
4065 1

Abstract – Due to reduction in device feature size and supply

voltage, the sensitivity to radiation induced transient faults of
digital systems increases dramatically. In this paper, we present
two approaches to evaluating the susceptibility of sequential
circuits to soft errors. The first approach uses Markov chain
theory, but can only provide steady-state behavior information.
The second approach uses symbolic modeling based on
BDDs/ADDs and circuit unrolling. The SER evaluation using this
approach is demonstrated by the set of experimental results,
which show that, for most of the benchmarks used, the SER
decreases well below a given threshold (10-7FIT) within ten clock
cycles after the hit. The results obtained with the proposed
symbolic framework are within 4% average error and up to
11000X faster when compared to HSPICE detailed circuit
simulation. The framework can be used for selective gate sizing
targeting radiation hardening leading up to 80% SER reduction
when applied to a subset of ISCAS’89 benchmarks.

Index Terms – combinational logic circuits, reliability,
sequential logic circuits, symbolic manipulation.

I. INTRODUCTION
NCE regarded as a concern only for space applications,
transient faults caused by radiation are becoming a major

barrier to robust system design manufactured at advanced
technology nodes like 90nm or smaller. The high data-
integrity and reliability requirements make these faults an
extremely important design aspect for microprocessors or
other commodity components. Therefore, the protection from
radiation induced transient faults has become as important as
other product characteristics such as performance or power
consumption [10].

A radiation-induced charged particle passing through a
microelectronic device ionizes the material along its path. The
free carriers that are created around the particle track can be
affected (attracted/rejected) by an internal electric field of the
device and result in an electrical pulse, single-event transient
(SET), large enough to disrupt normal device operation. This
disruption is not associated with any permanent damage to the
device and is thus called a soft error or a single-event upset

Manuscript received May 15, 2007, revised September 20, 2007, accepted

November 6, 2007. This work was supported in part by National Science
Foundation Grant CCF-0542644.

Copyright © 2007 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Natasa Miskov-Zivanov is with the Electrical and Computer Engineering
Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA (phone:
412-268-6648; e-mail: nmiskov@ece.cmu.edu).

Diana Marculescu is with the Electrical and Computer Engineering
Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
dianam@ece.cmu.edu).

(SEU). The effect of soft errors is measured by the soft error
rate (SER) in FITs (failure-in-time), which is defined as one
failure in 109 hours.

Traditionally, memory elements have been much more
sensitive to soft errors than combinational logic circuits. Three
factors prevented logic from becoming more susceptible to
soft errors:
• logical masking – to be latched, a SET has to propagate on a

sensitized path from the location where it originates to a
latch;

• electrical masking – due to the electrical properties of the
gates the glitch is passing through, it can be attenuated or
even completely masked before it reaches the latch;

• latching-window masking – the glitch will be latched only if
it reaches the latch in time by satisfying setup and hold time
conditions.
Technology scaling decreases the impact of the three

masking factors on radiation-induced SET. The reduction in
feature sizes and supply voltages allows lower energy particles
to result in SET. Reduced logic depth and smaller gate delays
decrease attenuation when the glitch propagates through the
circuit. Finally, the increase in clock frequency decreases
latching-window masking. Thus, SER in combinational logic
is increasing with every technology node and is expected to
become an issue beyond 90nm technology node. Moreover,
once a SET can propagate freely through the combinational
circuit, sequential circuits will become very sensitive to such
events [3]. This is due to the fact that, once latched, soft errors
can propagate through the sequential circuit in subsequent
clock cycles and thus affect the outputs of the circuit more
than once.

When an estimated SER for a given product is higher than a
given threshold, mitigation techniques need to be considered.
The most obvious way to eliminate soft errors would be to get
rid of the radiation sources that cause them. The solution for
the remaining SER would be to make different process and
technology choices. Furthermore, radiation sensitivity can be
reduced significantly by design and layout changes. Any
change, which increases critical charge while maintaining or
reducing collected charge, will improve the SER of a device.

In this work, we estimate the likelihood that a SET in a
sequential circuit will lead to errors in clock cycles following
the particle hit. Our main goal is to allow for symbolic
modeling and efficient estimation of the susceptibility of a
sequential circuit to soft errors. We apply the model proposed
in this work to find the gates that have the highest soft error
impact, that is, the gates that contribute the most to the soft
error failure rate of the logic circuit. We use this information

Modeling and Optimization for Soft-Error Reliability of
Sequential Circuits

Natasa Miskov-Zivanov, Student Member, IEEE, Diana Marculescu, Member, IEEE

O

4065 2

for selective gate resizing in order to significantly harden the
circuit with a reasonable area overhead.

The rest of this paper is organized as follows. In Section II
we give an overview of related work and outline the
contribution of our work. In Section III we briefly review the
sequential circuit preliminaries. Section IV presents the
application of Markov chain theory on steady-state SER
analysis. In Section V, we describe in more detail our
methodology for determining sequential circuit susceptibility
to soft errors. Section VI presents in more detail the proposed
radiation hardening approach. In Section VII, we report
experimental results for a set of common benchmarks. Finally,
with Section VIII we conclude our work.

II. RELATED WORK
Intensive research has been done so far in the area of

analysis of transient faults in both combinational and
sequential circuits [1]-[5], [8]-[11], [13]-[15], [20]-[24]. One
obvious approach is to inject the fault into the given node of
the circuit and simulate the circuit for different input vectors
in order to find whether the fault propagates [24]. However,
this approach becomes intractable for larger circuits and larger
number of inputs and thus gives way to approximate
approaches that use analytical and symbolic methods to
evaluate circuit susceptibility to soft errors. In this section, we
describe these methods that were used to find the
susceptibility to soft errors of combinational and sequential
circuits. We also briefly outline the contributions of our work
and compare it to previous work.

A. SER in combinational circuits
A number of methods have been proposed recently to

evaluate the susceptibility of combinational logic circuits to
soft errors. In [11],[21], the authors separate the analysis of the
three masking factors and include different heuristics to speed
up the evaluation of the soft error susceptibility. Noise
rejection curves or HSPICE simulation of inverter chains is
used to evaluate the effect of electrical masking while path
tracing or logic simulation is used to find the probability of
logical masking. These methods may not reflect the impact of
the internal node location and attenuation on the observability
of the glitch at the latched output and can also become very
inefficient for larger circuits.

Recently, several symbolic models have been developed to
estimate the susceptibility of logic circuits to soft errors. The
authors of [20] use Binary Decision Diagrams (BDDs) to
represent sensitized path information, as well as upset events.
However, their approach appears to rely on explicit
enumeration of BDDs corresponding to all input conditions
and assumes simple superposition of reconvergent glitches,
without considering their possible mutual masking.
Furthermore, since it doesn’t rely on using Algebraic Decision
Diagrams (ADDs), the approach in [20] cannot model
arbitrary input distributions, which can be handled with ADDs
via Dynamic Markov Models [7].

The approach proposed in [9] uses both BDDs and ADDs to
allow for a unified treatment of logical, electrical and latching-

window masking effects and has been shown to be very
efficient. When compared to another recent work [13] that
also includes all three masking factors, the method proposed
in [9] computes the SER much faster, while being more
accurate. For example, one run of the algorithm in [13]
assumes one specific input vector, and thus applies Monte
Carlo analysis leading to an average error of 16%, while the
work presented in [9] accounts for all possible input vectors in
one run by using BDDs and ADDs with the average error of
4%. The approach proposed in [9] is incorporated into our
analysis of sequential circuits and its main aspects will be
discussed in Section III.B.

B. SER in sequential circuits
Compared to the number of methods proposed for modeling

soft error susceptibility of combinational circuits, sequential
circuits have received less attention. Most of the previous
work in evaluating SER in sequential circuits has been done
using simulation. Approaches to this problem addressed
different levels of abstraction, starting with the device level
and circuit level, up to the system level. At the device level,
the most commonly used methods were the simulation based
on drift-diffusion model or Monte Carlo simulation. Although
very accurate, the drawback of methods used at this level of
abstraction is very high computational complexity. Circuit and
logic simulation are the next levels of abstraction at which the
effects of soft errors in circuits can be evaluated, but it again
requires large computational time, which rapidly increases
with the size of the circuit [5]. On the other hand, simulations
that can be used at the architectural level are much faster than
in previous methods that use fault injection, but are usually
applicable to very specific designs and are not general enough.
As in the case of lower levels of abstraction, these simulations
will also depend on chosen stimuli.

Similar to combinational circuits, the alternative to
simulation is analytical/symbolic modeling. However, while in
case of logic circuits one pass through the circuit is enough to
evaluate its susceptibility to given particle hit, in the case of
sequential circuits this evaluation becomes much more
difficult. Since sequential circuits have a feedback loop
leading back to the state inputs of the circuit, it is possible that
errors latched at state lines propagate through the circuit more
than once. Thus, the effect of a single particle hit can affect
outputs during several clock cycles. To consider this effect,
the analysis of the propagation of an SET through sequential
circuit in more than one clock cycle is necessary. In the worst
case, this analysis and evaluation would have to consider an
infinitely large number of cycles. Therefore, to be able to
model and analyze sequential circuit susceptibility to soft
errors, we need approximate methods.

