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Abstract – Due to reduction in device feature size and supply 

voltage, the sensitivity to radiation induced transient faults of 
digital systems increases dramatically. In this paper, we present 
two approaches to evaluating the susceptibility of sequential 
circuits to soft errors. The first approach uses Markov chain 
theory, but can only provide steady-state behavior information. 
The second approach uses symbolic modeling based on 
BDDs/ADDs and circuit unrolling. The SER evaluation using this 
approach is demonstrated by the set of experimental results, 
which show that, for most of the benchmarks used, the SER 
decreases well below a given threshold (10-7FIT) within ten clock 
cycles after the hit. The results obtained with the proposed 
symbolic framework are within 4% average error and up to 
11000X faster when compared to HSPICE detailed circuit 
simulation. The framework can be used for selective gate sizing 
targeting radiation hardening leading up to 80% SER reduction 
when applied to a subset of ISCAS’89 benchmarks.  
 

Index Terms – combinational logic circuits, reliability, 
sequential logic circuits, symbolic manipulation. 

I. INTRODUCTION 
NCE regarded as a concern only for space applications, 
transient faults caused by radiation are becoming a major 

barrier to robust system design manufactured at advanced 
technology nodes like 90nm or smaller. The high data-
integrity and reliability requirements make these faults an 
extremely important design aspect for microprocessors or 
other commodity components. Therefore, the protection from 
radiation induced transient faults has become as important as 
other product characteristics such as performance or power 
consumption [10].  

A radiation-induced charged particle passing through a 
microelectronic device ionizes the material along its path. The 
free carriers that are created around the particle track can be 
affected (attracted/rejected) by an internal electric field of the 
device and result in an electrical pulse, single-event transient 
(SET), large enough to disrupt normal device operation. This 
disruption is not associated with any permanent damage to the 
device and is thus called a soft error or a single-event upset 
 

 
Manuscript received May 15, 2007, revised September 20, 2007, accepted 

November 6, 2007. This work was supported in part by National Science 
Foundation Grant CCF-0542644. 

Copyright © 2007 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending an email to pubs-permissions@ieee.org. 

Natasa Miskov-Zivanov is with the Electrical and Computer Engineering 
Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA (phone: 
412-268-6648; e-mail: nmiskov@ece.cmu.edu).  

Diana Marculescu is with the Electrical and Computer Engineering 
Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail: 
dianam@ece.cmu.edu). 

(SEU). The effect of soft errors is measured by the soft error 
rate (SER) in FITs (failure-in-time), which is defined as one 
failure in 109 hours. 

Traditionally, memory elements have been much more 
sensitive to soft errors than combinational logic circuits. Three 
factors prevented logic from becoming more susceptible to 
soft errors: 
• logical masking – to be latched, a SET has to propagate on a 

sensitized path from the location where it originates to a 
latch; 

• electrical masking – due to the electrical properties of the 
gates the glitch is passing through, it can be attenuated or 
even completely masked before it reaches the latch; 

• latching-window masking – the glitch will be latched only if 
it reaches the latch in time by satisfying setup and hold time 
conditions. 
Technology scaling decreases the impact of the three 

masking factors on radiation-induced SET. The reduction in 
feature sizes and supply voltages allows lower energy particles 
to result in SET. Reduced logic depth and smaller gate delays 
decrease attenuation when the glitch propagates through the 
circuit. Finally, the increase in clock frequency decreases 
latching-window masking. Thus, SER in combinational logic 
is increasing with every technology node and is expected to 
become an issue beyond 90nm technology node. Moreover, 
once a SET can propagate freely through the combinational 
circuit, sequential circuits will become very sensitive to such 
events [3]. This is due to the fact that, once latched, soft errors 
can propagate through the sequential circuit in subsequent 
clock cycles and thus affect the outputs of the circuit more 
than once.  

When an estimated SER for a given product is higher than a 
given threshold, mitigation techniques need to be considered. 
The most obvious way to eliminate soft errors would be to get 
rid of the radiation sources that cause them. The solution for 
the remaining SER would be to make different process and 
technology choices. Furthermore, radiation sensitivity can be 
reduced significantly by design and layout changes. Any 
change, which increases critical charge while maintaining or 
reducing collected charge, will improve the SER of a device. 

In this work, we estimate the likelihood that a SET in a 
sequential circuit will lead to errors in clock cycles following 
the particle hit. Our main goal is to allow for symbolic 
modeling and efficient estimation of the susceptibility of a 
sequential circuit to soft errors. We apply the model proposed 
in this work to find the gates that have the highest soft error 
impact, that is, the gates that contribute the most to the soft 
error failure rate of the logic circuit. We use this information 
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for selective gate resizing in order to significantly harden the 
circuit with a reasonable area overhead. 

The rest of this paper is organized as follows. In Section II 
we give an overview of related work and outline the 
contribution of our work. In Section III we briefly review the 
sequential circuit preliminaries. Section IV presents the 
application of Markov chain theory on steady-state SER 
analysis. In Section V, we describe in more detail our 
methodology for determining sequential circuit susceptibility 
to soft errors. Section VI presents in more detail the proposed 
radiation hardening approach. In Section VII, we report 
experimental results for a set of common benchmarks. Finally, 
with Section VIII we conclude our work. 

II. RELATED WORK 
Intensive research has been done so far in the area of 

analysis of transient faults in both combinational and 
sequential circuits [1]-[5], [8]-[11], [13]-[15], [20]-[24]. One 
obvious approach is to inject the fault into the given node of 
the circuit and simulate the circuit for different input vectors 
in order to find whether the fault propagates [24]. However, 
this approach becomes intractable for larger circuits and larger 
number of inputs and thus gives way to approximate 
approaches that use analytical and symbolic methods to 
evaluate circuit susceptibility to soft errors. In this section, we 
describe these methods that were used to find the 
susceptibility to soft errors of combinational and sequential 
circuits. We also briefly outline the contributions of our work 
and compare it to previous work. 

A. SER in combinational circuits 
A number of methods have been proposed recently to 

evaluate the susceptibility of combinational logic circuits to 
soft errors. In [11],[21], the authors separate the analysis of the 
three masking factors and include different heuristics to speed 
up the evaluation of the soft error susceptibility. Noise 
rejection curves or HSPICE simulation of inverter chains is 
used to evaluate the effect of electrical masking while path 
tracing or logic simulation is used to find the probability of 
logical masking. These methods may not reflect the impact of 
the internal node location and attenuation on the observability 
of the glitch at the latched output and can also become very 
inefficient for larger circuits.  

