
Implementing a High-performance Multithreaded Microprocessor:

A Case Study in High-level Design and Validation

Eric S. Chung, James C. Hoe

Computer Architecture Lab at Carnegie Mellon

Carnegie Mellon University

Pittsburgh, PA 15213

{echung, jhoe}@ece.cmu.edu

Abstract

We have developed a 16-way multithreaded microprocessor called
BlueSPARC. This in-order, high-throughput processor incorporates
complex features such as privileged operations, memory management,
and a non-blocking cache subsystem. When supported by a hybrid
simulation technique that handles rare, unimplemented behaviors in
a software host, the BlueSPARC microprocessor runs unmodified
UltraSPARC III-based commercial applications on Solaris 8 while
hosted on a single Xilinx XCV2P70 FPGA clocked at 90MHz. This
significant effort was achieved in under one man-year using a high-
level language and a high-level validation approach. In the first part
of the paper, we describe our experience in applying the Bluespec
SystemVerilog (BSV) language to develop a large hardware design
that must meet specific area and performance requirements. In the
second part of the paper, we present the FPGA-accelerated validation
approach we employed to check the correct execution of real multi-
threaded programs running on the BlueSPARC processor. We discuss
the challenges and our solutions to validation in the presence of full-
system interactions and microarchitectural nondeterminism.

1. Introduction

This paper presents a case study of the high-level design

and validation of a 16-way multithreaded microprocessor

called BlueSPARC. BlueSPARC is not a microprocessor in

the usual sense. Rather, BlueSPARC is an execution en-

gine implemented in FPGA to accelerate an UltraSPARC

III architectural-level full-system multiprocessor simulator [1]

(with capabilities similar to Simics [2]). To avoid unnecessary

development effort, the BlueSPARC processor only imple-

ments the common-case ISA behaviors. When supported by a

hybrid simulation technique that handles the unimplemented

instructions in a nearby software host, BlueSPARC is fully

capable of running real operating systems and applications.

Despite its specialized usage in simulation acceleration,

BlueSPARC’s basic design is typical of an efficient multi-

threaded in-order pipelined microprocessor and supports the

non-trivial subset of UltraSPARC III ISA features neces-

sary to efficiently accelerate simulation of operating sys-

tems and commercial SPARC applications. These features in-

clude privileged-mode operations, implementation-dependent

instructions, and a memory management unit. Further, the

implementation is governed by specific area and performance

constraints, requiring us to pay careful attention to imple-

mentation quality and to pursue aggressive microarchitectural

optimizations such as a non-blocking cache subsystem.

Surprisingly, the BlueSPARC microprocessor was devel-

oped in a short amount of time—under one man-year. This can

be partially attributed to our use of a high-level hardware de-

scription language called Bluespec SystemVerilog (BSV) [3].

In BSV, the behavior of a system is described as a collection

of “atomic” operations in the form of rules. Throughout the

development, rules reduced the amount of effort needed to

capture complex concurrency scenarios, such as an imple-

mentation of the BlueSPARC processor’s non-blocking cache

controller. In many cases, rules allowed us to easily describe

sharing of port-limited resources and also facilitated incre-

mental design changes without undue complication. In later

sections, we will discuss detailed examples of how rules and

other BSV features were used to simplify the development and

present cases where unexpected difficulties were encountered.

Despite the benefits of using a high-level language, nearly

half of our overall development time was still spent in vali-

dating the BlueSPARC microprocessor. To develop confidence

in our implementation, it was necessary to not only validate

individual instructions but to also consider the wide range of

interleaved behaviors possible when multiple threads execute

and compete for limited resources within a single pipeline.

Unfortunately, the slow performance of RTL simulation was a

major limitation to fully validating the BlueSPARC processor.

To overcome this, we developed an approach that validates

the correct execution of multithreaded programs to completion

while running on an FPGA prototype. To accommodate nonde-

terministic behaviors, a full-system replay method was used to

maintain agreement between our implementation in FPGA and

a “golden” reference simulator. Our validation method allowed

us to check billions of instructions and was instrumental in

closing the validation “last mile” where RTL simulation was

too slow to exercise the rarest design bugs.

During the development of BlueSPARC, the use of BSV did

not prevent us from paying careful attention to implementation

quality. In comparison to other synthesizable FPGA-based

processors based on conventional RTL flows, the BlueSPARC

microprocessor achieves comparable clock frequencies with-

out occupying an unreasonable amount of area. For example,

when synthesized for a Virtex-5 LX110T FPGA, a 16-way

BlueSPARC processor operates at 125MHz, and uses 34%

of available logic and 85% of available SRAMs. For an

approximate comparison, an OpenSPARC T1 core ported to

FPGAs [4, 5] runs at up to 50MHz and consumes 74% of

available logic and 78% of available SRAMs in a 4-threaded

configuration. Although the T1 supports a complete ISA and

implements more advanced microarchitectural features, the

BlueSPARC processor shares similarities such as multithread-

ing for throughput and salient features of a 64-bit SPARCV9-

based ISA.

Outline. The rest of the paper is organized as follows.

Section 2 describes the BlueSPARC microarchitecture, its

design rationales, and the hybrid simulation features used to

provide full ISA compliance. Sections 3 and 4 describe the

high-level design and validation approaches. Section 5 covers

related work, and Section 6 offers a summary and concludes.

2. Background

In the following sections, we provide an overview of the

BlueSPARC microarchitecture, the hybrid simulation con-

cepts, and a brief introduction to the BSV language. We first

explain the context behind the development of BlueSPARC,

its microarchitecture, and the major sources of complexity. In

addition, we also introduce the reader to BSV and highlight

its features most relevant to our efforts.

2.1. FPGA-Accelerated Simulation

The BlueSPARC multithreaded processor was not conceived

as a stand-alone processor but as a multiple-context ISA

emulation engine at the heart of an FPGA-accelerated full-

system multiprocessor simulator [1]. Today’s state-of-the-art

software-based full-system simulators (e.g., Simics [2]) are

too slow to simulate large-scale multiprocessor systems. Our

project has developed a novel FPGA-accelerated functional

simulator that uses hardware virtualization to attain the benefit

of FPGA-acceleration without the complexity and cost of

conventional large-scale FPGA prototyping.

Fig. 1 illustrates our FPGA-accelerated simulation concept.