Although there has been a lot of work in the area of
modeling the probabilistic behavior of finite state machines
(FSMs) [6], [7], the main goal of those methods was
calculating steady-state behavior of the circuit, which can be
applied, for example, in estimating the switching activity of
the circuit for the purpose of power evaluation. In the case of
soft errors, the transient behavior of the circuit is more

4065 3

(a) (b)

(c)
Fig. 1. Example: (a) circuit S27, (b) results for separate and unified treatment
of masking factors for three initial glitch durations (80ps 100ps and 125ps)
and (c) SER changes during several clock cycles for different input probability
distributions.

important, that is: (i) the time the circuit spends transitioning
through erroneous states until it reaches a steady-state
behavior; and (ii) the effect this transitioning has on the
outputs, that is, the susceptibility to soft errors of the target
sequential circuit.

One method that evaluates the probability of latching the
error in sequential circuit in the cycles following the particle
hit was recently proposed by Asadi et al. [1]. In that work, the
authors assume hits can happen at state flip-flops only and
then, based on this information, find the error probability at
each output due to each individual flip flop hit. This analysis
excludes cases where internal gates of circuit’s combinational
logic are hit. In their case, the error at the output of
combinational logic due to a state line error is found using a
framework that analyzes logical masking only. Such an
approach does not hold for the case of internal gate hits when
electrical and latching-window masking need to be included as
well. Thus, the approach proposed in [1] will not give accurate
results if hits are assumed to happen not only at flip-flops, but
also inside the combinational logic part of sequential circuit.
Furthermore, the logical masking method that is used in [1]
relies on path tracing, which is much slower than our proposed
approach. Finally, the authors report their results in terms of
the mean time to manifest error (MTTM) metric, and not in
terms of SER, which is the most common metric for measuring
the soft error susceptibility of circuits.

C. Soft error hardening
Soft error mitigation techniques can be classified into three

distinct categories [5]: device-, circuit- and system-level
techniques. Device-level hardening approaches mainly aim to
reduce and mitigate the effects of charge collection at the site
of the particle strike and require fundamental changes in the
manufacturing process [3]. Circuit-level techniques rely on
changes in the circuit design for hardening memories,
combinational or sequential circuits. System-level techniques
deal with soft errors at the system architecture level and
usually involve the introduction of redundancy into the design.

One cost-effective approach that uses a fundamental method
to harden the circuit against soft errors was proposed by Zhou
et al. in [22] and further described in [23]. The authors of [22]
propose selective gate resizing, that is, the increase in critical
charge of the gates that have the largest impact on the soft
error susceptibility of the combinational circuit through
scaling of the transistors in those gates. In this work, we
incorporate a similar hardening method into our framework,
but for sequential circuits (not only combinational circuits).
Thus, we describe the gate resizing in more detail in Section
VI. There are, however, two important differences between the
work presented in [22],[23] and our work. First, the work in
[22],[23] is primarily focused on proposing gate resizing as a
viable soft error mitigation technique, while our work presents
this technique only to show how circuit hardening techniques
can be incorporated into the proposed modeling and analysis
framework. Second, the authors in [22],[23] assume the same
glitch propagation modeling methodology, which was
previously described in [11] and is different from what we use

in our work. More precisely, the impact of three masking
factors is modeled and computed separately in [11], while our
approach applies important (as we will describe here in
Section II.D) unified modeling of these masking factors. There
are few more recent approaches that also apply gate resizing
as a soft error mitigation technique [2],[14]. In our framework,
we included analysis of the impact of different glitch sizes on
the SER before and after gate resizing, while the work
presented in [2] provides no observation of glitch size or
collected charge. Next, the authors in [2] use their previous
model (described in [1]) for computing the SER, and that
model includes logical masking only, without considering
electrical or latching-window masking. The work presented in
[14] uses the tool previously proposed in [13] for soft error
susceptibility computation of combinational circuits. An
important difference between the work in [14] and our
symbolic modeling methodology is the scalability, which
stems from these different circuit error susceptibility
evaluation methods (as already described in Section II.A).

D. Paper contribution
In order to estimate probability of soft errors in sequential

circuits, we use the unrolling method described in detail in
Section V. As opposed to Markovian analysis approaches that
allow only steady-state analysis, this method allows for both
transient and steady-state evaluation of the propagation of
SET and the soft error susceptibility of sequential circuits. As
already described, a number of methods have been proposed
recently for the evaluation of the soft error susceptibility of
combinational circuits. From among those, we chose to use the
symbolic modeling framework presented in [9] that relies on
BDDs and ADDs.
1) Unified symbolic treatment

The framework proposed in [9] for soft error susceptibility
evaluation of combinational circuits was chosen as the basis
for sequential circuit analysis due to the fact that it provides a
unified treatment of the three masking factors: logical,
electrical and latching-window masking. More precisely, by
using BDDs and ADDs, the information about the masking
factors is implicitly generated inside the decision diagrams,
therefore including their joint dependency on input patterns

4065 4

and circuit topology. This allows for efficient concurrent
computation of output error susceptibility due to hits on
various internal nodes.

The unified treatment of three masking factors is important
as it can be seen from the example in Fig. 1 (a) and (b). We
consider separately the effect of logical masking, on one hand,
and the effect of electrical and latching-window masking, on
the other hand, for the ISCAS’89 benchmark S27 (Fig. 1 (a)).
There are two cases of reconvergent paths in circuit S27. From
gate G2 there are two paths that reconverge at gate G7, and
thus affect the probability of error propagation to the output of
the circuit and two next-state lines. From gate G1, there is one
path leading directly to gate G6 and one that goes through gate
G2 creating overall three possible reconvergent paths to one of
the next-state lines and two reconvergent paths to the output
and another next-state line. The separate computation of
different masking factors will incur an error, since it sums
separately (i) probabilities of sensitization of all reconvergent
paths, and (ii) probabilities of latching on all reconvergent
paths; and then it multiplies the two terms. This will not take
into account the relative arrival time and durations of the
glitches at the reconvergence point.

The results shown in the table in Fig. 1 (b) represent
minimum, maximum and average relative error of the model
that evaluates electrical, latching-window and logical masking
separately, compared to the unified model averaged across ten
different input vector probability distributions, for three
different initial glitch durations. As it can be seen from these
results, multiplying the probability of logical masking with the
probability of electrical and latching-window masking that
were computed separately leads to the error in the probability
of latching the glitch which can be as large as 3100%.
However, for smaller glitch duration (80ps), the average error
is not very large, due to the fact that most glitches are masked,
and separate and unified methods give similar results. For the
case of large initial glitches (125ps), all glitches propagate,
and the only difference between the two methods comes from
the way reconvergent paths are handled.
2) Exact and approximate methods for SER estimation in
sequential circuits.

To take into account the joint effect of logical, electrical and
latching-window masking and, at the same time, to allow for
the efficient estimation of the effects in time of SET on the
outputs of the sequential circuit, we rely on two proposed
methods for exact and approximate evaluation of SER in
sequential circuits, as described in detail in Sections IV and V.
The exact method relies on Markov Chain (MC) analysis-
based SER estimation, which is able to provide steady-state
SER estimates following a hit. To cope with potential state
explosion/complexity problems associated with this type of
analysis and to allow for modeling of transient effects in SER
evaluation, we also propose a low-cost, approximate method
based on circuit unrolling.

For a better understanding of the methodology proposed in
this work, we show in Fig. 1 (c) the results obtained using our
approximate method for the example circuit S27 for several
input vector probability distributions (PD). The results

presented in Fig. 1 (c) describe the effect of a particle hit on
circuit behavior, that is, the output error probability variation
in time. As it can be seen, in most cases SER converges to
very low values, except for a few cases in which it stays
almost constant. This shows that SER transient behavior is
heavily dependent on the input distribution, and thus classic
MC analysis may not be appropriate for capturing it. Our
framework is not only scalable, but also accurate when
compared to detailed circuit simulation. As shown in Section
VII.B, the proposed framework is within 4% accurate when
compared to HSPICE, at an 11000X speedup.
3) Gate resizing for sequential circuit hardening.

Once soft error impact of individual gates is known, we can
determine sensitive areas of the chip and therefore apply
specific radiation hardening techniques. As already
mentioned, in this paper we focus on circuit-level hardening
technique that resizes selected gates such that the critical
charge needed to change the output of a gate is increased.