Recently, several symbolic models have been developed to 
estimate the susceptibility of logic circuits to soft errors. The 
authors of [20] use Binary Decision Diagrams (BDDs) to 
represent sensitized path information, as well as upset events. 
However, their approach appears to rely on explicit 
enumeration of BDDs corresponding to all input conditions 
and assumes simple superposition of reconvergent glitches, 
without considering their possible mutual masking. 
Furthermore, since it doesn’t rely on using Algebraic Decision 
Diagrams (ADDs), the approach in [20] cannot model 
arbitrary input distributions, which can be handled with ADDs 
via Dynamic Markov Models [7].  

The approach proposed in [9] uses both BDDs and ADDs to 
allow for a unified treatment of logical, electrical and latching-

window masking effects and has been shown to be very 
efficient. When compared to another recent work [13] that 
also includes all three masking factors, the method proposed 
in [9] computes the SER much faster, while being more 
accurate. For example, one run of the algorithm in [13] 
assumes one specific input vector, and thus applies Monte 
Carlo analysis leading to an average error of 16%, while the 
work presented in [9] accounts for all possible input vectors in 
one run by using BDDs and ADDs with the average error of 
4%. The approach proposed in [9] is incorporated into our 
analysis of sequential circuits and its main aspects will be 
discussed in Section III.B. 

B. SER in sequential circuits 
Compared to the number of methods proposed for modeling 

soft error susceptibility of combinational circuits, sequential 
circuits have received less attention. Most of the previous 
work in evaluating SER in sequential circuits has been done 
using simulation. Approaches to this problem addressed 
different levels of abstraction, starting with the device level 
and circuit level, up to the system level. At the device level, 
the most commonly used methods were the simulation based 
on drift-diffusion model or Monte Carlo simulation. Although 
very accurate, the drawback of methods used at this level of 
abstraction is very high computational complexity. Circuit and 
logic simulation are the next levels of abstraction at which the 
effects of soft errors in circuits can be evaluated, but it again 
requires large computational time, which rapidly increases 
with the size of the circuit [5]. On the other hand, simulations 
that can be used at the architectural level are much faster than 
in previous methods that use fault injection, but are usually 
applicable to very specific designs and are not general enough. 
As in the case of lower levels of abstraction, these simulations 
will also depend on chosen stimuli. 

Similar to combinational circuits, the alternative to 
simulation is analytical/symbolic modeling. However, while in 
case of logic circuits one pass through the circuit is enough to 
evaluate its susceptibility to given particle hit, in the case of 
sequential circuits this evaluation becomes much more 
difficult. Since sequential circuits have a feedback loop 
leading back to the state inputs of the circuit, it is possible that 
errors latched at state lines propagate through the circuit more 
than once. Thus, the effect of a single particle hit can affect 
outputs during several clock cycles. To consider this effect, 
the analysis of the propagation of an SET through sequential 
circuit in more than one clock cycle is necessary. In the worst 
case, this analysis and evaluation would have to consider an 
infinitely large number of cycles. Therefore, to be able to 
model and analyze sequential circuit susceptibility to soft 
errors, we need approximate methods. 

Although there has been a lot of work in the area of 
modeling the probabilistic behavior of finite state machines 
(FSMs) [6], [7], the main goal of those methods was 
calculating steady-state behavior of the circuit, which can be 
applied, for example, in estimating the switching activity of 
the circuit for the purpose of power evaluation. In the case of 
soft errors, the transient behavior of the circuit is more 
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(a) (b)  

(c)  
Fig. 1. Example: (a) circuit S27, (b) results for separate and unified treatment
of masking factors for three initial glitch durations (80ps 100ps and 125ps)
and (c) SER changes during several clock cycles for different input probability 
distributions. 

important, that is: (i) the time the circuit spends transitioning 
through erroneous states until it reaches a steady-state 
behavior; and (ii) the effect this transitioning has on the 
outputs, that is, the susceptibility to soft errors of the target 
sequential circuit. 

One method that evaluates the probability of latching the 
error in sequential circuit in the cycles following the particle 
hit was recently proposed by Asadi et al. [1]. In that work, the 
authors assume hits can happen at state flip-flops only and 
then, based on this information, find the error probability at 
each output due to each individual flip flop hit. This analysis 
excludes cases where internal gates of circuit’s combinational 
logic are hit. In their case, the error at the output of 
combinational logic due to a state line error is found using a 
framework that analyzes logical masking only. Such an 
approach does not hold for the case of internal gate hits when 
electrical and latching-window masking need to be included as 
well. Thus, the approach proposed in [1] will not give accurate 
results if hits are assumed to happen not only at flip-flops, but 
also inside the combinational logic part of sequential circuit. 
Furthermore, the logical masking method that is used in [1] 
relies on path tracing, which is much slower than our proposed 
approach. Finally, the authors report their results in terms of 
the mean time to manifest error (MTTM) metric, and not in 
terms of SER, which is the most common metric for measuring 
the soft error susceptibility of circuits. 

C. Soft error hardening 
Soft error mitigation techniques can be classified into three 

distinct categories [5]: device-, circuit- and system-level 
techniques. Device-level hardening approaches mainly aim to 
reduce and mitigate the effects of charge collection at the site 
of the particle strike and require fundamental changes in the 
manufacturing process [3]. Circuit-level techniques rely on 
changes in the circuit design for hardening memories, 
combinational or sequential circuits. System-level techniques 
deal with soft errors at the system architecture level and 
usually involve the introduction of redundancy into the design. 