One of our first goals in functional-level simulation is to

decouple the complexity of the simulated system from the

true complexity of the underlying hardware platform. Rather

than implementing each logical processor individually, our

FPGA-accelerated simulation maps multiple logical processors

onto the multithreaded BlueSPARC engine. In this paper, we

present a system with only one instance of the BlueSPARC

engine, which handles up to sixteen logical processor contexts.

A full-system simulator must be accurate and complete

to support the execution of operating systems and unmodi-

fied binary executables. However, not all details have to be

captured and accelerated in FPGA. Consequently, only the

common-case ISA behaviors are implemented in the BlueS-

PARC processor, with the rare behaviors relegated to software

simulation. In our implementation using Xilinx FPGAs [6], the

BlueSPARC processor is augmented with a SPARC instruction

set simulator running on an embedded PowerPC. To handle

memory-mapped I/O instructions, the PowerPC communicates

with an off-chip I/O device simulator based on Simics. When

Shared Memory

Multithreaded

Processor

CPU0

Multithreaded

Processor

CPU124

Multithreaded

Processor

CPU4

…
Logically

simulated

Processors

Simulation

engines hosted

in FPGAs

Fig. 1. Multithreaded host interleaving.

TABLE 1. Selected partitioning in hybrid simulation.

BlueSPARC Integer ALU instructions
(FPGA) Register windows

General Traps, Device+IPC Interrupts
I-/D- memory management unit
Standard V9 privileged instructions
Memory instructions + atomics

On-chip simulation Multimedia instructions
(On-FPGA PowerPC macro) Floating Point instructions

Rare TLB operations (e.g., shootdown)

Off-chip simulation (Simics) I/O devices

supported by this hybrid simulation approach, BlueSPARC

presents a fully-compliant UltraSPARC III abstraction to the

OS and applications of the simulated system.

Table 1 summarizes the common-case subset of the Ultra-

SPARC III that is supported natively in BlueSPARC versus

the remaining instructions and behaviors relegated to embed-

ded software simulation and off-chip Simics. Notice that the

common subset supported by BlueSPARC does include many

privileged instructions and a large portion of the memory

management unit. Also note that all floating-point-related

features are software-simulated in the version of BlueSPARC

presented in this paper.

The final implementation statistics are shown in Table 2.

While hosted on a Xilinx Virtex-II Pro 70 FPGA on the

BEE2 multi-FPGA platform [7], BlueSPARC in combination

with hybrid simulation successfully runs a 16-CPU Solaris 8

image, and can execute various multithreaded workloads such

as the Oracle TPC-C benchmark. A more detailed workload

TABLE 2. Final BlueSPARC statistics.

Processing Nodes 16 64-bit UltraSPARC III Contexts
14-stage fine-grained multithreaded pipeline

Caches 64KB I-cache, 64KB D-cache, 64B, d-mapped
Writeback, Non-blocking, alloc-on-write
16 outstanding misses, 4-entry store buffer

Speed/Capacity 90MHz / 4GB total memory

Resources (XCV2P70) 33,508 LUTs (50%), 222 BRAMs (67%)

With debug+monitors 42,206 LUTs (65%), 238 BRAMs (72%)

EDA tools Bluespec SystemVerilog, EDK 9.2i, ISE 9.2i

Statistics 25K lines Bluespec, 511 rules, 89 modules

SE
LE

CT

I-
TL

B A

I-
TL

B B

FE
TC

H A

FE
TC

H B

D
EC

EX
U A

EX
U B

D
-T

LB
A

D
-T

LB
B

D
-T

LB
C

M
EM

A

M
EM

B

W
B

Scheduler I-cache
V9

decoder

F-ALU

(add,

sub,

shift)

D-MMU

x16

I-MMU

x16
D-cache

I/O

Unit

Tplant

Unit

RegFile

x16

Irpt

+Timer

Unit

ASI

decoder

Ld/St

Unit

Wb

Unit

Interprocessor

Cross-call
S-ALU

(mul,

div)

µcode

Engine

Fig. 2. BlueSPARC: A 16-CPU 14-stage instruction-

interleaved multithreaded pipeline.

evaluation can be found in [1]. The BlueSPARC processor

runs at 90MHz on the Virtex-II Pro 70 while only consum-

ing 50% of the available logic. As mentioned earlier, our

results are comparable to FPGA-optimized soft cores such

as the Xilinx MicroBlaze [8] or the OpenSPARC T1 edition

for FPGAs [4]. These competitive characteristics were made

possible by significant optimizations such as deep pipelining

and paying careful attention to area and timing constraints.

2.2. The BlueSPARC Microarchitecture

When considered by itself, BlueSPARC is a highly threaded

microprocessor that supports up to 16 independent 64-bit

UltraSPARC III V9 processor contexts. Each context maintains

its own register file (with eight register windows each) and a

complete set of ancillary and privileged registers. Other struc-

tures such as the TLBs are also replicated for each context.

All of the contexts share and are interleaved onto a single 14-

stage pipeline, where only one outstanding instruction from

each context is permitted to execute at any given time [9]. To

maintain a shared-memory abstraction, all of the threads share

a single-level I- and D-cache.

Fig. 2 illustrates the high-level pipeline organization. Start-

ing at the left, a scheduler issues ready instructions into

the pipeline using a round-robin scheduling order (to pre-

vent thread starvation). As an instruction passes through the

pipeline, a unique context identifier is associated with it and

used to index various structures and registers that are repli-

cated (e.g., register files, TLB). In the common-case, simple

instructions complete at the writeback stage, and its associated

thread is reconsidered for another round of scheduling.

A number of long-latency conditions can cause a thread to

be de-scheduled from the pipeline; these operations are non-

blocking with respect to other threads, which can continue to

utilize the pipeline. These conditions could arise from misses

in the I- and D-cache as well as a number of instructions that

require complex multi-cycle handling. In the next section, we

describe these complex behaviors in more detail.

2.3. Complexities in BlueSPARC

Despite a deliberate attempt to simplify the design, BlueS-

PARC is still a non-trivial processor implementation due

to (1) significant complexities inherent in the subset of the

UltraSPARC III ISA implemented and (2) the need to support

highly concurrent non-blocking execution of many threads

in a pipeline. We highlight the primary sources of design

complexities below.

Memory management and non-blocking caches. The Ul-

traSPARC III memory management unit supports complex

features such as software-programmable page modes, flexible

TLB replacement policies, and selective TLB flush operations.