We determine the mean error impact (MEI) of a gate by
averaging its error impact across all outputs and all probability
distributions. All gates with MEI larger than a given threshold
are resized, such that the outputs of those gates are not
affected when hit by particles with energies in a given interval.
As criteria for choosing gates to be resized, we use: (i) the
MEI of a gate averaged across all cycles under consideration
in the target circuit, and (ii) the MEI of a gate determined only
during the cycle when hit happens.

In Fig. 2, we show how the SER changes in the cycles
following the particle hit, before and after gate resizing, for a
set of benchmark circuits, when the second criterion is used.
The results on both curves in Fig. 2, “original” and “resized”
are presented as a percentage of the original SER value during
the first cycle. It can be seen from Fig. 2 that the SER
decreases rapidly after the first cycle both before and after
resizing. Furthermore, after resizing, the SER improves even
during the first cycle for as much as 83%.

As it will be seen from the results presented in Section VII,
using the first criterion leads to a smaller number of resized
gates (and potentially less area overhead). This is due to the
fact that MEI, as well as SER, most often decreases when
propagating through the unrolled circuit, while, usually, it is

Fig. 2. SER changes in the cycles following the particle hit, compared to the
SER during the first cycle, before and after gate resizing, for four benchmark
circuits.

4065 5

largest during the first cycle (when the hit occurs). Thus, this
once more supports the fact that: (i) considering only the
combinational logic effects during the cycle when hit occurs is
not sufficient for SER analysis; and (ii) time-dependent
analysis is necessary in sequential circuits as opposed to just
steady-state analysis which cannot give any insight into the
transient behavior of the circuit.

III. SEQUENTIAL CIRCUITS - PRELIMINARIES
A typical sequential circuit consists of combinational logic

and flip-flops (FFs). The inputs to the combinational logic are
the primary inputs and the outputs of FFs, while the outputs of
combinational logic are the primary outputs and inputs of the
FFs.

When a charged particle hits the circuit, there are two
possible cases:
1. The particle hits an internal gate of the combinational logic
2. The particle hits the flip-flop that stores information about

the next state.
In the case when the particle hits an internal gate, the

analysis of the propagation of single-event transient during the
current clock cycle is the same as for combinational logic. On
the other hand, if an SET occurs at the output of one of the
flip-flops, the analysis must consider the pulse propagation
through the logic part of the circuit with the assumption that
the error occurred at one of the inputs (state-line input) of the
logic. Therefore, to analyze the propagation of the glitch
occurring due to a particle hit in the sequential circuit, that is,
the effect of logical, electrical and latching-window masking,
we can apply the same analysis as for the combinational logic.
However, the main difference between combinational and
sequential circuit analysis, when considering their
susceptibility to soft errors is that, after being latched in state
FFs in sequential circuit, the error can actually be propagated
back to the combinational part of the circuit. While the outputs
of combinational circuit are affected by the error during a
single clock cycle only, in sequential circuits the outputs can
be affected during several consecutive clock cycles.

We present in this work two possible symbolic approaches
to the modeling and analysis of sequential circuit
susceptibility to soft errors. The first approach uses Markov
chain theory and the finite state machine description of the
circuit and is applicable only to steady-state analysis. The
second approach relies on BDDs and ADDs and unrolling of
sequential circuits and it is suitable for analysis of time-
dependent SER behavior. We thus present in this section the
basic definitions and notation on finite state machines and
Markov chains that will be used throughout the paper, and the
main aspects of a BDD/ADD based analysis of SET
propagation and SER evaluation in combinational circuits.

A. Markov chain analysis of sequential circuits
As an abstraction for sequential circuits, we use the finite

state machine (FSM), which can be represented using a state
transition graph (STG).

The probabilistic behavior of a sequential circuit is often
analyzed using concepts of Markov chain (MC) theory, as

described before [6], [7]. An STG that represents state
transitions of the circuit, given input values, can be
transformed into the discrete-parameter MC by attaching to
each out-going edge of each state a label that represents the
transition probability.

The transition probabilities of MC for a given circuit can be
calculated when the input distribution that exercises the inputs
of the finite state machine (FSM) is known. More precisely,
given the transition relation TM for a FSM M, and input vector
probability distribution, q = (q1, q2, ..., ql), where l is the
number of possible input vector values, the probability pij of
transitioning from state i to state j can be found as:
pij = qk

k,TM (i,k, j)=1
∑ (1)

From the transition probability matrix P, it is always possible
to calculate the n-step transition probability matrix Pn.

It is often required to determine the long-run behavior of
MCs, that is, the limit state probability:

∞→

=
n

jj np)(limπ
,...1,0=j

 (2)

If, for a given MC, the limit probabilities πj exist for all
states j in the state space I, where πj does not depend on the
initial state i, then Σj∈I πj = 1 and the πj’s, j ∈ I, are called the
steady-state probabilities of the MC.

B. BDD/ADD based modeling of SET in combinational
circuits

The framework in [9] captures all gate-output
combinations, i.e., it determines the probability of a soft error
at any output due to a fault originating at any internal gate, by
using BDDs and ADDs.

For each output Fj, initial duration dinit and initial amplitude
ainit at the output of gate hit by radiation, the authors in [9] find
mean error susceptibility (MES) as the probability of output Fj
failing due to errors at internal gates:

MES(Fj

d init ,ainit) =
P(Fj fails | Gi fails∩ init _ glitch = (dinit ,ainit))

i=1

nG

∑
k=1

n f

∑
nG ⋅ n f

(3)

where nG is the cardinality of the set of internal gates of the
circuit, {Gi} and nf is the cardinality of the set of probability
distributions, {fk}, associated to the input vector stream. For
each gate Gi, dinit and ainit, one can find minimum, maximum,
mean and median error impact over all outputs Fj that are
affected by a glitch occurring at the output of gate Gi. Mean
error impact (MEI) for gate Gi is defined as:

MEI(Gi

d init ,ainit) =

P(Fj fails | Gi fails ∩ init _ glitch = (dinit ,ainit))
j=1

nF

∑
k=1

n f

∑
nF ⋅ n f

(4)

where nF is the cardinality of the set of primary outputs of the
circuit, {Fj}. Similarly, one can find minimum, maximum and
median error impact across all outputs and all output
probability distributions. For each input probability
distribution used, one can also find the number of gates that do
not affect any of the outputs.

4065 6

Fig. 3. Circuit model used to perform Markov chain analysis for a given
sequential circuit.

 (a) (b)
Fig. 4. State transition graph for benchmark circuit S27: (a) original and (b)
aggregated set of states (only states 0, 1 and 4 are enlarged to show the
aggregation and a small number of transitions is shown).

The probability of output Fj failing, P(Fj) can be defined
using MES metric, as described in [9], leading to the
expression for soft error rate (SER) [21]:

circuitPHeffjF ARRFPSER
j

⋅⋅⋅=)((5)
where RPH is the particle hit rate per unit of area, Reff is the
fraction of particle hits that result in charge generation, and
Acircuit is the total silicon area of the circuit. Once P(Fj) is
computed for every output (including state lines), one can use
the error probability for the state lines to determine steady-
state and time-dependent behavior of error propagation in the
sequential circuit. We describe in the sequel two such
approaches.

IV. MARKOV CHAIN THEORY FOR STEADY-STATE SER
ANALYSIS

As described in the previous section, the probabilistic
behavior of a sequential circuit can be analyzed using Markov
chain (MC) theory. Therefore, it naturally leads to the
conclusion that we can apply MCs to the probabilistic analysis
of sequential circuit soft error susceptibility. In the approaches
used in [6], [7], it was shown how to calculate the steady-state
behavior of FSMs by means of MC analysis. We describe here
one possible method that uses MCs for SER analysis.

We propose to modify the original sequential circuit as
shown in Fig. 3. The new circuit consists of two copies of the
combinational logic of the original circuit, Combinational
logic (gold), CL1, and Combinational logic (hit), CL2. Logic
CL1 is used to collect the information about the correct
behavior of the circuit, having as inputs primary input vector
(PI1) and the correct present-state vector (PS1) and as outputs
the correct primary output vector (PO1) and the correct next
state vector (NS1). On the other hand, circuit CL2 has as inputs
primary input vector (PI2, where PI2 ≡ PI1) and possibly
erroneous present-state lines (PS2) and as outputs possibly
erroneous primary output vector (PO2) and possibly erroneous
next-state vector (NS2). We can define the state vectors of the
gold and hit circuit as:
NS1 = δ1 = (δ1

1,δ2
1,...,δm

1)
 and

NS 2 = δ 2 = (δ1
2,δ2

2,...,δm
2)

where vectors δ1 and δ2 can take values from the finite set S of
the states of the original circuit. m is the number of state
variables. The modified circuit has a new state vector
consisting of the state lines (variables) of the original (gold)
circuit and an error vector ε = (ε1, ε2, ..., εm):
NS modified = (δ1,ε) = (δ1

1,δ2
1,...,δm

1 ,ε1,ε2,...,εm)

The error vector ε is defined as:
ε = δ1 ⊕ δ 2 = (δ1

1 ⊕ δ1
2,δ2

1 ⊕ δ2
2,...,δm

1 ⊕ δm
2)

and can take values from the finite set E representing possible
errors in the state lines of the original circuit. In other words, a
“1” in a component of vector ε represents an error in the
corresponding element of the state vector δ2 of the circuit CL2,
when compared to the state vector δ1 of the circuit CL1: εi = 1,
when there is an error in state line δi, and εi = 0 otherwise, for
i=1,2,..,m. PS2 vector at the input of CL2 is then obtained by
XOR-ing the PS1 vector δ1 and error vector ε.