One cost-effective approach that uses a fundamental method 
to harden the circuit against soft errors was proposed by Zhou 
et al. in [22] and further described in [23]. The authors of [22] 
propose selective gate resizing, that is, the increase in critical 
charge of the gates that have the largest impact on the soft 
error susceptibility of the combinational circuit through 
scaling of the transistors in those gates. In this work, we 
incorporate a similar hardening method into our framework, 
but for sequential circuits (not only combinational circuits). 
Thus, we describe the gate resizing in more detail in Section 
VI. There are, however, two important differences between the 
work presented in [22],[23] and our work. First, the work in 
[22],[23] is primarily focused on proposing gate resizing as a 
viable soft error mitigation technique, while our work presents 
this technique only to show how circuit hardening techniques 
can be incorporated into the proposed modeling and analysis 
framework. Second, the authors in [22],[23] assume the same 
glitch propagation modeling methodology, which was 
previously described in [11] and is different from what we use 

in our work. More precisely, the impact of three masking 
factors is modeled and computed separately in [11], while our 
approach applies important (as we will describe here in 
Section II.D) unified modeling of these masking factors. There 
are few more recent approaches that also apply gate resizing 
as a soft error mitigation technique [2],[14]. In our framework, 
we included analysis of the impact of different glitch sizes on 
the SER before and after gate resizing, while the work 
presented in [2] provides no observation of glitch size or 
collected charge. Next, the authors in [2] use their previous 
model (described in [1]) for computing the SER, and that 
model includes logical masking only, without considering 
electrical or latching-window masking. The work presented in 
[14] uses the tool previously proposed in [13] for soft error 
susceptibility computation of combinational circuits. An 
important difference between the work in [14] and our 
symbolic modeling methodology is the scalability, which 
stems from these different circuit error susceptibility 
evaluation methods (as already described in Section II.A). 

D. Paper contribution 
In order to estimate probability of soft errors in sequential 

circuits, we use the unrolling method described in detail in 
Section V. As opposed to Markovian analysis approaches that 
allow only steady-state analysis, this method allows for both 
transient and steady-state evaluation of the propagation of 
SET and the soft error susceptibility of sequential circuits. As 
already described, a number of methods have been proposed 
recently for the evaluation of the soft error susceptibility of 
combinational circuits. From among those, we chose to use the 
symbolic modeling framework presented in [9] that relies on 
BDDs and ADDs.  
1) Unified symbolic treatment 

The framework proposed in [9] for soft error susceptibility 
evaluation of combinational circuits was chosen as the basis 
for sequential circuit analysis due to the fact that it provides a 
unified treatment of the three masking factors: logical, 
electrical and latching-window masking. More precisely, by 
using BDDs and ADDs, the information about the masking 
factors is implicitly generated inside the decision diagrams, 
therefore including their joint dependency on input patterns 
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and circuit topology. This allows for efficient concurrent 
computation of output error susceptibility due to hits on 
various internal nodes.  

The unified treatment of three masking factors is important 
as it can be seen from the example in Fig. 1 (a) and (b). We 
consider separately the effect of logical masking, on one hand, 
and the effect of electrical and latching-window masking, on 
the other hand, for the ISCAS’89 benchmark S27 (Fig. 1 (a)). 
There are two cases of reconvergent paths in circuit S27. From 
gate G2 there are two paths that reconverge at gate G7, and 
thus affect the probability of error propagation to the output of 
the circuit and two next-state lines. From gate G1, there is one 
path leading directly to gate G6 and one that goes through gate 
G2 creating overall three possible reconvergent paths to one of 
the next-state lines and two reconvergent paths to the output 
and another next-state line. The separate computation of 
different masking factors will incur an error, since it sums 
separately (i) probabilities of sensitization of all reconvergent 
paths, and (ii) probabilities of latching on all reconvergent 
paths; and then it multiplies the two terms. This will not take 
into account the relative arrival time and durations of the 
glitches at the reconvergence point.  

The results shown in the table in Fig. 1 (b) represent 
minimum, maximum and average relative error of the model 
that evaluates electrical, latching-window and logical masking 
separately, compared to the unified model averaged across ten 
different input vector probability distributions, for three 
different initial glitch durations. As it can be seen from these 
results, multiplying the probability of logical masking with the 
probability of electrical and latching-window masking that 
were computed separately leads to the error in the probability 
of latching the glitch which can be as large as 3100%. 
However, for smaller glitch duration (80ps), the average error 
is not very large, due to the fact that most glitches are masked, 
and separate and unified methods give similar results. For the 
case of large initial glitches (125ps), all glitches propagate, 
and the only difference between the two methods comes from 
the way reconvergent paths are handled. 
2) Exact and approximate methods for SER estimation in 
sequential circuits.  

To take into account the joint effect of logical, electrical and 
latching-window masking and, at the same time, to allow for 
the efficient estimation of the effects in time of SET on the 
outputs of the sequential circuit, we rely on two proposed 
methods for exact and approximate evaluation of SER in 
sequential circuits, as described in detail in Sections IV and V. 
The exact method relies on Markov Chain (MC) analysis-
based SER estimation, which is able to provide steady-state 
SER estimates following a hit. To cope with potential state 
explosion/complexity problems associated with this type of 
analysis and to allow for modeling of transient effects in SER 
evaluation, we also propose a low-cost, approximate method 
based on circuit unrolling.  

For a better understanding of the methodology proposed in 
this work, we show in Fig. 1 (c) the results obtained using our 
approximate method for the example circuit S27 for several 
input vector probability distributions (PD). The results 

presented in Fig. 1 (c) describe the effect of a particle hit on 
circuit behavior, that is, the output error probability variation 
in time. As it can be seen, in most cases SER converges to 
very low values, except for a few cases in which it stays 
almost constant. This shows that SER transient behavior is 
heavily dependent on the input distribution, and thus classic 
MC analysis may not be appropriate for capturing it. Our 
framework is not only scalable, but also accurate when 
compared to detailed circuit simulation. As shown in Section 
VII.B, the proposed framework is within 4% accurate when 
compared to HSPICE, at an 11000X speedup. 
3) Gate resizing for sequential circuit hardening.  

Once soft error impact of individual gates is known, we can 
determine sensitive areas of the chip and therefore apply 
specific radiation hardening techniques. As already 
mentioned, in this paper we focus on circuit-level hardening 
technique that resizes selected gates such that the critical 
charge needed to change the output of a gate is increased.  

We determine the mean error impact (MEI) of a gate by 
averaging its error impact across all outputs and all probability 
distributions. All gates with MEI larger than a given threshold 
are resized, such that the outputs of those gates are not 
affected when hit by particles with energies in a given interval. 
As criteria for choosing gates to be resized, we use: (i) the 
MEI of a gate averaged across all cycles under consideration 
in the target circuit, and (ii) the MEI of a gate determined only 
during the cycle when hit happens.  