These details are exercised frequently and must be supported

natively in BlueSPARC. In a single-threaded pipeline, these

procedures can be carried out by serializing the pipeline and

handled off the critical path. In our multithreaded pipeline,

to avoid severe performance penalties in several target appli-

cations, complex multi-cycle instructions used in a software

TLB handler must be allowed to operate upon a TLB structure

concurrently accessed by other threads.

To provide high-throughput execution, BlueSPARC imple-

ments an aggressive and complex memory subsystem where

both the I- and D-cache controllers support up to 16 in-

dependent misses to main memory. These controllers are

further complicated by the need to support different concurrent

operations on cache arrays with limited FPGA BlockRAM1

port bandwidth. For example, in addition to regular loads and

stores, operations such as cache fills and invalidations must be

supported as independent threads continue to execute.

High number of pipeline stages. To achieve high per-

formance, it was necessary to pipeline the microprocessor

into many stages. For example, over 100 BlockRAMs are

accessed during TLB lookups, which makes routing at high

FPGA clock frequencies a major challenge. We were unable

to reduce the TLB sizes because the UltraSPARC III ISA

architecturally specifies the sizes exactly [10]. To implement

and route these structures at high clock frequencies, a 3-stage

D-TLB lookup was used. In addition to pipelined structures,

we opted to serialize the TLB and cache lookups to avoid

issues associated with virtual indexing. Finally, other stages

such as the functional units were heavily pipelined as well to

accommodate a 64-bit datapath.

Microcoded and transplanted execution. Fig. 2 shows other

components off the critical path that handle instruction behav-

iors outside the normal pipeline operations. For example, a mi-

crocode engine reuses the normal pipeline to carry out a large

number of complex, implementation-specific instructions, that

either require interaction with other FSMs (e.g., interprocessor

interrupt) or require multiple passes in a pipeline to complete

(e.g., a 64B BLOCK LOAD instruction which writes to

eight consecutive floating-point registers). To reuse resources,

the microcode engine decomposes such complex instructions

into existing, implemented SPARC instructions, allowing for

arbitrary computation and state updates.

One last component that deserves special mention is the

transplant unit, which offloads unimplemented behaviors (such

1. BlockRAM is Xilinx terminology for on-chip dual-ported SRAM mem-
ories.

as memory-mapped I/O or rarely-used instructions) into soft-

ware simulation. As noted earlier for the purpose of handling

unimplemented instructions, the BlueSPARC microprocessor

is augmented with a SPARC instruction set simulator run-

ning on a nearby embedded PowerPC. In the event of an

unimplemented instruction (e.g., FP instruction or I/O), the

transplant unit notifies the embedded PowerPC using an

interrupt. Thereafter, the PowerPC will either simulate the

unimplemented instruction, or in the case of memory-mapped

I/O, send the request to an off-chip I/O device simulator based

on Simics. Once the unimplemented behavior is carried out,

the updated state is reinserted into BlueSPARC using the

microcode engine mentioned earlier. Note that as transplants

are being carried out, other independent threads continue to

execute in the pipeline. At present, only one outstanding

transplant is supported.

2.4. Bluespec Overview

As mentioned in the introduction, the BlueSPARC micro-

processor was developed using the Bluespec SystemVerilog

(BSV) language. The two BSV features most extensively

used in our development were: (1) the ability to formulate

atomic state changes using guarded rules, and (2) the ability

to leverage high-level software-like abstractions.

In BSV, rules are declared using the “rule” keyword, an

uninterpreted name, and a Boolean predicate. When the pred-

icate of a rule evaluates to true, the rule becomes eligible

to “fire”, in which the state updates declared within its body

are atomically executed in a single clock cycle. In BSV, the

firing of all rules must appear to execute sequentially without

overlaps, i.e., there are no conflicts with other rules. Conflicts

potentially occur when two or more rules are eligible to fire

in the same clock cycle and specify updates to the same

state. To facilitate such shared updates between rules, the BSV

compiler is responsible for mapping rules into clock cycles

in a synchronous RTL design while obeying the atomicity

requirements. When possible, BSV generates hardware that

schedules as many possible conflict-free rules to fire in a

given cycle. In addition to the scheduling of rules, BSV

automatically infers the necessary control logic and datapath

to arbitrate concurrent accesses to shared state, for example,

by adding a MUX to a register written to by two separate

rules.

Finally, in addition to atomic rules, BSV provides a va-

riety of high-level programming language features, such as

parameterized types and structs, iterators, containers, and

functional programming language structures. The high-level

abstraction of the language allows for symbolic and highly

parameterizable descriptions of hardware.

2.5. Example of Design with Rules

As mentioned previously, the BlueSPARC microprocessor

focuses on high-throughput execution by implementing a non-

blocking cache controller, with support for up to 16 indepen-

dent cache misses. Fig. 3 illustrates a simplified BSV example

focusing on the three independent logical operations (lookup,

cache fill, and flush) the cache controller must support. The

lookup operation is executed on most cycles as threads proceed

through the memory stages of the BlueSPARC processor’s

pipeline. The cache fill operation occurs when the lookup

operation misses in the cache and a request to main memory

is initiated. Finally, the flush operation is used to handle

invalidation of cache blocks.

To activate any of these operations, the cache controller

logic asserts various signals shown in each of the rules’

predicates (e.g., doLookup, doTagcheck, doFlush, etc.). Note

that it is desirable to support these operations concurrently

without unnecessarily blocking each others’ operation. The

operations must also share the bandwidth-limited data and tag

arrays, each with only one read port and one write port (a

limitation of Xilinx BlockRAMs2).

In our cache controller example, memory ports are limited

resources. To represent memory ports in our example, we

utilize BSV methods. An example of a method is shown in the

TagCheck rule of Fig. 3 (left) where an entry in the data array

is written to using a single cache port (data arr.write(address,

data)). While BSV methods appear to look like functions with

unclear meaning in hardware, they simply represent interfaces

to other modules through a collection of data and control

wires. When the data arr.write(...) method is called during the

firing of a rule, the wr en signal is asserted and the wr addr

and wr data buses will receive the arguments specified by the

rule. When two or more rules use the same data arr.write(...)

method, the BSV compiler automatically inserts control logic

and multiplexers to arbitrate the shared use of wr addr and

wr data.