The main goal of the soft error susceptibility analysis for
sequential circuits is to find the transition probabilities
between the erroneous states from the set E and from there to
determine the behavior of the sequential circuit when the soft
error occurs. In other words, we are interested in finding the
steady-state probability distribution for the values that the
error vector ε can take. This can be found from the probability
vector πmodified representing the steady-state distribution for the
modified circuit by summing the probabilities πmodified

i,j =
πmodified(δ1,i,εj) over all vectors (δ1,i,εj) that have the same
values ε1, ε2, ..., εm:
π j

error = π i, j
modified

i
∑ = π modified (δ1,i ,ε j)

δ 1,i

∑ (6)

We find the STGs for the given original circuit and for its
modified version shown in Fig. 3. Fig. 4 (a) shows an STG for
an example circuit S27, which has 3-bit state vector (8 states).
The modified version of S27 according to Fig. 3 will have 6-
bit state vector (64 states). From the STGs of both circuits and
given the input vector probability distribution and particle hit
probability, we can find their corresponding MCs.

Thus, given the set of states {(δ1, ε)} and transition
probabilities for the modified circuit, Pmodified, and given the
initial error state probability ε(0), by using MC theory, we can
determine the behavior of the sequential circuit after a soft
error occurs. Starting with the initial probability vector p(0),
we can apply various techniques (e.g., power method) on the
transition probability matrix Pmodified to determine the steady-
state behavior, under given state error probabilities.

We applied power method to the benchmark circuit S27 for
ten different input probability distributions. The initial
probability distribution for the error vector has been
determined using the approach described in Section III.A. This
circuit has the property of fast convergence to steady state. It

4065 7

can be seen from the STG of this circuit that it has one
strongly connected component (SCC) and after entering one of
these four states it stays within this part of the STG. Thus, if
an error occurs while the circuit is in one of these states, it will
be masked after just a few steps. However, this example
circuit is very small (only 10 gates, 4 input lines and 3 state
lines) and in the case of larger circuits, this method may
become inefficient. The pseudo code for this method is given
in ALGORITHM 1 (STAGE II – Markovian (power method)).

Working with the full (modified) MC can be prohibitive in
terms of cost. While this approach is feasible for small
benchmarks like S27 where the modified FSM has 64 states,
this can become prohibitively large for larger benchmarks.
Since we are interested in transitions between erroneous states
only, one possible solution to the complexity problem is to use
an approximation of the transition probability matrix Pmodified.
An example of such a method is to partition and aggregate the
states such that the size of the matrix Pmodified decreases. This
method has been previously used in power analysis and
evaluation of sequential circuits [6], [7]. First, we find the
transition probability matrix Pmodified for the modified circuit
and assume the starting stationary distribution πmodified = (π1

modified, π2
 modified, ..., πm

modified). Let A = (A1, A2, … AN) be a
partition of the state space of the original STG into N blocks
(macrostates). We can define a new N x N matrix Q = [qIJ]
such that [6]:

∑
∑

∈

∈=

I

I

Ai

ified
i

Ai
iJ

ified
i

IJ

p
q mod

mod

π

π

 and ∑
∈

=
JAj

ijiJ pp (7)

The problem that arises with this method is that it requires
the MC to be nearly completely decomposable (NCD) [16],
for the approximation to have small error. However, even
though the aggregation method converges to an approximate
solution, and thus represents an attractive solution for the
efficiency of MC approach, the NCD requirement cannot be
satisfied for each circuit. We applied the state
partition/aggregation method on the example circuit S27, as
shown in Fig. 4 (b). For this benchmark circuit, the transition
matrix Q obtained using equation (7) converges to the same
stationary distribution for erroneous states as the one found
using power method on the original transition matrix Pmodified.
The pseudo code for this method is given in ALGORITHM 1
(STAGE II – Markovian (aggregation)).

Although established and easy to use, MC analysis has one
major drawback: while allowing for the evaluation of long-
term or steady-state behavior of the sequential circuit, it fails
short in the following when applied to the SER estimation:
• It cannot capture the effect of the error on the outputs of the

circuit as a function of time – it only estimates what is the
steady-state distribution;

• It cannot include the effect of electrical and latching-window
masking, and instead can model only logical masking, unless
information is available about the likelihood of a latched
error in a state line after a particle hits;

• It becomes impractical for analyzing circuits with larger
number of state lines, and thus exponentially larger number

of states. One possible solution is to use the approximation
techniques such as aggregation or Monte Carlo simulation,
but this can negatively affect the accuracy of the method.

V. A PRACTICAL APPROACH FOR TIME-DEPENDENT SER
ANALYSIS

In order to estimate the probability of errors in sequential
circuits in an efficient manner that captures both transient and
steady-state effects while easily incorporating the joint impact
of logical, electrical, and latching window masking, we use
the symbolic framework presented in [9] and briefly described
in Section III.B in conjunction with circuit unrolling. Since
the framework in [9] is used only for combinational circuits,
we modified it such that it can be applied to sequential circuits
as well.

The main idea of this work is to use unrolling of the
sequential circuit, as shown in Fig. 5, in order to allow for
efficient time-dependent analysis of the effect of SET on
outputs of sequential circuit.

It is important to note here that, when the glitch occurs
either at state lines PS1 or at the output of some internal gate
of the combinational logic, it can have a duration much shorter
than the clock period and an amplitude smaller than Vdd. This
means that the glitch can be affected by electrical and
latching-window masking. However, if the glitch results in an
error in a FF, it will further propagate as a full-cycle error and
thus will only be logically masked when not on a sensitized
path. Therefore, to use the framework from [9] to analyze the
soft error propagation in the clock cycles subsequent to the
cycle when the hit occurred, we need to turn off the effect of
electrical and latching-window masking in all stages following
the first stage.

One possible approach is to analyze the k-unrolled circuit as
having two main stages: STAGE I – 1st cycle, STAGE II – 2nd
to kth cycles (sub-stages). We can then find the probability of
error at each output and each next-state line in STAGE I as
described in [9]. In STAGE II, we can lump the logic of sub-
stages 2 to k into a single logic circuit for which soft error
analysis can be performed using the techniques described in
Section III.B. Similar to the analysis of STAGE I, we can
employ the same approach applicable to combinational
circuits [9], except that we now assume that the glitch occurs
only at state line inputs as a full “0” or “1” and thus, can only
be masked logically. STAGE-II logic will have (k-1) times
more inputs and (k-1) times more outputs. We can then find

Fig. 5. k-times unrolled sequential circuit divided into two main stages:
STAGE I and STAGE II. STAGE II is further subdivided into k-1 sub-stages
(PIi: primary inputs of the ith sub-stage, POi: primary outputs of the ith sub-
stage, PSi: present state of the ith sub-stage, NSi: next state of the ith sub-stage,
B: state line buffers). In STAGE I, all three masking effects (L, E, LW:
logical, electrical and latching-window masking, respectively) are modeled,
while in STAGE II only logical masking (L) needs to be considered.

4065 8

the probability of error for each pair (state line – output), that
is, the probability that the wrong value is latched at the output,
given that it occurred at state line. Therefore, the probability
of error at each output of STAGE II is a conditional
probability, given that an error did occur at the state line. For
each such output probability value found for STAGE II, we
need to multiply it with the probability of error at the
corresponding state line. We find these probabilities, for a
given input probability distribution using the symbolic
framework described in Section III.B, as following:

∑=
l

ad
l

ad
l

k
j

adk
j

initinitinitinitinitinit FPFFPFP)()|()(,,1,,1,,

 (8)

where P(Fj
k,d init ,ainit) is the probability of output j at the sub-

stage k failing, given an initial glitch duration and amplitude,
ainit and dinit. P(Fj

k | Fl
1,ainit ,dinit) is the probability of error at the

output j at the stage k, given that an error was latched at the
state line l after the first stage with the probability of error at
state line l given by:

P(Fl
1,dinit ,ainit) =

P(Fl fails | Gi fails∩ init _ glitch = (dinit ,ainit))
i=1

nG

∑
nG

 (9)

It is important to note here that we need to assume only a hit
in the STAGE I of the unrolled circuit and no hits in the
consecutive cycles. According to [2],[11], particle hits are
sufficiently rare and therefore this assumption is realistic. The

probability P(Fj
k,dinit , ainit) can be averaged across input

probability distributions to find MES as in equation (3). As
shown in [9], the MES value can further be used to find the
probability P(Fj

k) of output j failing at sub-stage k and then to
compute SER as in equation (5).