In Fig. 2, we show how the SER changes in the cycles 
following the particle hit, before and after gate resizing, for a 
set of benchmark circuits, when the second criterion is used. 
The results on both curves in Fig. 2, “original” and “resized” 
are presented as a percentage of the original SER value during 
the first cycle. It can be seen from Fig. 2 that the SER 
decreases rapidly after the first cycle both before and after 
resizing. Furthermore, after resizing, the SER improves even 
during the first cycle for as much as 83%. 

As it will be seen from the results presented in Section VII, 
using the first criterion leads to a smaller number of resized 
gates (and potentially less area overhead). This is due to the 
fact that MEI, as well as SER, most often decreases when 
propagating through the unrolled circuit, while, usually, it is 

    

    
Fig. 2. SER changes in the cycles following the particle hit, compared to the 
SER during the first cycle, before and after gate resizing, for four benchmark 
circuits. 
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largest during the first cycle (when the hit occurs). Thus, this 
once more supports the fact that: (i) considering only the 
combinational logic effects during the cycle when hit occurs is 
not sufficient for SER analysis; and (ii) time-dependent 
analysis is necessary in sequential circuits as opposed to just 
steady-state analysis which cannot give any insight into the 
transient behavior of the circuit. 

III. SEQUENTIAL CIRCUITS - PRELIMINARIES 
A typical sequential circuit consists of combinational logic 

and flip-flops (FFs). The inputs to the combinational logic are 
the primary inputs and the outputs of FFs, while the outputs of 
combinational logic are the primary outputs and inputs of the 
FFs. 

When a charged particle hits the circuit, there are two 
possible cases: 
1. The particle hits an internal gate of the combinational logic 
2. The particle hits the flip-flop that stores information about 

the next state. 
In the case when the particle hits an internal gate, the 

analysis of the propagation of single-event transient during the 
current clock cycle is the same as for combinational logic. On 
the other hand, if an SET occurs at the output of one of the 
flip-flops, the analysis must consider the pulse propagation 
through the logic part of the circuit with the assumption that 
the error occurred at one of the inputs (state-line input) of the 
logic. Therefore, to analyze the propagation of the glitch 
occurring due to a particle hit in the sequential circuit, that is, 
the effect of logical, electrical and latching-window masking, 
we can apply the same analysis as for the combinational logic. 
However, the main difference between combinational and 
sequential circuit analysis, when considering their 
susceptibility to soft errors is that, after being latched in state 
FFs in sequential circuit, the error can actually be propagated 
back to the combinational part of the circuit. While the outputs 
of combinational circuit are affected by the error during a 
single clock cycle only, in sequential circuits the outputs can 
be affected during several consecutive clock cycles.  

We present in this work two possible symbolic approaches 
to the modeling and analysis of sequential circuit 
susceptibility to soft errors. The first approach uses Markov 
chain theory and the finite state machine description of the 
circuit and is applicable only to steady-state analysis. The 
second approach relies on BDDs and ADDs and unrolling of 
sequential circuits and it is suitable for analysis of time-
dependent SER behavior. We thus present in this section the 
basic definitions and notation on finite state machines and 
Markov chains that will be used throughout the paper, and the 
main aspects of a BDD/ADD based analysis of SET 
propagation and SER evaluation in combinational circuits. 

A. Markov chain analysis of sequential circuits 
As an abstraction for sequential circuits, we use the finite 

state machine (FSM), which can be represented using a state 
transition graph (STG).  

The probabilistic behavior of a sequential circuit is often 
analyzed using concepts of Markov chain (MC) theory, as 

described before [6], [7]. An STG that represents state 
transitions of the circuit, given input values, can be 
transformed into the discrete-parameter MC by attaching to 
each out-going edge of each state a label that represents the 
transition probability.  

The transition probabilities of MC for a given circuit can be 
calculated when the input distribution that exercises the inputs 
of the finite state machine (FSM) is known. More precisely, 
given the transition relation TM for a FSM M, and input vector 
probability distribution, q = (q1, q2, ..., ql), where l is the 
number of possible input vector values, the probability pij of 
transitioning from state i to state j can be found as:  
pij = qk

k,TM ( i,k, j )=1
∑  (1) 

From the transition probability matrix P, it is always possible 
to calculate the n-step transition probability matrix Pn.  

It is often required to determine the long-run behavior of 
MCs, that is, the limit state probability: 

∞→

=
n

jj np )(limπ  
,...1,0=j

  (2) 

If, for a given MC, the limit probabilities πj exist for all 
states j in the state space I, where πj does not depend on the 
initial state i, then Σj∈I πj = 1 and the πj’s, j ∈ I, are called the 
steady-state probabilities of the MC. 

B. BDD/ADD based modeling of SET in combinational 
circuits 

The framework in [9] captures all gate-output 
combinations, i.e., it determines the probability of a soft error 
at any output due to a fault originating at any internal gate, by 
using BDDs and ADDs.  

For each output Fj, initial duration dinit and initial amplitude 
ainit at the output of gate hit by radiation, the authors in [9] find 
mean error susceptibility (MES) as the probability of output Fj 
failing due to errors at internal gates: 

 
MES(Fj

d init ,ainit ) =
P(Fj fails | Gi fails∩ init _ glitch = (dinit ,ainit ))

i=1

nG

∑
k=1

n f

∑
nG ⋅ n f

(3) 

where nG is the cardinality of the set of internal gates of the 
circuit, {Gi} and nf is the cardinality of the set of probability 
distributions, {fk}, associated to the input vector stream. For 
each gate Gi, dinit and ainit, one can find minimum, maximum, 
mean and median error impact over all outputs Fj that are 
affected by a glitch occurring at the output of gate Gi. Mean 
error impact (MEI) for gate Gi is defined as: 

 
MEI(Gi

d init ,ainit ) =

P(Fj fails | Gi fails ∩ init _ glitch = (dinit ,ainit ))
j=1

nF

∑
k=1

n f

∑
nF ⋅ n f

(4) 

where nF is the cardinality of the set of primary outputs of the 
circuit, {Fj}. Similarly, one can find minimum, maximum and 
median error impact across all outputs and all output 
probability distributions. For each input probability 
distribution used, one can also find the number of gates that do 
not affect any of the outputs.  
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Fig. 3. Circuit model used to perform Markov chain analysis for a given
sequential circuit.  