3. BSV Design Methodology

In the following sections, we discuss how rules helped and

where they introduced unexpected difficulties.

3.1. Designing with Rules

Improving code readability and flexibility. While developing

our cache controller, a benefit we found with using BSV is

how methods and rules provided us with a level of abstraction

closer to a literal translation of our specification. In the exam-

ple shown in Fig. 3, note how the body of each rule represents

an isolated logical operation, in a manner that is close to the

high-level cache specification. For example, the cache lookup

operation consists of two rules (operating on adjacent clock

cycles) where the first rule initiates a synchronous read to

the memories, while the second rule performs a tag check

(and generates a miss request to main memory, if necessary).

In all of the rules, both of the cache tag and data methods

2. Note, since we map the caches onto BlockRAMs, each of the cache
reads must be synchronously split across two cycles (i.e., the value bus is
only valid one cycle after rd en is asserted in Fig. 3). This is an inherent
limitation of Xilinx BlockRAMs.

rule step0_CacheLookup (doLookup && !doFlush);

tag_arr.read(addr);

data_arr.read(addr);

endrule

rule step1_TagCheck (doTagcheck && !doFlush);

tag = tag_arr.value();

data = data_arr.value();

Bool hit = isHit(tag);

if(is_store && hit) data_arr.write(…, newdata);

else if(!hit) // writeback old block, generate miss

if(dirty(tag)) writeback_block(…, data);

generate_miss(…);

endrule

rule step0_FillNewBlock

(doFill && !doTagcheck &&

!doFlush);

new_data = dataFromMemory();

data_arr.write(…, new_data);

tag_arr.write(…, formNewTag(…));

endrule

rule step0_CheckDirtyBlock

(doFlush && !flushPend);

tag_arr.read(addr);

data_arr.read(addr);

flushPend <= True;

endrule

rule step1_FlushToMemory

(doFlush && flushPend);

if(dirty(tag_arr.value()))

writeback_block(…, data_arr.value());

flushPend <= False;

tag_arr.write(…, InvalidTag());

endrule

rd_en rd_addr value wr_addrwr_en din
Write

port
Value

port

Read

port

rd_en rd_addr value wr_addrwr_en din

Lookup

Op
Cache fill

Op

Flush

Op

Data Array Tag+status array

Fig. 3. Multiple concurrent logical cache operations share a cache memory with one read and one write port.

are accessed as if in isolation. Clearly, however, there are not

enough ports (or “methods”) that allow all of the rules to fire

concurrently. Nevertheless, the rule-based semantics of BSV

allow us to describe each of the scenarios independently, as if

the rest of the system was “frozen”.

Another benefit we found with rules was the ease in

which we could add or remove rules with minimal changes

to existing code. For example, while developing our cache

controller, the additional features developed later in the de-

sign cycle (e.g., cache flush) required only minimal changes

to the existing lookup and fill operations. Often, the only

modifications necessary to existing rules were the predicates

that determine the rule-firing conditions. In general, we found

this to be true as well for other complex components in the

BlueSPARC processor, such as the memory management unit

or the microcode engine. Using BSV, the incremental bring-

up of new behaviors was facilitated by simply adding new

additional rules to an existing module.

Rule overhead cost. An initial concern we had with BSV is

whether rules, methods, and high-level features could poten-

tially limit low-level area and timing optimizations. Without

fully understanding the abstraction of methods and rules, it was

certainly possible to design sub-optimal circuits. However, as

mentioned previously, the semantics of methods are clearly

defined, and so long as designers remember what they repre-

sent (a bundle of data and control wires), then observing their

timing and area implications remain clear. Furthermore, in the

case of rules, we were able to roughly estimate (and confirm

through synthesis) the overhead of automatically generated

signals and datapath muxes by simply examining a shared

sequential element (e.g., register) and counting the number of

rules that independently write to it. We found that to the first

order, the size of the multiplexer and the number of control

inputs scales with the number of rules writing to that element.

Rule scheduling. Another concern with BSV is that rules

could be selected to fire in a nondeterministic order, and

that designers give up “control” of the dynamic ordering of

events. In a scenario where rules have insufficiently guarded

predicates (i.e., rules are not mutually exclusive), BSV does

resort to an arbitrary static priority. We found that in most

cases, allowing the BSV compiler to infer the scheduling

automatically led to unexpected behaviors and bugs. When

rules conflict and an arbitrary decision must be made, the BSV

compiler will issue warnings that indicate unanticipated hard-

ware behavior. In our cache controller example, we ensured

that all rules are conflict-free and clearly define a preferred

order of logical operations. For example, in Fig. 3, if both the

doLookup and doFlush signals are asserted, all cache flush

rules would take precedence over all cache lookup rules and

avoid a possible memory port conflict.

The exact formation of rule predicates has implications for

both functional correctness and performance. Consider the

example in Fig. 3 where all of the lookup rules are prioritized

over the cache fill rules. When load or store instructions are in

the tag check stage of the pipeline, cache fills are automatically

suppressed. While this opportunistically avoids stalling the

pipeline to satisfy a fill, pathological code sequences could

arbitrarily delay cache fills. A correct implementation must

guarantee that the cache fill operation will eventually have an

opportunity to fire its rules. In our example, we resolve this by

having the pipeline detect long-waiting memory acknowledge-

ments and temporarily de-asserting cache lookups to allow the

fill to complete.

Retaining microarchitectural control. Although rules pro-

vide a higher level of abstraction over conventional RTL

languages, we did not find this to be a limiting factor when

developing the specific microarchitecture we had in mind. In

BSV, all resources and datapath elements (e.g., pipeline stages)

are explicitly instantiated and managed through single-cycle

rules. This level of abstraction allowed us to capture fine-

grained, low-level details, such as the lockstep transfer of

data between pipeline stages. The use of rules also did not

preclude the description of purely synchronous activity. For

example, while interfacing with non-BSV components such

as existing Xilinx FPGA IP blocks (e.g., DDR2 controller), it

was necessary to hand-shake with existing interfaces using

specific synchronous protocols. By writing our rules in an

FSM-like manner, we were able to develop interfaces to non-

BSV components without any major limitations.