There is, however, one issue that may arise with this
approach. In STAGE I, a single pulse can result in an error on
more than one state line. An accurate approach would be to
use the global state vector probability distribution and take
into account the correlation of errors on state lines, instead of
using individual state-line probability distribution. Obviously,
the assumption we make (equation (8)) leads to an
approximation of output error probability estimation.
However, it has been suggested [18] that accurate results using
this approach could be obtained by unrolling the logic an
infinitely large number of times. This is impractical, but it has
been shown [18] that, for the case of switching activity
estimation, unrolling the circuit a finite number of times, k,
leads to negligible approximation error. More specifically,
when using k=2, the average error per gate is found to be 2%.
In our experiments, we use on average ten unrolled stages for
each benchmark and thus, we expect to decrease this error
even further.

Since the analysis of the circuit that we convey is
probabilistic in nature, we use initial input vector probability
distribution for determining output error. More specifically,
the input vector for STAGE II of the unrolled circuit is
comprised of inputs PI2 to PIk to sub-stages 2 to k (which are
characterized by the same input probability distribution as PI1)
and PS2 which are the present state lines after being affected
by a possible particle hit in STAGE I. The probability
distribution characterizing PS2 is determined by steady-state
analysis of the original sequential circuit (e.g., using MC
analysis as in Section IV), while any potential state line error
probabilities are determined by using the approach described
in Section III.B. Thus, the STAGE II circuit can now be
analyzed for individual latched errors on state lines using the
approach in Section III.B, but only relying on logical masking
effects.

The pseudo code for this method is given in ALGORITHM 1
(STAGE II – unrolling).

VI. GATE RESIZING FOR RADIATION HARDENING
When a high-energy charged particle passes through a

semiconductor material, it frees electron-hole pairs along its
path as it loses energy and a charge collection can occur,
usually within a few microns of the junction. A charge
necessary to trigger a change in the data state is called critical
charge and it decreases to 10fC for technology nodes below
90nm [15].

One possible efficient solution to increase the critical
charge in a logic circuit would be to size the most sensitive
gates in the circuit [9],[22]. We use the MEI metric (equation
(4)) to determine the impact of individual gates on the error
susceptibility of the circuit. From the MEI values per gate, one

ALGORITHM 1. Error probability computation.

STAGE I:

set technology parameters;
parse input netlist;
create gate node list;
sort gates topologically;
pass through the sorted list, create all ADDs;
compute initial probabilities {

for each output and each next state line
for each gate and each state line

compute the probability of error; }

STAGE II:

UNROLLING:
create k-unrolled circuit gate netlist;
sort gates topologically;
pass through the sorted list, create all BDDs;
compute final probabilities{

for each output {
for each state-line

compute the probability of error; //conditional
compute final probability of error; }

}
MARKOVIAN:

create modified circuit M;
create state transition graph for M;
for each probability distribution {

find transition matrix Pmodified;
case (method) {

power_method: {
apply power method to find πmodified;
find πerror; }

aggregation: {
assume initial πmodified;
apply iterative aggregation to find πerror; }

}
}
compute final probability of error;

The algorithm for STAGE I initial error probability computation and STAGE
II final error probability computation, using unrolling and two Markovian
approaches (power method and aggregation).

4065 9

can determine which gates have largest impact on SER and
resize them in order to decrease the SER.

When the gate width-length ratio (W/L) is changed, the
impact that radiation has on that gate is affected. In other
words, if this ratio is larger, more charge needs to be generated
by a radiation event, so as to result in a glitch of a magnitude
larger than the switching threshold of that gate. The current
pulse that resulted from the collection of charge induced by
radiation, Iin(t), can be modeled as [22]:

Iin (t) Qcoll

τ fall − τ rise

⋅ e
− t

τ fall − e
− t

τ rise
⎛
⎝
⎜

⎞
⎠
⎟ (10)

where Qcoll is the charge collected by gate and τrise and τfall are
the collection time constant of the junction and the ion-track
establishment time constant, respectively. The voltage at the
output of the gate can then be found as shown in [22], when
the total capacitance at the output of the gate hit by radiation is
known. It has been shown before that, in the case of
combinational circuits, resizing the gates with large error
impact has a beneficial effect on SER [8].

The three major design constraints, area, power
consumption and delay, are all affected by the sizing of
transistors. The radiation hardening approach proposed in this
work is applied only to the nodes that have the highest soft
error impact, that is, the nodes that contribute the most to the
soft error failure rate of the logic circuit. This decreases the
overhead in area when compared to the approach where all
gates are hardened. From the gate delay perspective, the
effects of sizing a gate are not localized, since other gates are
affected as well. This is due to the fact that sizing changes not
only the drive strength of a gate, but also the input and output
capacitances. As described in [17], the delay of a logic gate
can be modeled as:

 d = κ ⋅ R ⋅ (Cout + Cp)
where κ is a constant characteristic of the fabrication process,
R is the equivalent resistance of the part of the circuit (pull-
down or pull-up) that is turned on, Cout is the external
capacitance driven by the circuit and Cp is the internal (or

parasitic) capacitance driven by the circuit. Given an original
gate for which R = Rorig, Cin = Cin

orig and Cp = Cp
orig, we can

describe its delay when its width is scaled by a factor α and
length by a factor β as following:

d new = κ ⋅ Rnew ⋅ Cout + Cp
new()= κ ⋅ Rnew ⋅ Cin

new ⋅
Cout

Cin
new +

Cp
new

Cin
new

⎛

⎝
⎜

⎞

⎠
⎟

= κ ⋅
Rorig ⋅ β

α

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ α ⋅ β ⋅ Cin

orig()⋅
Cout

α ⋅ β ⋅ Cin
orig +

α ⋅ β ⋅ Cp
orig

α ⋅ β ⋅ Cin
orig

⎛

⎝
⎜

⎞

⎠
⎟

= κ ⋅ Rorig ⋅ β 2 ⋅ Cin
orig ⋅

Cout

α ⋅ β ⋅ Cin
orig +

Cp
orig

Cin
orig

⎛

⎝
⎜

⎞

⎠
⎟

 (11)

If, for an inverter described with the same model, the
equivalent resistance is R = Rinv, and input capacitance Cin =
Cinv, then the previous expression for gate delay can be written
as:

d new = κ ⋅ β 2 ⋅ Rinv ⋅ Cin
inv ⋅

Rorig ⋅ Cin
orig

Rinv ⋅ Cin
inv ⋅

Cout

α ⋅ β ⋅ Cin
orig +

Cp
orig

Cin
orig

⎛

⎝
⎜

⎞

⎠
⎟

= κ ⋅ Rinv ⋅ Cin
inv ⋅ β 2 ⋅

Rorig ⋅ Cin
orig

Rinv ⋅ Cin
inv ⋅

Cout

α ⋅ β ⋅ Cin
orig + β 2 ⋅

Rorig ⋅ Cp
orig

Rinv ⋅ Cin
inv

⎛

⎝
⎜

⎞

⎠
⎟

(12)

We assumed in deriving equations (11) and (12) that both
resistance R and capacitance Cin are linearly dependent on
transistor length, as described in [19]. The resistance R also
depends on the threshold voltage [19], but in the equations we
used, we assumed an explicit linear dependence of R on
channel length, without taking into account possible changes
in threshold voltage as the result of changes in transistor
length. If necessary, this could easily be modified, and would
only affect the impact of the length scaling factor β on
resistance R.

As described in [17], we can define unit delay,

τ = κ ⋅ Rinv ⋅ Cinv , logical effort, g =
Rorig ⋅ Cin

orig

Rinv ⋅ Cin
inv

, electrical

effort, m =
Cout

Cin
orig

, parasitic delay, p =
Rorig ⋅ Cin

orig

Rinv ⋅ Cin
inv

, and thus

write the gate delay as:

d new = τ ⋅ β ⋅ g ⋅ m ⋅

1
α

+ β 2 ⋅ p
⎛
⎝
⎜

⎞
⎠
⎟ (13)

We use the previous expression to incorporate the changes
in transistor sizes into the delay model used in the symbolic
framework. This expression is derived under the assumption
that gate sizing is symmetrical, that is, both pMOS and nMOS
parts of a gate are scaled by the same factors α and β. In this
work, we assume that β = 1 and α is at most equal to 8 such
that the gates selected for resizing cannot be affected by the
particles within given energy range. According to equation
(12), the delay of a resized gate will be affected by the
parameter α and thus will decrease.