 (a) (b) 
Fig. 4.  State transition graph for benchmark circuit S27: (a) original and (b) 
aggregated set of states (only states 0, 1 and 4 are enlarged to show the
aggregation and a small number of transitions is shown). 

The probability of output Fj failing, P(Fj) can be defined 
using MES metric, as described in [9], leading to the 
expression for soft error rate (SER) [21]: 

circuitPHeffjF ARRFPSER
j

⋅⋅⋅= )(  (5) 
where RPH is the particle hit rate per unit of area, Reff is the 
fraction of particle hits that result in charge generation, and 
Acircuit is the total silicon area of the circuit. Once P(Fj) is 
computed for every output (including state lines), one can use 
the error probability for the state lines to determine steady-
state and time-dependent behavior of error propagation in the 
sequential circuit. We describe in the sequel two such 
approaches. 

IV. MARKOV CHAIN THEORY FOR STEADY-STATE SER 
ANALYSIS 

As described in the previous section, the probabilistic 
behavior of a sequential circuit can be analyzed using Markov 
chain (MC) theory. Therefore, it naturally leads to the 
conclusion that we can apply MCs to the probabilistic analysis 
of sequential circuit soft error susceptibility. In the approaches 
used in [6], [7], it was shown how to calculate the steady-state 
behavior of FSMs by means of MC analysis. We describe here 
one possible method that uses MCs for SER analysis.  

We propose to modify the original sequential circuit as 
shown in Fig. 3. The new circuit consists of two copies of the 
combinational logic of the original circuit, Combinational 
logic (gold), CL1, and Combinational logic (hit), CL2. Logic 
CL1 is used to collect the information about the correct 
behavior of the circuit, having as inputs primary input vector 
(PI1) and the correct present-state vector (PS1) and as outputs 
the correct primary output vector (PO1) and the correct next 
state vector (NS1). On the other hand, circuit CL2 has as inputs 
primary input vector (PI2, where PI2 ≡ PI1) and possibly 
erroneous present-state lines (PS2) and as outputs possibly 
erroneous primary output vector (PO2) and possibly erroneous 
next-state vector (NS2). We can define the state vectors of the 
gold and hit circuit as: 
NS1 = δ1 = (δ1

1,δ2
1,...,δm

1 )
 and  

NS 2 = δ 2 = (δ1
2,δ2

2,...,δm
2 )

 
where vectors δ1 and δ2 can take values from the finite set S of 
the states of the original circuit. m is the number of state 
variables. The modified circuit has a new state vector 
consisting of the state lines (variables) of the original (gold) 
circuit and an error vector ε = (ε1, ε2, ..., εm):   
NS modified = (δ1,ε) = (δ1

1,δ2
1,...,δm

1 ,ε1,ε2,...,εm )
  

The error vector ε is defined as:  
ε = δ1 ⊕ δ 2 = (δ1

1 ⊕ δ1
2,δ2

1 ⊕ δ2
2,...,δm

1 ⊕ δm
2 )

 
and can take values from the finite set E representing possible 
errors in the state lines of the original circuit. In other words, a 
“1” in a component of vector ε represents an error in the 
corresponding element of the state vector δ2 of the circuit CL2, 
when compared to the state vector δ1 of the circuit CL1: εi = 1, 
when there is an error in state line δi, and εi = 0 otherwise, for 
i=1,2,..,m.  PS2 vector at the input of CL2 is then obtained by 
XOR-ing the PS1 vector δ1 and error vector ε.  

The main goal of the soft error susceptibility analysis for 
sequential circuits is to find the transition probabilities 
between the erroneous states from the set E and from there to 
determine the behavior of the sequential circuit when the soft 
error occurs. In other words, we are interested in finding the 
steady-state probability distribution for the values that the 
error vector ε can take. This can be found from the probability 
vector πmodified representing the steady-state distribution for the 
modified circuit by summing the probabilities πmodified

i,j = 
πmodified(δ1,i,εj) over all vectors (δ1,i,εj) that have the same 
values ε1, ε2, ..., εm:  
π j

error = π i, j
modified

i
∑ = π modified (δ1,i ,ε j )

δ 1,i

∑  (6) 

We find the STGs for the given original circuit and for its 
modified version shown in Fig. 3. Fig. 4 (a) shows an STG for 
an example circuit S27, which has 3-bit state vector (8 states). 
The modified version of S27 according to Fig. 3 will have 6-
bit state vector (64 states). From the STGs of both circuits and 
given the input vector probability distribution and particle hit 
probability, we can find their corresponding MCs.  

Thus, given the set of states {(δ1, ε)} and transition 
probabilities for the modified circuit, Pmodified, and given the 
initial error state probability ε(0), by using MC theory, we can 
determine the behavior of the sequential circuit after a soft 
error occurs. Starting with the initial probability vector p(0), 
we can apply various techniques (e.g., power method) on the 
transition probability matrix Pmodified to determine the steady-
state behavior, under given state error probabilities.  

We applied power method to the benchmark circuit S27 for 
ten different input probability distributions. The initial 
probability distribution for the error vector has been 
determined using the approach described in Section III.A. This 
circuit has the property of fast convergence to steady state. It 
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can be seen from the STG of this circuit that it has one 
strongly connected component (SCC) and after entering one of 
these four states it stays within this part of the STG. Thus, if 
an error occurs while the circuit is in one of these states, it will 
be masked after just a few steps. However, this example 
circuit is very small (only 10 gates, 4 input lines and 3 state 
lines) and in the case of larger circuits, this method may 
become inefficient. The pseudo code for this method is given 
in ALGORITHM 1 (STAGE II – Markovian (power method)). 

