers have investigated self-tuning for other aspects of the DBMS: for example, the DB2 Advisor [4] and
the Database Tuning Advisor [1] suggest the most appropriate set of indexes and materialised views as well as
the best physical layout of tables.

References

[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala. Database tuning advisor
for Microsoft SQL Server 2005. In Proc. 30th VLDB conference, Aug. 2004.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request extraction and workload
modelling. In Proc. 6th Symposium on Operating Systems Design and Implementation, Dec. 2004.

[3] J. Gray. Benchmark handbook: for database and transaction processing systems. Morgan Kaufmann, 1992.

[4] G. Lohman, G. Valentin, D. Zilio, M. Zuliani, and A. Skelley. DB2 Advisor: An optimizer smart enough
to recommend its own indexes. In Proc. IEEE International Conference on Data Engineering (ICDE), Feb.
2000.

[5] D. Narayanan. End-to-end tracing considered essential. In Proceedings of High Performance Transaction
Systems – Eleventh Biennial Workshop (HPTS ’05), Sept. 2005.

[6] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for self-predicting DBMS.
In Proceedings of IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2005), Sept. 2005.

[7] Transaction Processing Performance Council. Top ten TPC-C by performance. http://www.tpc.org/

tpcc/results/tpcc_perf_results.asp, Mar. 2005.

[8] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning database technology and information
services: from wishful thinking to viable engineering. In Proc. 28th VLDB conference, Aug. 2002.

7