It is important to note here that the input capacitance of the
gate that is resized is changed such that the new value is:
Cin

new =α ⋅ β ⋅ Cin
orig

For the fanin gates of the resized gate, this capacitance is

part of the load capacitance Cout, and gate resizing will

ALGORITHM 2. Gate resizing.

resize {
createResizingList (threshold);
updateProbabilities (gate_resizing_list); }

createResizingList (threshold) {
for each gate {

if Case 1then
MEI_new ← average MEI across all sub-stages;

else // Case 2
MEI_new ← MEI at STAGE I;

if MEI_new > threshold then
add gate to gate_resizing_list; }

}
updateProbabilities (gate_resizing_list) {

for each gate {
if gate in gate_resizing_list then {

change gate_delay;
set initial amp. and dur. ADD to zero}

update output ADDs; }
compute initial probabilities;
compute final probabilities;

}
The algorithm for gate resizing that uses MEI value from the first stage only
(Case 1) and averaged across all sub-stages (Case 2) to create the list of gates
to be resized.

4065 10

therefore affect the delay of fanin gates through the electrical
effort m.

To find the gates that have largest error impact, we compare
their MEI with a given threshold. MEI values computed as in
equation (4) represent the error impact of a gate at each sub-
stage of the unrolled circuit. Therefore, as a criteria for
resizing, we can choose either an average MEI of a gate across
all sub-stages (STAGE I and all sub-stages of STAGE II –
Case 1), or an MEI for STAGE I only (Case 2). Since for most
benchmarks analyzed SER decreases fast within a few cycles,
applying the resizing mechanism in Case 2 will be more
effective. This is due to the fact that more gates will be resized
in this case, leading to a lower overall SER. The pseudo code
for gate resizing is given in ALGORITHM 2.

VII. EXPERIMENTAL RESULTS
In this section, we first compare the results obtained using

MC analysis and HSPICE simulator with the results obtained
using our framework on a small example circuit S27. Then, we
show the results of our symbolic model for seven sequential
circuits, given different glitch durations and different sets of
input probabilities. The technology used is 70nm, Berkeley
Predictive Technology Model [4], [25]. The clock cycle period
(Tclk) used is 250ps, and setup (tsetup) and hold (thold) times for
the latches are assumed to be 10ps each. Vdd is assumed to be
1V. The delay of an inverter in the given technology is
determined by simulating a ring oscillator in HSPICE and
found to be 6.5ps. The delays for other gates are found by
using logical and electrical effort methodology [17]. The
benchmark circuits are chosen from ISCAS’89 suite. The
symbolic modeling framework is implemented in C++, and
run on a 3GHz Pentium 4 workstation running Linux.

A. MC analysis vs. circuit unrolling
We compare the two MC methods (power method and

aggregation) with the unrolling of sequential circuits on
benchmark S27 for ten different input probability
distributions. In TABLE I, we show the maximum number of
steps needed for the power method applied on matrix Pmodified
to converge to steady-state distribution (column MC power
method), the number of steps needed for the error state matrix

found using aggregation to converge to steady-state
distribution (column MC aggregation), and the number of sub-
stages of the circuit in the unrolling method (column
unrolling) needed to reach the SER value smaller than a given
threshold (10-7 FIT). We also show the error of the method
when used given number of steps relative to the power
method. As it can be seen, circuit unrolling provides
sufficiently accurate results, with orders of magnitude lower
time complexity.

B. Symbolic modeling vs. simulation
We use HSPICE simulation to evaluate the accuracy of the

results we obtain using approximate symbolic model of the
circuit. In Fig. 6, we show the relative error and relative
speedup of our model when compared to the HSPICE
simulation for benchmark circuit S27 for several initial glitch
durations ranging from 40ps to 120ps, assuming exhaustive
input sets and considering all gate-output pairs. We find the
relative error of our model for a given initial glitch size as:

VFG

n

k

n

i

n

j

ijk
HSPICE

ijk
HSPICE

ijk
symbolic

nnn

DDD
errorrelative

V G F

⋅⋅

−
=

∑∑∑
= = =1 1 1

/
_

where nG is the number of gates as in equation (3), nF is the
number of outputs as in equation (4), nV is the number of input
vectors, Dijk

symbolic and Dijk
HSPICE are the durations of the glitch

for input vector k and the gate-output pair Gi-Fj, found using
our model and HSPICE, respectively. Note that this error
includes a node-by-node analysis and not just a lumped SER
comparison. As it can be seen from Fig. 6, the error stemming
from the approximate gate delay model and the attenuation
model we are using ranges from less than 1% to about 12% in

 TABLE II
MINIMUM, MAXIMUM AND AVERAGE SER

SER computed as in equation (5) for the range of glitch durations (60-140)ps,
average number of clock cycles needed to reach the steady-state and number
of stages and number of probability distributions (PDs) used, run time and
memory usage for three glitch durations: small (60ps), medium (100ps) and
large (140ps).

SER [FIT]
Bench. no.

gates
no.
PIs

no.
 POs

no.
NSs

min max average no.
cycles

glitch
size

no.
sub-stages

& PDs

run
time
(s)

memory
usage
(MB)

small 10,10 0.027 1.4
medium 10,10 0.028 57.4 S27 10 4 1 3 4.78e-5 0.00134 0.00023 10

large 10,10 0.032 57.4
small 10,10 994 61

medium 10,10 1000 67.2 S208 68 10 1 8 0.00025 0.00209 0.00054 10+
large 10,10 1000 67.2
small 10,10 6900 71.4

medium 10,10 6900 71.4 S298 86 3 14 14 5.25e-5 0.00135 0.00023 10+
large 10,10 6950 71.4
small 5,10 385 61.8

medium 5,10 365 61.8 S444 153 3 2 21 0 0.00132 0.00029 5
large 5,10 360 61.8
small 5,10 570 14.3

medium 5,10 551 18.0 S526 165 3 21 21 1.80e-5 0.001260 0.00027 5+
large 5,10 550 18.0
small 5,10 57 17.4

medium 5,10 68 20.0 S1196 487 14 13 18 0 0.00213 0.00043 5
large 5,10 61 20.5
small 5,10 64 15.1

medium 5,10 70 15.9 S1238 540 14 13 18 0 0.00212 0.00043 4
large 5,10 71 15.9

TABLE I
METHOD COMPARISON

Comparison of number of steps to reach the (approximate) steady state and
error relative to MC power method of three methods: MC power method, MC
aggregation and circuit unrolling.

 MC power method MC aggregation unrolling
no. steps 163 109 10

relative error [%] 0 0 3E-6

Fig. 6. Comparison of results obtained from HSPICE simulation and symbolic
method on benchmark circuit S27.

4065 11

one instance (40ps glitch), while averaging 4% overall for an
effective 5500X average speedup (up to 11000X in some
cases).

C. SER evaluation
In TABLE II, we present SER for several ISCAS’89

benchmark circuits found using equation (5). The allowed
interval for the initial duration of the glitch is assumed to be
(dmin,dmax) = (60,140)ps, while initial amplitude is in the range
(amin,amax) = (0.8,1)V. Since for glitches smaller than 60ps all
benchmark circuits (except for a few that have very small
number of gates) have output error induced mostly by output
gates and their fanin gates in STAGE I, we use this duration as
the lower bound of our interval. Similarly, as already
explained, for glitches longer than 140ps, all benchmarks
propagate almost all the glitches, and thus we use this as an
upper bound. MES for each output is found within these
allowed intervals at incremental steps ∆d = 20ps and ∆a =
0.1V. The RPH used is 56.5 m-2s-1, Reff is 2.2·10-5, and the total
silicon area for each benchmark circuit is derived as a function
of gate count. As it can be seen from results presented in
TABLE II, the SER behavior is different among the
benchmark circuits, that is, the SER decreases very fast (e.g.,
for circuits S1196, S1238) or stays at about the same level for
all ten clock cycles for which the circuit is unrolled (e.g., for
circuit S208). This difference in number of cycles needed for
the circuit to go back to non-erroneous state stems from the
logic of the circuit and logical masking as well as from the
number of state lines that can drive errors back to the state line
inputs of the circuit.

The benchmark circuits for which the results are presented
in TABLE II have up to 20 primary inputs (PIs) or next state
lines (NSs). In our previous work [8], we have shown results
for some combinational circuits that have up to 40 PIs. As
already described, the number of variables, i.e., non-terminal
nodes in BDDs/ADDs represent primary inputs and state lines
and thus, number of flip-flops in conjunction with the number
of primary inputs, can increase the size of BDDs/ADDs. This

can further increase the time necessary to create final output
ADDs and the time needed to find the probabilities from those
ADDs. This runtime becomes an issue only for circuits with
overall number of primary input and state lines of more than
40 or 50. We reported in TABLE II the results for those
benchmark circuits for which running of the framework
finished in a reasonable amount of time. However, our
framework is not limited to only these circuits and can be run
on larger benchmarks as well, but it will require longer run
time. It is also important to note that, when compared to the
previous work [1],[14],[20],[21], our approach gives better run
time, while being within 4% accurate. Moreover, this
scalability “limitation” of the current work can further be
overcome by dividing the circuit into smaller parts (sub-
circuits) and computing output ADDs for those sub-circuits.
We intend to apply this approach in our future work and thus,
improve even more the scalability of our framework.