Working with the full (modified) MC can be prohibitive in 
terms of cost. While this approach is feasible for small 
benchmarks like S27 where the modified FSM has 64 states, 
this can become prohibitively large for larger benchmarks. 
Since we are interested in transitions between erroneous states 
only, one possible solution to the complexity problem is to use 
an approximation of the transition probability matrix Pmodified. 
An example of such a method is to partition and aggregate the 
states such that the size of the matrix Pmodified decreases. This 
method has been previously used in power analysis and 
evaluation of sequential circuits [6], [7]. First, we find the 
transition probability matrix Pmodified for the modified circuit 
and assume the starting stationary distribution πmodified = (π1

 

modified, π2
 modified, ..., πm

modified). Let A = (A1, A2, … AN) be a 
partition of the state space of the original STG into N blocks 
(macrostates). We can define a new N x N matrix Q = [qIJ] 
such that [6]:  

∑
∑

∈

∈=

I

I

Ai

ified
i

Ai
iJ

ified
i

IJ

p
q mod

mod

π

π

 and ∑
∈

=
JAj

ijiJ pp  (7) 

The problem that arises with this method is that it requires 
the MC to be nearly completely decomposable (NCD) [16], 
for the approximation to have small error. However, even 
though the aggregation method converges to an approximate 
solution, and thus represents an attractive solution for the 
efficiency of MC approach, the NCD requirement cannot be 
satisfied for each circuit. We applied the state 
partition/aggregation method on the example circuit S27, as 
shown in Fig. 4 (b). For this benchmark circuit, the transition 
matrix Q obtained using equation (7) converges to the same 
stationary distribution for erroneous states as the one found 
using power method on the original transition matrix Pmodified. 
The pseudo code for this method is given in ALGORITHM 1 
(STAGE II – Markovian (aggregation)). 

Although established and easy to use, MC analysis has one 
major drawback: while allowing for the evaluation of long-
term or steady-state behavior of the sequential circuit, it fails 
short in the following when applied to the SER estimation: 
• It cannot capture the effect of the error on the outputs of the 

circuit as a function of time – it only estimates what is the 
steady-state distribution; 

• It cannot include the effect of electrical and latching-window 
masking, and instead can model only logical masking, unless 
information is available about the likelihood of a latched 
error in a state line after a particle hits; 

• It becomes impractical for analyzing circuits with larger 
number of state lines, and thus exponentially larger number 

of states. One possible solution is to use the approximation 
techniques such as aggregation or Monte Carlo simulation, 
but this can negatively affect the accuracy of the method. 

V. A PRACTICAL APPROACH FOR TIME-DEPENDENT SER 
ANALYSIS 

In order to estimate the probability of errors in sequential 
circuits in an efficient manner that captures both transient and 
steady-state effects while easily incorporating the joint impact 
of logical, electrical, and latching window masking, we use 
the symbolic framework presented in [9] and briefly described 
in Section III.B in conjunction with circuit unrolling. Since 
the framework in [9] is used only for combinational circuits, 
we modified it such that it can be applied to sequential circuits 
as well.  

The main idea of this work is to use unrolling of the 
sequential circuit, as shown in Fig. 5, in order to allow for 
efficient time-dependent analysis of the effect of SET on 
outputs of sequential circuit. 

It is important to note here that, when the glitch occurs 
either at state lines PS1 or at the output of some internal gate 
of the combinational logic, it can have a duration much shorter 
than the clock period and an amplitude smaller than Vdd. This 
means that the glitch can be affected by electrical and 
latching-window masking. However, if the glitch results in an 
error in a FF, it will further propagate as a full-cycle error and 
thus will only be logically masked when not on a sensitized 
path. Therefore, to use the framework from [9] to analyze the 
soft error propagation in the clock cycles subsequent to the 
cycle when the hit occurred, we need to turn off the effect of 
electrical and latching-window masking in all stages following 
the first stage. 

One possible approach is to analyze the k-unrolled circuit as 
having two main stages: STAGE I – 1st cycle, STAGE II – 2nd 
to kth cycles (sub-stages). We can then find the probability of 
error at each output and each next-state line in STAGE I as 
described in [9]. In STAGE II, we can lump the logic of sub-
stages 2 to k into a single logic circuit for which soft error 
analysis can be performed using the techniques described in 
Section III.B. Similar to the analysis of STAGE I, we can 
employ the same approach applicable to combinational 
circuits [9], except that we now assume that the glitch occurs 
only at state line inputs as a full “0” or “1” and thus, can only 
be masked logically. STAGE-II logic will have (k-1) times 
more inputs and (k-1) times more outputs. We can then find 

 
Fig. 5. k-times unrolled sequential circuit divided into two main stages: 
STAGE I and STAGE II. STAGE II is further subdivided into k-1  sub-stages 
(PIi: primary inputs of the ith sub-stage, POi: primary outputs of the ith sub-
stage, PSi: present state of the ith sub-stage, NSi: next state of the ith sub-stage, 
B: state line buffers).  In STAGE I, all three masking effects (L, E, LW:
logical, electrical and latching-window masking, respectively) are modeled, 
while in STAGE II only logical masking (L) needs to be considered. 
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the probability of error for each pair (state line – output), that 
is, the probability that the wrong value is latched at the output, 
given that it occurred at state line. Therefore, the probability 
of error at each output of STAGE II is a conditional 
probability, given that an error did occur at the state line. For 
each such output probability value found for STAGE II, we 
need to multiply it with the probability of error at the 
corresponding state line. We find these probabilities, for a 
given input probability distribution using the symbolic 
framework described in Section III.B, as following: 

∑=
l

ad
l

ad
l

k
j

adk
j

initinitinitinitinitinit FPFFPFP )()|()( ,,1,,1,,

 (8) 

where P(Fj
k,d init ,ainit ) is the probability of output j at the sub-

stage k failing, given an initial glitch duration and amplitude, 
ainit and dinit. P(Fj

k | Fl
1,ainit ,dinit ) is the probability of error at the 

output j at the stage k, given that an error was latched at the 
state line l after the first stage with the probability of error at 
state line l given by: 

P(Fl
1,dinit ,ainit ) =

P(Fl fails | Gi fails∩ init _ glitch = (dinit ,ainit ))
i=1

nG

∑
nG

 (9) 

It is important to note here that we need to assume only a hit 
in the STAGE I of the unrolled circuit and no hits in the 
consecutive cycles. According to [2],[11], particle hits are 
sufficiently rare and therefore this assumption is realistic. The 

probability P(Fj
k,dinit , ainit ) can be averaged across input 

probability distributions to find MES as in equation (3). As 
shown in [9], the MES value can further be used to find the 
probability P(Fj

k) of output j failing at sub-stage k and then to 
compute SER as in equation (5). 