3.2. BSV Limitations

Single-cycle rules. In BSV, the firing of a rule occurs within

the boundary of a single clock cycle. While this abstraction

is conceptually intuitive, not all high-level logical operations

map efficiently into a single clock cycle. For example, writing

a 64-byte cache block into a data array using a single rule

may be simpler to reason about, but could result in prohibitive

wiring and logic costs. In contrast, fragmenting the block into

smaller parts may yield a more area-efficient implementation

but at the complexity of having to use multiple rules operating

over multiple adjacent clock cycles to complete the logical

transaction.

In our experience, we found that there was a tension

between the desire to simplify the hardware using fewer rules

but at the cost of increased area or timing overheads. In

addition, when high-level operations are spread over multiple

rules, the atomicity guarantees of such high-level operations

must be explicitly enforced by the designer, which in some

cases, becomes similar to the manual effort needed when

using conventional HDLs. Using the example in Fig. 3,

we illustrate a possible atomicity violation. If the signals

doLookup, doFlush, and doTagcheck are asserted in sequence

over consecutive cycles, it would be possible to execute rules

in this order: step0 CacheLookup, step0 CheckDirtyBlock,

and step1 TagCheck. The step1 TagCheck rule would receive

an incorrect tag value. To maintain atomicity of the high-level

lookup operation, the cache controller logic must be designed

in mind to prevent such scenarios. Nevertheless, despite these

issues, we found that managing atomicity for multiple rules

was never more difficult than having to achieve the same

guarantees using a conventional HDL. Furthermore, managing

multiple rules still requires less effort than micro-managing the

control logic for individual hardware resources.

Obscurity of generated Verilog. One drawback we encoun-

tered was the difficulty in relating the generated Verilog code

back to components in the original BSV description. As our

design increased in size, the generated Verilog became more

difficult to read. This made critical path timing analysis in

downstream FPGA tools challenging and time-consuming.

This issue was partially addressed by enabling special com-

piler flags to retain certain signal names, but further compiler

improvements are needed to avoid the tedious inspection of

generated Verilog.

Coping with long compile times. The last drawback we

encountered was long compile times for large designs. A clean

compilation that takes our BSV description all the way to

Verilog requires 30 minutes on a 3GHz Core 2 Duo. From

a debugging perspective, which requires simulation at the

Verilog-level, this posed a significant overhead during the

edit-simulate-debug cycle. To reduce this, we restructured the

code base to facilitate incremental BSV compilation using

(*synthesize*) pragmas. Such pragmas allow sub-modules to

be compiled into Verilog without requiring a complete re-

build. We generally found that the compiler struggles when the

number of rules is large (hundreds) or when rules have weak

predicates (requiring checking of mutual exclusion). One way

to overcome this was to reduce the compiler’s rule scheduling

effort level and to improve predicates such that rules were

mutually exclusive.

3.3. Other Features of BSV

Apart from rule-based synthesis, we also made extensive

use of other language features to assist in our development.

Type-checking. One of our most important uses of BSV was

to take advantage of the advanced type-checking system to

avoid common errors such as the incorrect assignment of wires

of different widths. As a result, from the beginning, we made

a conscious effort to describe as much of the internal state as

possible using meaningful types and structs that correspond

exactly to the UltraSPARC III reference manual. In the end,

we had well over 100 unique types to capture all possible state

elements in the design.

This decision increased significantly the readability of the

code and allowed our design to be more maintainable for

future architectural additions or adjustments. For example, our

SPARC V9 decoder is entirely symbolic and is as readable and

easy-to-understand as the comparable sections in a software

simulator. This allowed us to make changes easily to instruc-

tion behaviors and to even add special customized instructions

with ease (e.g., hardware breakpoints).

Advanced uses of static elaboration. BSV supports exten-

sive parameterization and advanced static elaboration, which

allows for convenient ways to both represent and manipulate

structures in hardware. Through the use of parameterizable

container objects such as Lists and Vectors, we were able to

instantiate and manipulate a large number of structures with

very few lines of code. These containers were used extensively

in both the MMU and the cache controllers to describe large

collections of BlockRAMs.

We were also able to define generic containers for com-

mon datapath elements and conveniently pass their references

around to modules corresponding to pipeline stages. For

example, we could define a new struct called Datapath, which

includes interfaces to all of the datapath components in BlueS-

PARC (e.g., data caches, register files, TLBs, etc.). In various

modules corresponding to pipeline stages, any particular stage

can conveniently access the interface belonging to a desired

component. For example, the decoder module could access

the register file entirely through the Datapath object. When

introducing new datapath components, only the Datapath type

requires modification.

Mixed-language designs. On occasion, downstream synthesis

tools such as Xilinx XST [11] had difficulty identifying

non-logic macro blocks (e.g., BlockRAMs) from Bluespec-

generated Verilog. To address this problem, we utilized BSV’s

ability to import external Verilog code into BSV modules. This

allowed us to re-write certain primitives (e.g., BlockRAMs,

Distributed RAMs) using XST-friendly Verilog and to use

them within our BSV designs. Unfortunately, the major draw-

back of importing Verilog is losing the ability to simulate our

designs using the Bluesim simulator, which is a faster-than-

RTL, rule-based simulator produced by the BSV compiler.

Assertions. A critical debugging strategy we adopted was

to implement hardware-based assertions to validate invariants

both in simulation and at runtime on the FPGA. While

BSV provides a set of simulation-only assertions (Assert

package), we developed an assertion package (HwAssert) that

is synthesizable into hardware and can be serially monitored

by an in-system synthesizable logic analyzer such as Xilinx

Chipscope [12]. In BSV, assertions are clean in description

because they exist only within rules (unlike assertions in

conventional HDLs). Because of this, an assertion is only valid

when its associated rule is firing. Therefore, any predicate

associated with the rule is implicitly AND’ed with the asser-

tion’s Boolean expression, which avoids having the designer

to describe under all circumstances when an assertion is valid.

Our implementation also allowed us to group assertions into

different categories (e.g., Cache, MMU) and to monitor them

independently during runtime.