There is also an additional aspect of SER in sequential
circuits that we analyzed and is shown in Fig. 7. When
different input probability distributions are applied, the
behavior of the circuit is uniform in most cases, that is, the
SER usually decreases (except for the circuit S208) through
the sub-stages of the unrolled circuit. However, in a few cases,
different input probability distributions result in a different
SER trend. As shown in Fig. 7(a), for circuit S298, input
probability distributions PD2 and PD10 results in an SER
jump in the second stage and a SER decrease afterwards, while
PD9 leads to the increase in SER in the sub-stages following
the hit. For PD4, PD5 and PD8, the SER decreases fast after
the hit. This is due to the fact that different input probability
distributions will result in different sensitization probabilities
of the paths in the circuit, thus affecting the output error
probabilities differently. On the other hand, the experiments
we conducted have shown that the time-dependent behavior of
different outputs of a sequential circuit varies such that for

 (a) (b)
Fig. 9. Output SER (a) assuming hits at flip-flops only (FF), gates only (G)
and averaging MES across overall number of gates and flip-flops, or assuming
hit at both flip-flops and gates (all) and (b) assuming hits at flip-flops only and
averaging MES across all flip-flops (FF), gates only and averaging MES
across all gates (G) or assuming hits at both flip-flops and gates (all).

 (a) (b)
Fig. 8. Output MES for seven benchmark circuits for 120ps initial glitch
duration (a) averaged assuming hits at flip-flops (FF) or internal gates (G)
only and (b) normalized with respect to the overall number of gates and flip-
flops, assuming hits at both flip-flops (FF) and internal gates (G).

(a)

 (b) (c)
Fig. 7. (a) Average bit SER changes in circuit S298 for ten input probability
distributions (PD1-PD10) and averaged across all distributions during ten
cycles following the particle hit; (b) Relative difference in SER of (5-9)
unrolled sub-stages compared to ten unrolled sub-stages; (c) Runtime of the
framework for different number of unrolled sub-stages (5-10).

4065 12

some outputs the MES decreases in the sub-stages following
the hit, while for the others it either increases in the second
sub-stage and then decreases, increases slightly, or remains at
the same level.

Since the average SER for circuit S298 decreases in cycles
following the particle hit, larger number of unrolled copies
gives better accuracy, closer to the steady-state value.
However, as the difference between the SER computed in
subsequent cycles is decreasing, we evaluate the accuracy of
different number of unrolled sub-stages as the following. First,
we find the average SER in each cycle (sub-stage) following
the particle hit (presented in Fig. 7(a), line all). Next, we find
the average SER across all sub-stages (assuming different
cases, i.e., different number of unrolled sub-stages, 5-10).
Finally, we compute the relative difference in this average
SER between the case with ten unrolled copies and the cases
with smaller number of unrolled copies. This relative
difference in SER for circuit S298 is presented in Fig. 7(b),
and it can be concluded from the figure that the difference
decreases to 3% when the results for nine and ten unrolled
copies are compared.

We also show the changes in runtime for different number
of unrolled sub-stages for circuit S298 (Fig. 7(c)). We used the
large glitch (120ps long) to measure the runtime, since in that
case the effect on runtime is emphasized the most. However,
in order to compute SER, we used several different glitch
sizes. As it can be seen from Fig. 7(c), the runtime for circuit
S298 increases exponentially when increasing the number of
unrolled copies. This may seem as the limitation of the
proposed approach, but as we described in Section V, and as
the comparison with HSPICE simulations has shown (Section
VII.B), unrolling of up to ten sub-stages provides a reasonable
runtime and the results that are on average 4% accurate.

The results for one small benchmark S444 (153 gates, 3
inputs) and one larger benchmark, S1196 (487 gates, 14
inputs) are presented in Fig. 11 (two left charts). As it can be
seen from Fig. 11, both circuits converge to steady-state after
five clock cycles after the hit. The only difference between
these two circuits is the magnitude of SER.

D. Flip-flop vs. gate error impact
Assuming that a particle hit can occur at either flip-flops

only or gates only, we show in Fig. 8 (a) the average output
MES for several benchmark circuits. Note that, due to the

assumption we make, we find the MES for each output using
equation (3), with the difference that the total number of gates
nG is given by number of flip-flops only or number of internal
gates only (and not the overall number of gates and flip-flops).
Doing so, we can see that if only flip-flops or only internal
gates are considered, the output MES values are comparable
and have similar values in both cases.

However, these results may be misleading, since in typical
sequential circuits, the number of internal gates is usually
much larger than the number of flip-flops. Thus, in Fig. 8 (b),
we show the MES values assuming effects from both flip-flops
and internal gates, normalized to 100% so the effect of each
component (flip-flops vs. internal gates) can be determined
easily. As it can be seen from Fig. 8 (b), when normalized
with respect to all possible particle hit locations, the impact of
flip-flops is 3-49X smaller than the impact of internal gates.
While this confirms the fact that the impact of internal gates
on output error susceptibility is much larger than that of flip-
flops (e.g., larger circuits like S1196 and S1238), it also shows
that for smaller sequential circuits, the impact of flip-flops
cannot be ignored either (e.g., circuits S208 and S298).

We further consider the SER stemming from either flip-
flops only or gates only, and compare it to the overall SER.
Since the SER can be computed using MES values [9], we can
take two different approaches: either assume that flip-flop or
gate MES is found by averaging across flip-flops or gates only
(as in Fig. 8 (a)), or assuming that the MES is found by
averaging across overall number of gates and flip-flops (as in
Fig. 8 (b)). The SER results for these two possible approaches
are shown in Fig. 9 (a) and Fig. 9 (b). While the results
presented in Fig. 8 (a) and Fig. 8 (b) are found for only one
glitch size, the results in Fig. 9 (a) and Fig. 9 (b) are computed
across different glitch sizes. Furthermore, the results in FF and
G bar in Fig. 9 (a) are found by multiplying the probability of
error at a given output with the area of flip-flops and gates,
respectively, while the results in all bar are found from overall
circuit MES and by multiplying with the overall circuit area.
The final SER results in Fig. 9 (b) are found similarly, while
the only difference is in computation of MES, as already
described. As it can be seen from Fig. 9 (a) and Fig. 9 (b), the
SER stemming from gates is higher than the SER stemming
from FFs, for all benchmark circuits.

E. Gate resizing impact on SER
In the HSPICE experiments that were conducted to find the

necessary radiation hardening resizing factors for gates, the
parameter values that were used are Qcoll = 60fC, τrise = 1ps
and τfall = 40ps. These values are found according to the data
from [22] and also assuming that the resulting current pulse
lies on the upper bound of the glitch sizes that we used in our
SER experiments. It is important to note that the main goal
here was to show that it is possible to incorporate soft error
mitigation techniques into our framework, and gate resizing
was one example of such technique. Therefore, the parameters
that we assumed in our HSPICE experimental setup are by no
means the limiting factor for the overall framework, and can
easily be updated to accommodate more realistic cases, if such

(a)

(b)
Fig. 10. Average bit SER for several benchmarks without and with gate sizing
for several MEI thresholds: (a) Case 1: MEI averaged across all stages and (b)
Case 2: MEI in the 1ST stage.

4065 13

cases exist. Next, we create the HSPICE circuit description in
which current Iin(t) (equation (10)) is included in the chain of
gates as a current source at the output of a middle gate. The
size (width) of the gate is increased, until the point where the
current source is not strong enough to flip the value of the
output signal of the gate is reached. This procedure is repeated
for each gate type from the library that we are using. We can
further use the new gate width in our framework to find new
delay of the resized gate and its input neighbors.

We show in Fig. 10 the SER for several benchmark circuits
before (baseline) and after gate resizing (threshold 0.2, 0.1,
0.05, 0.02, 0.01, 0.005 and 0.002 columns). Additionally, in
Fig. 11 (right two charts) we show the impact of gate resizing
in five cycles following the particle hit, for a threshold 0.002
(Case 1) for benchmarks S444 and S1196. As it can be seen
from Fig. 11, gate resizing can have different impact on the
overall circuit SER for different input probability distributions
and the improvement in SER can range up to 90% in STAGE
I. In Fig. 10 (a), resizing is applied to gates whose MEI
averaged across all stages (STAGE I and STAGE II) of an
unrolled circuit is larger than a given threshold ranging
between 0.002 and 0.2. The difference between the range of
SER values for circuits in Fig. 11 and Fig. 10 are due to the
fact that, in Fig. 11 only four distributions are used, as
opposed to ten different distributions for Fig. 10. In Fig. 10
(b), we show the results when the resizing is applied to gates
whose MEI in STAGE I only is larger than a given threshold
ranging between 0.005 and 0.2. As it can be seen from the
presented results, resizing can improve SER by as much as
80% for a threshold of 0.01 (for circuit S444).