There is, however, one issue that may arise with this 
approach. In STAGE I, a single pulse can result in an error on 
more than one state line. An accurate approach would be to 
use the global state vector probability distribution and take 
into account the correlation of errors on state lines, instead of 
using individual state-line probability distribution. Obviously, 
the assumption we make (equation (8)) leads to an 
approximation of output error probability estimation. 
However, it has been suggested [18] that accurate results using 
this approach could be obtained by unrolling the logic an 
infinitely large number of times. This is impractical, but it has 
been shown [18] that, for the case of switching activity 
estimation, unrolling the circuit a finite number of times, k, 
leads to negligible approximation error. More specifically, 
when using k=2, the average error per gate is found to be 2%. 
In our experiments, we use on average ten unrolled stages for 
each benchmark and thus, we expect to decrease this error 
even further.  

Since the analysis of the circuit that we convey is 
probabilistic in nature, we use initial input vector probability 
distribution for determining output error. More specifically, 
the input vector for STAGE II of the unrolled circuit is 
comprised of inputs PI2 to PIk to sub-stages 2 to k (which are 
characterized by the same input probability distribution as PI1) 
and PS2 which are the present state lines after being affected 
by a possible particle hit in STAGE I. The probability 
distribution characterizing PS2 is determined by steady-state 
analysis of the original sequential circuit (e.g., using MC 
analysis as in Section IV), while any potential state line error 
probabilities are determined by using the approach described 
in Section III.B.  Thus, the STAGE II circuit can now be 
analyzed for individual latched errors on state lines using the 
approach in Section III.B, but only relying on logical masking 
effects.  

The pseudo code for this method is given in ALGORITHM 1 
(STAGE II – unrolling). 

VI. GATE RESIZING FOR RADIATION HARDENING 
When a high-energy charged particle passes through a 

semiconductor material, it frees electron-hole pairs along its 
path as it loses energy and a charge collection can occur, 
usually within a few microns of the junction. A charge 
necessary to trigger a change in the data state is called critical 
charge and it decreases to 10fC for technology nodes below 
90nm [15].  

One possible efficient solution to increase the critical 
charge in a logic circuit would be to size the most sensitive 
gates in the circuit [9],[22]. We use the MEI metric (equation 
(4)) to determine the impact of individual gates on the error 
susceptibility of the circuit. From the MEI values per gate, one 

ALGORITHM 1.  Error probability computation. 

STAGE I:  

set technology parameters; 
parse input netlist; 
create gate node list; 
sort gates topologically; 
pass through the sorted list, create all ADDs; 
compute initial probabilities { 

for each output and each next state line 
for each gate and each state line  

compute the probability of error; } 

STAGE II:  

UNROLLING:   
create k-unrolled circuit gate netlist; 
sort gates topologically; 
pass through the sorted list, create all BDDs; 
compute final probabilities{ 

for each output { 
for each state-line  

compute the probability of error;  //conditional 
compute final probability of error; } 

} 
MARKOVIAN: 

create modified circuit M; 
create state transition graph for M; 
for each probability distribution { 

find transition matrix Pmodified; 
case (method) { 

power_method:  { 
apply power method to find πmodified; 
find πerror;  } 

aggregation: { 
assume initial πmodified; 
apply iterative aggregation to find πerror;  } 

}  
} 
compute final probability of error;  

 

The algorithm for STAGE I initial error probability computation and STAGE 
II final error probability computation, using unrolling and two Markovian 
approaches (power method and aggregation). 
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can determine which gates have largest impact on SER and 
resize them in order to decrease the SER. 

When the gate width-length ratio (W/L) is changed, the 
impact that radiation has on that gate is affected. In other 
words, if this ratio is larger, more charge needs to be generated 
by a radiation event, so as to result in a glitch of a magnitude 
larger than the switching threshold of that gate. The current 
pulse that resulted from the collection of charge induced by 
radiation, Iin(t), can be modeled as  [22]: 

Iin (t) Qcoll

τ fall − τ rise

⋅ e
− t

τ fall − e
− t

τ rise
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  (10) 

where Qcoll is the charge collected by gate and τrise and τfall are 
the collection time constant of the junction and the ion-track 
establishment time constant, respectively. The voltage at the 
output of the gate can then be found as shown in [22], when 
the total capacitance at the output of the gate hit by radiation is 
known. It has been shown before that, in the case of 
combinational circuits, resizing the gates with large error 
impact has a beneficial effect on SER [8].  

The three major design constraints, area, power 
consumption and delay, are all affected by the sizing of 
transistors. The radiation hardening approach proposed in this 
work is applied only to the nodes that have the highest soft 
error impact, that is, the nodes that contribute the most to the 
soft error failure rate of the logic circuit. This decreases the 
overhead in area when compared to the approach where all 
gates are hardened. From the gate delay perspective, the 
effects of sizing a gate are not localized, since other gates are 
affected as well. This is due to the fact that sizing changes not 
only the drive strength of a gate, but also the input and output 
capacitances. As described in [17], the delay of a logic gate 
can be modeled as:  

  d = κ ⋅ R ⋅ (Cout + Cp ) 
where κ is a constant characteristic of the fabrication process, 
R is the equivalent resistance of the part of the circuit (pull-
down or pull-up) that is turned on, Cout is the external 
capacitance driven by the circuit and Cp is the internal (or 

parasitic) capacitance driven by the circuit. Given an original 
gate for which R = Rorig, Cin = Cin

orig and Cp = Cp
orig, we can 

describe its delay when its width is scaled by a factor α and 
length by a factor β as following:  

  

d new = κ ⋅ Rnew ⋅ Cout + Cp
new( )= κ ⋅ Rnew ⋅ Cin

new ⋅
Cout

Cin
new +

Cp
new

Cin
new

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= κ ⋅
Rorig ⋅ β

α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ α ⋅ β ⋅ Cin

orig( )⋅
Cout

α ⋅ β ⋅ Cin
orig +

α ⋅ β ⋅ Cp
orig

α ⋅ β ⋅ Cin
orig

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= κ ⋅ Rorig ⋅ β 2 ⋅ Cin
orig ⋅

Cout

α ⋅ β ⋅ Cin
orig +

Cp
orig

Cin
orig

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 (11) 

If, for an inverter described with the same model, the 
equivalent resistance is R = Rinv, and input capacitance Cin = 
Cinv, then the previous expression for gate delay can be written 
as: 