The assertions we used proved invaluable in detecting a

significant number of bugs (ranging from functional bugs to

ISA specification errors). For example, the types of assertions

checked include:

• Queue overflows or underflows

• Mismatches in request-acknowledgement pairs (e.g.,

memory lookup/ack)

• Boundary checking of physical addresses

• Address misalignment

• Use of reserved instruction fields

• Validity of opcode combinations

• Forward progress for all the threads

• Suspicious exceptions (e.g., illegal instruction trap)

• Ensuring certain tag and status bit combinations never

occur in the caches

• Logical invariants in the pipeline (e.g., the total sum of

all threads at any given time must equal to 16)

Multiple clock domains. While debugging hardware, oper-

ating the BlueSPARC processor at a lower clock frequency

was useful in reducing the amount of time needed to place

and route the design on the FPGA. To facilitate this, the

BlueSPARC processor was placed in a separate clock domain

from all other components, including the memory controllers,

the embedded PowerPC, as well as the processor bus. BSV

allowed us to add quickly multiple clock domains without

introducing unwanted synchronization errors, because the no-

tion of clock domains is explicitly built into the type system

of the BSV compiler. When partitioning rules into multiple

clock domains, the compiler can then statically detect cross

clock-domain violations when there is unsynchronized com-

munication between rules.

4. High-Level Validation Approach

While the use of a high-level language such as BSV limited

certain classes of common design errors that could occur, fully

validating the BlueSPARC design in itself was still necessary.

Functional design bugs such as specification errors, deadlocks,

or accidental queue overflows were all still possible. Below,

we discuss two challenges we faced while initially developing

our validation strategy.

First, one of the key requirements for the BlueSPARC

microprocessor (when supported by hybrid simulation) is the

ability to reliably execute unmodified, commercial binaries

in a full-system environment. Developing confidence in the

correctness of our full-system implementation requires us to

consider not only the microprocessor individually but also its

interactions with other complex components such as peripheral

devices and the hybrid simulation mechanisms themselves.

Many full-system interactions (e.g., DMA, multiprocessor

TLB shootdown) can be difficult to test with confidence, es-

pecially through manual assembly programs that only validate

individual instructions. Furthermore, individual instruction val-

idation may not be able to expose unexpected concurrency

bugs when multiple threads execute and compete for limited

resources within a single pipeline.

Second, a major obstacle we faced is the slow performance

of detailed RTL simulations. Using Verilog RTL simulations,

we were unable to check more than 100s of instructions per

second while simulating the BlueSPARC processor. Ideally,

simulating and validating our target workloads to completion

would allow us to achieve higher confidence in the imple-

mentation. However, long benchmark lengths of up to tens or

even hundreds of billions of instructions make software-based

simulations impractical.

In the next section, we discuss our solution to these chal-

lenges using a fast, full-system validation technique to exercise

and test the full range of behaviors observable in BlueSPARC.

4.1. In-System Validation Using FPGAs

To meet our functional validation goals while achieving

acceptable performance, we developed a technique that uses

the FPGA directly to accelerate the testing of multithreaded

applications running on the BlueSPARC processor. To verify

the correct execution of programs, a model of an UltraSPARC

III-based multiprocessor system from Virtutech Simics is used

as a “golden” software reference model to generate the correct

output. By accelerating our testing on an FPGA and running

our multithreaded workloads to completion, we expect to

increase confidence in our implementation by fully exercising

a wide range of behaviors possible when multiple threads

interact within a processor pipeline, and in the presence of

full-system interactions. (Note: conventional RTL simulation

was still used during the early stage of development and

when simulating small test cases for validating individual

instructions.)

Before describing our technique in full detail, we first point

out the key challenges in implementing this FPGA-accelerated

validation approach:

• For multithreaded validation purposes, it is insufficient

to run simply the same multithreaded application in both

Simics and the BlueSPARC processor and to compare

their outcomes. While running a multithreaded program

on the FPGA-hosted BlueSPARC processor, nondeter-

ministic sources such as uninitialized state, multiple

clock domains, variability in DRAM access latencies, and

asynchronous interrupts all contribute to an unpredictable

interleaving of threads. To validate the output against

Simics, the same thread interleavings must be duplicated

by the reference multiprocessor model.

• The nondeterministic behavior also makes it difficult to

reproduce reliably design bugs that only occur after long

periods of execution.

• When a bug is detected, there must be sufficient infor-

mation to determine the location of the error and its

cause. This can be difficult given the low visibility of

FPGA hardware and not knowing a priori when to capture

internal signals (e.g., using a limited-window in-system

logic analyzer) for post-mortem debugging.

Fig. 4 illustrates the infrastructure and flow we developed

to facilitate nondeterministic multithreaded validation. Our

approach employs an in-FPGA Trace Recorder (TR) that

captures detailed full-system execution traces while a multi-

threaded application executes on an FPGA-hosted BlueSPARC

processor (see Fig. 4, left). To validate against the software

model, the execution traces are replayed in the reference archi-

tectural simulator to generate the correct output. Although not

shown in the Figure, the BlueSPARC processor is connected to

a full memory system and is also supported by the hybrid sim-

ulation mechanisms discussed in Section 2.1 used to support

full-system workloads and operating systems. This allows us to

test the BlueSPARC processor (and its peripheral components)

under the most realistic possible conditions by running real

applications on a real operating system. The actual applications

we tested ranged from 16-CPU multiprogrammed SPEC2000

applications to multithreaded commercial workloads such as

the TPC-C benchmark (Online Transaction Processing) in both

IBM/DB2 and Oracle. More details on the applications we

used can be found in [1].

To avoid the inconvenience of having to boot an operating

system and having to position a workload each time for testing,

we utilize the built-in mechanisms of Simics to generate

checkpoints of pre-positioned workloads in the form of device

“Golden”

Reference

Simulator (Simics)

Workload/Test

Replay

Traces

Unchecked

State
Checker

Correct

State

BEE2 FPGA Platform

FPGA 1

BlueSPARC

FPGA 2

Trace

Recorder

�

�

�

�

�

�

Fig. 4. Validation for the BlueSPARC processor.

state, a memory image, and 16 processors’ worth of register

files, TLBs, and CPU registers.

Beginning with step 1 in Fig. 4, a selected workload (in

the form of a Simics checkpoint) is loaded directly into

the BlueSPARC processor and its memory system to begin

execution on the BEE2 FPGA platform. (The same state

is also used to initialize a 16-CPU multiprocessor model

hosted within a reference full-system architectural simulator

for comparison purposes later). Once the state is loaded,

the BlueSPARC processor is instructed to execute a finite

number of instructions while delivering a continuous trace of

its execution over a high-bandwidth link to a secondary FPGA

(Fig. 4, left). On the secondary FPGA, TR records a runtime

trace of the global instruction retirement order, including the

occurrence of asynchronous events (e.g., interrupts). Overall,

the type of events necessary for deterministic replay were:

device interrupts, interprocessor cross-calls, timer interrupts,

the value of accessed timer registers, and device-to-memory

transactions (e.g., DMA). To buffer and store the instruction

traces and events, the secondary FPGA maintains a circular

buffer in DDR2 memory. One consequence of using DDR2

memory to store the traces is limited bandwidth during traced

executions. To avoid unrealistic backpressure, the BlueSPARC

processor’s clock was set to a lower value (e.g., 10MHz)

during validation.