The results presented in Fig. 10 (a) (Case 1 criteria) show
that SER decreases monotonically with the decrease in
resizing threshold, while in Fig. 10 (b) (Case 2 criteria) this is
not the case. There are two factors that result in this kind of a
behavior. First, different gates in the circuit can have different
impact on overall circuit error: some gates have MEI that
decreases fast through sub-stages of the unrolled circuit, while
for some gates MEI remains at about the same level. Thus,
there are cases when one gate has higher STAGE I MEI than
some other gate, but on average, the MEI of the first gate is
smaller than the MEI of the second one. Second, when gates
are resized in order to increase the critical charge, the gate
delay is actually decreased and this affects the glitch

attenuation. If the impact of the glitches originating at the
resized gate is not significant, but the attenuation that this gate
provides is important, it may happen that the overall circuit
SER increases due to resizing. Since for the Case 2 criteria the
order in which gates are chosen for resizing does not reflect
the monotonicity in their average MEI, the SER increase for
smaller thresholds is more emphasized. On the other hand,
Case 2 criteria allows for more gates to be resized leading to
the faster decrease in SER. However, there is a tradeoff, since
this also leads to higher area overhead. The area overhead
varies for different glitch sizes and different benchmarks. For
example, when the initial glitch is 60ps long, the number of
gates resized is minimal and varies from 1.7% for benchmark
S444 (threshold 0.01) to 38% for benchmark S27 (threshold
0.002) in Case 1, and 0.3% for benchmark S1238 (threshold
0.01) to 55% for benchmark S208 (threshold 0.005) in Case 2.
Moreover, Case 2 approach treats the sequential circuit as if it
is a combinational circuit, since its criterion is defined with
respect to the first cycle only. Therefore, Case 2 is not suitable
for SER reduction in sequential circuits and (as shown in Fig.
10 (b)) it does not guarantee a reduction in SER in subsequent
cycles.

VIII. CONCLUSION
In this paper, we presented a symbolic modeling

methodology for efficient estimation of the soft error
susceptibility of a sequential circuit. We have demonstrated
the efficiency of our method by comparing it to another
symbolic model that relies on MC theory, to HSPICE detailed
circuit simulation and applying it on a subset of ISCAS’89
benchmarks of various complexities. We have also shown
that, by using the information obtained from the framework,
we can resize the gates that have largest impact on circuit
reliability, such that their impact is decreased and SER is
improved. Finally, we have shown that the choice of criterion
for gate resizing can affect the SER reduction in cycles
following the particle hit.

REFERENCES
[1] G. Asadi and M. B. Tahoori. Soft Error Modeling and Protection for

Sequential Elements. In Proc. of IEEE Symposium on Defect and Fault
Tolerance (DFT) in VLSI Systems, pp. 463-471, October 2005.

[2] H. Asadi and M. B. Tahoori: Soft error hardening for logic-level designs.
In Proc. of the IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 4139-4142, May 2006.

[3] R. C. Baumann. Soft Errors in Advanced Computer Systems. In IEEE
Design and Test of Computers, Vol. 22, Issue 3, 2005.

[4] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New paradigm
of predictive MOSFET and interconnect modeling for early circuit
design. In Proc. of IEEE Custom Integrated Circuits Conference (CICC),
pp. 201-204, June 2000.

[5] P. Dodd. Basic Mechanisms and Modeling of Single-Event Upset in
Digital Microelectronics. In IEEE Transactions on Nuclear Science, Vol.
50, No. 3, pp. 583-602, June 2003.

[6] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis
of Large Finite State Machines. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), Vol. 15, No.
12, pp. 1479-1493, December 1996.

[7] D. Marculescu, R. Marculescu, and M. Pedram. Trace-Driven Steady-
State Probability Estimation in FSMs with Application to Power
Estimation. In Proc. of IEEE Design, Automation and Test in Europe
Conf. (DATE), February 1998.

Fig. 11. SER changes in circuits S444 and S1196 during five clock cycles for
different input probability distributions without gate resizing (left charts) and
with gate resizing (right charts).

4065 14

[8] N. Miskov-Zivanov, D. Marculescu. MARS-C: Modeling and Reduction
of Soft Errors in Combinational Circuits. In Proc. of Design Automation
Conference (DAC), pp. 767-772, July 2006.

[9] N. Miskov-Zivanov and D. Marculescu. Circuit Reliability Analysis
Using Symbolic Techniques. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), pp. 2638-2639,
December 2006.

[10] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust System
Design with Built-In Soft-Error Resilience. In IEEE Computer Magazine,
Vol. 28, No. 2, pp. 43-52, February 2005.

[11] K. Mohanram and N. A. Touba. Cost-Effective Approach for Reducing
Soft Error Failure Rate in Logic Circuits. In Proc. of International Test
Conference (ITC), pp. 893-901, 2003.

[12] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, Inc., pp. 635-640, 1991.

[13] R. R. Rao, K. Chopra, D. Blaauw and D. Sylvester. An Efficient Static
Algorithm for Computing the Soft Error Rates of Combinational Circuits.
In Proc. of the Conference on Design, Automation and Test in Europe
(DATE), pp. 164-169, March 2006.

[14] R. R. Rao, D. Blaauw and D. Sylvester. Soft Error Reduction in
Combinational Logic Using Gate Resizing and Flipflop Selection. In
Proc. of International Conference on Computer Aided Design (ICCAD),
pp. 502-509, November 2006.

[15] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. In Proc. of International Conference on
Dependable Systems and Networks, pp. 389-398, 2002.

[16] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, pp. 285-342, 1994.

[17] I. Sutherland, B. Sproull and D. Harris. Logical Effort: Designing Fast
CMOS Circuits. Morgan Kaufmann Publishers, Inc., pp.5-15, pp. 63-
73,1999.

[18] C. Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, and A. M. Despain.
Power Estimation Methods for Sequential Logic Circuits. In Proc. of the
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 3, No. 3, pp. 404-416, September 1995.

[19] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Pearson Education, Inc., pp. 77-84, 103-105, 2005.

[20] B. Zhang, W. Wang, and M. Orshansky. FASER: Fast Analysis of Soft
Error Susceptibility for Cell-Based Designs. In Proc. of International
Symposium on Quality Electronic Design (ISQED), March 2006.

[21] M. Zhang and N. R. Shanbhag. A Soft Error rate Analysis (SERA)
Methodology. In Proc. of ACM/IEEE International Conference on
Computer Aided Design (ICCAD), pp. 111-118, 2004.

[22] Q. Zhou and K. Mohanram. Transistor Sizing for Radiation Hardening.
In Proc. of the IEEE Annual International Reliability Physics
Symposium, pp. 310-315, 2004.

[23] Q. Zhou and K. Mohanram. Gate sizing to radiation harden
combinational logic. In IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems (TCAD), Vol. 25, No. 1, pp. 155-166,
January 2006.

[24] J. F. Ziegler et al. IBM experiments in Soft Fails in Computer Electronics
(1978-1994). In IBM Journal of Research and Development, Vol. 40, pp.
3-18, 1996.

[25] Berkeley Predictive Technology Model (BPTM): http://www-
device.eecs.berkeley.edu/~ptm.

Natasa Miskov-Zivanov received the B.S. degree in
electrical engineering from the School of Technical
Sciences, University of Novi Sad, Serbia, in 2003 and the
M.S. degree in computer engineering from Carnegie Mellon
University, in 2005.
 She is currently pursuing the Ph.D. degree in computer
engineering at Carnegie Mellon University. Her research
interests include fault-tolerance in nanoscale designs and
emerging technologies.

Diana Marculescu is currently an Associate Professor of
Electrical and Computer Engineering at Carnegie Mellon
University. She received her M.S. in Computer Science
from "Politehnica" University of Bucharest, Romania in
1991 and her Ph.D. in Computer Engineering from
University of Southern California in 1998. She is the
recipient of a National Science Foundation Faculty Career
Award (2000-2004), an ACM-SIGDA Technical
Leadership Award (2003), the Carnegie Institute of
Technology George Tallman Ladd Research Award (2004)

and a Best Paper Award from IEEE Asia South-Pacific Design Automation
Conference (ASPDAC 2005). Diana Marculescu was an IEEE-Circuits and
Systems Society Distinguished Lecturer (2004-2005) and is currently Chair of
the ACM Special Interest Group on Design Automation (SIGDA) and
member of IEEE. Her research interests include energy aware computing,
CAD tools for low power systems and emerging technologies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650063006f006d006d0065006e0064006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