Once the TR buffer reaches capacity, the BlueSPARC mi-

croprocessor pauses its execution while the trace is serially

read from memory into a software test harness (step 2 in

Fig. 4). To facilitate output comparison against the BlueS-

PARC processor, the multithreaded program running on Simics

is forced to execute the interleaving called for by the traces

to attain identical memory states (step 3 in Fig. 4). This was

achieved by using the built-in Simics APIs for manipulating

the order in which processors in a simulated 16-CPU system

should execute. Other events such as interrupts or DMA

were also delivered according to timestamps in the trace.

After the replay period, the architectural states of both the

BlueSPARC processor and the Simics simulator are compared

(step 4 in Fig. 4); this includes all 16 register files, TLBs,

and processor states. During traced executions, TR can also

record the addresses and values for all memory instructions,

which allows us to check explicitly every memory operation

during validation. For a given workload, this entire process

of running, replaying, and checking is repeated over and

over in quantums of instructions until an application runs to

completion. In general, we found that a quantum of 5000–

10000 instructions between comparisons was sufficient to

capture coarse-grained full-system interactions such as a full

DMA operation (i.e., beginning from programmed I/O setup

to the final device interrupt acknowledgement).

There is a tradeoff between (1) the quantum granularity,

(2) the bug detection coverage, (3) performance, and (4)

the ease of isolating a bug. Ideally, larger quantums lead to

lower performance overhead, because more instructions can

be checked per trace scan-out operation. However, making a

quantum too large can lead to masked architectural errors,

which affects the bug detection coverage. Lastly, a large

quantum interval (e.g., one million instructions) means finding

the actual error during mismatch can be difficult compared

to a much shorter interval (e.g., 10 instructions). In the next

section, we describe how we go about reliably detecting and

isolating bugs when architectural mismatches occur.

4.2. Diagnosing Errors

During checking operation, if an architectural state mis-

match is detected, it is necessary to identify the location and

the cause of the error within the instruction stream. This

process is often the most challenging and time-consuming

aspect of validation because the bug may not always reliably

be reproduced across multiple runs, due to nondeterminism.

Therefore, our TR component includes extra information to

help with “single-pass” debugging, in which enough infor-

mation is extracted during the original run to facilitate post-

mortem debugging.

Conventional FPGA debugging approaches often rely on in-

system logic analyzers such as Chipscope to capture internal

signals based off internal programmable triggers. Unfortu-

nately, in our situation, when an architectural mismatch occurs,

not only is the error difficult to reproduce, the source of

the error may have occurred many thousands of cycles ago.

Because tools like Chipscope are limited in sampling size

(subject to the constraint of on-chip memory capacity), there

is no easy way to capture the entire sequence of events that

led to the erroneous behavior.

TR addresses some of these problems by recording a large

amount of information per instruction during traced execution.

When an architectural mismatch occurs, this extra amount

of tracing information can be read out and used in post-

mortem analysis, where instructions are verified individually

and checked in terms of consistency with respect to other

instructions (instead of just checking the final architectural

state). For example, we can verify from a detailed trace that

every load to a physical address returns the correct value from

the prior store to the same address. We can also attempt to

reproduce error conditions in Verilog simulation by recording

the actual instruction words and the timestamps of when the

instruction enters a given pipeline stage. These techniques

allowed us to detect long-running bugs that would have been

difficult to find using slower RTL simulation.

TABLE 3. Simulating 1M instructions (VCS vs. FPGA).

Synopsys VCS verilog simulator

Traced execution 1383.9s (91.3%)
Trace extraction 0s (0.0%)
Simics replay 14.6s (1%)
Comparison 116.3s (7.7%)

Total time 1515s (25m15s)

FPGA-accelerated validation

Traced execution 0.2s (0.9%)
Trace extraction 6.9s (30.3%)
Simics replay 15.4s (67.9%)
Comparison 0.2s (0.9%)

Total time 22.7s

Speedup over VCS 66.7X

4.3. Coverage achieved using TR

TR accelerated our validation efforts significantly when

used in place of conventional software simulation debugging

practices. Table 3 shows a simple experiment comparing the

performance of our FPGA-accelerated validation technique

(running at 10MHz) against conventional software-based RTL

simulation using a commercial Verilog simulator, Synopsys

VCS [13]. To simulate and validate a total of 1 million

instructions for the 16-way BlueSPARC, the VCS simulator

running on a 3GHz Core 2 Duo requires over 25 minutes. By

comparison, the FPGA-accelerated approach is able to validate

the same number of instructions in 22.7 seconds, yielding a

speedup of 66.7X.

It is worth noting that in the case of FPGA-accelerated val-

idation, the dominant component in validation time is mostly

spent replaying and simulating the traced execution within

Virtutech Simics (67.9% of the time). It is also worth noting

that at 10MHz, very little time is actually spent executing the

real application on the FPGA (0.9%) compared to the trace

extraction process itself, which entails streaming of execution

traces from the BEE2 FPGA to a remote workstation (30.3%).

Nevertheless, using a single BEE2 FPGA platform, we

are able to validate more instructions than the combined

throughput of our 50-PC cluster in the same amount of time.

This technique allowed us to reach the “last mile” when even

months of simulations would not be able to uncover additional

corner cases caused by rare interleaving combinations and

uncommon interactions involving devices.

One notable success case was the attempt to diagnose a

rare memory system bug that would only occur once after

running 250 million instructions in an IBM DB2 TPC-H

benchmark. This memory bug would only occur if back-to-

back stores to two different words in a double-word aligned

address happened on consecutive cycles. TR provided enough

clues and information to reliably reproduce this behavior in

simulation. In total, TR allowed us to validate over 100

billion instructions, which gives us high confidence in our

implementation.

4.4. Limitations of TR

A limitation of TR is that it cannot detect microarchitec-

tural bugs that lead to processor hangs—for example, if the

scheduler enters an illegal state and cannot issue any more

instructions. Instead, we rely on synthesizable BSV assertions

to identify these types of bugs. Another limitation of TR is

the assumption of a sequentially consistent memory system.

In a more relaxed memory model, it is more difficult to

acquire matching architectural states between the hardware

and a reference software model since correct load values may

not be easily determined. Race recording techniques such as

[14] could overcome this limitation.

5. Related Work

In this paper, we described our experience in applying a

high-level hardware description language (BSV) to design and

synthesize a working processor that must meet specific perfor-

mance and area constraints. Although a number of processor

designs have been implemented using BSV [15, 16, 17, 18],

BlueSPARC is the first to be both built using BSV and

validated to the extent of being able to run real applications

and commercial operating systems.

There are many languages and design flows that support a

higher level of hardware design abstraction beyond conven-

tional register-transfer-level and behavior-level synthesis from

Verilog or VHDL. For example, languages like SystemC [19],

Catapult-C [20], and SpecC [21] retain the familiarity of

sequential programming languages while generating hard-

ware through automatic refinement and synthesis flows. In

the processor synthesis domain, there are frameworks that

can synthesize even more abstract ISA-level descriptions to

hardware implementations based on specific microarchitectural

templates [22, 23, 24].

The capability of these high-level approaches do not match

the requirements of our effort, where a high degree of control

and optimization of the datapath microarchitecture and oper-

ational timing is needed to meet our performance and area

constraints. While low-level languages such as Verilog offer

the finest degree of control, BSV still allowed us to maintain

control of the microarchitecture while retaining a style of high-

level description and synthesis. As noted in Section 2, the

quality of our implementation, in terms of performance and

cost, is on par with other examples of FPGA-based processors

developed using conventional RTL synthesis flows [4].

6. Conclusion

In this paper, we presented the development of a 16-way

multithreaded microprocessor called the BlueSPARC. When

targeting FPGAs, BlueSPARC is competitive with commercial

soft cores based on conventional RTL flows. In this paper,

we presented our experiences in using both BSV and a

high-level, full-system validation technique to develop the

BlueSPARC processor. Our experience showed that a high-

level methodology can be effective in the development of high-

quality synthesizable soft cores.

Acknowledgments

Funding for this work was provided in part by grants from

NSF CCF-0811702, NSF CNS-0509356, C2S2 Marco Center,

and SUN. We thank Xilinx for their generous FPGA and tool

donations. We also thank Bluespec for their tool donations and

support. We thank our colleagues in the RAMP and TRUSS

projects for their interaction and feedback. We also thank

SPARC International for providing their compliance tests.

References

[1] E. S. Chung et al., “A Complexity-Effective Architecture for Ac-
celerating Full-System Multiprocessor Simulations using FPGAs,” in
FPGA’08: Proceedings of the 16th International ACM/SIGDA Sympo-

sium on Field Programmable Gate Arrays. New York, NY, USA: ACM,
2008, pp. 77–86.

[2] P. Magnusson et al., “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb 2002.

[3] Bluespec, Inc. http://www.bluespec.com/products/bsc.htm.
[4] Microelectronics Group, Sun Microsystems, Inc., “OpenSPARC T1

FPGA implementation, Release 1.6 update,” 2008.
[5] T. Thatcher et al., “OpenSPARC T1 on Xilinx FPGAs–Updates,” 2008.
[6] Xilinx, Inc. http://www.xilinx.com.
[7] C. Chang et al., “BEE2: A High-End Reconfigurable Computing Sys-

tem,” IEEE Design and Test of Computers, vol. 22, no. 2, pp. 114–125,
2005.

[8] Xilinx, “MicroBlaze Processor Reference Guide,” 2009.
[9] B. J. Smith, “Architecture and applications of the HEP multiprocessor

computer system.” in Proceedings of SPIE - Real-Time Signal Process-

ing IV, pages 241-248, 1981.
[10] “UltraSPARC III Cu User’s Manual Version 2.2,” 2003.
[11] Xilinx, “Xilinx XST User Guide 9.2,” 2008.
[12] Xilinx, “ChipScope Pro.” http://www.xilinx.com/tools/cspro.htm.
[13] Synopsys. (2009) VCS. http://www.synopsys.com/Tools/Verification.
[14] M. Xu et al., “A regulated transitive reduction (RTR) for longer memory

race recording,” SIGOPS Oper. Syst. Rev., vol. 40, no. 5, pp. 49–60,
2006.

[15] R. E. Wunderlich et al., “In-System FPGA Prototyping of an Itanium
Microarchitecture,” in FPGA’04: Proceedings of the 2004 ACM/SIGDA

12th International Symposium on Field Programmable Gate Arrays.
New York, NY, USA: ACM, 2004, pp. 255–255.

[16] N. Dave, “Designing a Processor in Bluespec,” Master’s Thesis, EECS,

MIT, Jan 2005.
[17] K. Ekanadham et al., “IBM PowerPC Design in Bluespec,” in Technical

Report RC24706, 2008.
[18] F. Gruian et al., “VHDL vs. Bluespec system verilog: a case study on a

Java embedded architecture,” in SAC’08: Proceedings of the 2008 ACM

symposium on Applied computing. New York, NY, USA: ACM, 2008,
pp. 1492–1497.

[19] “SystemC: The Open SystemC Initiative.” http://www.systemc.org.
[20] Mentor Graphics. (2009) Catapult C. http://www.mentor.com/esl.
[21] D. D. Gajski et al., “SpecC: Specification Language and Methodology,”

2000.
[22] “PEAS-III: An ASIP Design Environment,” in ICCD’00: Proceedings

of the 2000 IEEE International Conference on Computer Design.
Washington, DC, USA: IEEE Computer Society, 2000, p. 430.

[23] O. Schliebusch et al., “RTL Processor Synthesis for Architecture Explo-
ration and Implementation,” in DATE’04: Proceedings of the conference

on Design, automation and test in Europe. Washington, DC, USA:
IEEE Computer Society, 2004, p. 30156.

[24] P. Yiannacouras et al., “The microarchitecture of fpga-based soft proces-
sors,” in CASES’05: Proceedings of the 2005 international conference

on Compilers, architectures and synthesis for embedded systems. New
York, NY, USA: ACM, 2005, pp. 202–212.