  

d new = κ ⋅ β 2 ⋅ Rinv ⋅ Cin
inv ⋅

Rorig ⋅ Cin
orig

Rinv ⋅ Cin
inv ⋅

Cout

α ⋅ β ⋅ Cin
orig +

Cp
orig

Cin
orig

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= κ ⋅ Rinv ⋅ Cin
inv ⋅ β 2 ⋅

Rorig ⋅ Cin
orig

Rinv ⋅ Cin
inv ⋅

Cout

α ⋅ β ⋅ Cin
orig + β 2 ⋅

Rorig ⋅ Cp
orig

Rinv ⋅ Cin
inv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(12) 

We assumed in deriving equations (11) and (12) that both 
resistance R and capacitance Cin are linearly dependent on 
transistor length, as described in [19]. The resistance R also 
depends on the threshold voltage [19], but in the equations we 
used, we assumed an explicit linear dependence of R on 
channel length, without taking into account possible changes 
in threshold voltage as the result of changes in transistor 
length. If necessary, this could easily be modified, and would 
only affect the impact of the length scaling factor β on 
resistance R.  

As described in [17], we can define unit delay, 

τ = κ ⋅ Rinv ⋅ Cinv , logical effort, g =
Rorig ⋅ Cin

orig

Rinv ⋅ Cin
inv

, electrical 

effort, m =
Cout

Cin
orig

, parasitic delay, p =
Rorig ⋅ Cin

orig

Rinv ⋅ Cin
inv

, and thus 

write the gate delay as: 

  
d new = τ ⋅ β ⋅ g ⋅ m ⋅

1
α

+ β 2 ⋅ p
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  (13) 

We use the previous expression to incorporate the changes 
in transistor sizes into the delay model used in the symbolic 
framework. This expression is derived under the assumption 
that gate sizing is symmetrical, that is, both pMOS and nMOS 
parts of a gate are scaled by the same factors α and β. In this 
work, we assume that β = 1 and α is at most equal to 8 such 
that the gates selected for resizing cannot be affected by the 
particles within given energy range. According to equation 
(12), the delay of a resized gate will be affected by the 
parameter α and thus will decrease.  

It is important to note here that the input capacitance of the 
gate that is resized is changed such that the new value is: 
Cin

new =α ⋅ β ⋅ Cin
orig

 
For the fanin gates of the resized gate, this capacitance is 

part of the load capacitance Cout, and gate resizing will 

ALGORITHM 2. Gate resizing. 

resize  { 
createResizingList (threshold); 
updateProbabilities (gate_resizing_list);  } 

createResizingList (threshold) { 
for each gate { 

if Case 1then  
MEI_new ← average MEI across all sub-stages; 

else // Case 2 
MEI_new ← MEI at STAGE I; 

if MEI_new > threshold then 
add gate to gate_resizing_list;  }  

}  
updateProbabilities (gate_resizing_list) { 

for each gate { 
if gate in gate_resizing_list then { 

change gate_delay; 
set initial amp. and dur. ADD to zero} 

update output ADDs; }  
compute initial probabilities; 
compute final probabilities; 

} 
The algorithm for gate resizing that uses MEI value from the first stage only 
(Case 1) and averaged across all sub-stages (Case 2) to create the list of gates 
to be resized. 
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therefore affect the delay of fanin gates through the electrical 
effort m.  

To find the gates that have largest error impact, we compare 
their MEI with a given threshold. MEI values computed as in 
equation (4) represent the error impact of a gate at each sub-
stage of the unrolled circuit. Therefore, as a criteria for 
resizing, we can choose either an average MEI of a gate across 
all sub-stages (STAGE I and all sub-stages of STAGE II – 
Case 1), or an MEI for STAGE I only (Case 2). Since for most 
benchmarks analyzed SER decreases fast within a few cycles, 
applying the resizing mechanism in Case 2 will be more 
effective. This is due to the fact that more gates will be resized 
in this case, leading to a lower overall SER. The pseudo code 
for gate resizing is given in ALGORITHM 2. 

VII. EXPERIMENTAL RESULTS 
In this section, we first compare the results obtained using 

MC analysis and HSPICE simulator with the results obtained 
using our framework on a small example circuit S27. Then, we 
show the results of our symbolic model for seven sequential 
circuits, given different glitch durations and different sets of 
input probabilities. The technology used is 70nm, Berkeley 
Predictive Technology Model [4], [25]. The clock cycle period 
(Tclk) used is 250ps, and setup (tsetup) and hold (thold) times for 
the latches are assumed to be 10ps each. Vdd is assumed to be 
1V. The delay of an inverter in the given technology is 
determined by simulating a ring oscillator in HSPICE and 
found to be 6.5ps. The delays for other gates are found by 
using logical and electrical effort methodology [17]. The 
benchmark circuits are chosen from ISCAS’89 suite. The 
symbolic modeling framework is implemented in C++, and 
run on a 3GHz Pentium 4 workstation running Linux. 

A. MC analysis vs. circuit unrolling 
We compare the two MC methods (power method and 

aggregation) with the unrolling of sequential circuits on 
benchmark S27 for ten different input probability 
distributions. In TABLE I, we show the maximum number of 
steps needed for the power method applied on matrix Pmodified 
to converge to steady-state distribution (column MC power 
method), the number of steps needed for the error state matrix 

found using aggregation to converge to steady-state 
distribution (column MC aggregation), and the number of sub-
stages of the circuit in the unrolling method (column 
unrolling) needed to reach the SER value smaller than a given 
threshold (10-7 FIT). We also show the error of the method 
when used given number of steps relative to the power 
method. As it can be seen, circuit unrolling provides 
sufficiently accurate results, with orders of magnitude lower 
time complexity. 

B. Symbolic modeling vs. simulation 
We use HSPICE simulation to evaluate the accuracy of the 

results we obtain using approximate symbolic model of the 
circuit. In Fig. 6, we show the relative error and relative 
speedup of our model when compared to the HSPICE 
simulation for benchmark circuit S27 for several initial glitch 
durations ranging from 40ps to 120ps, assuming exhaustive 
input sets and considering all gate-output pairs. We find the 
relative error of our model for a given initial glitch size as: 
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where nG is the number of gates as in equation (3), nF is the 
number of outputs as in equation (4), nV is the number of input 
vectors, Dijk

symbolic and Dijk
HSPICE are the durations of the glitch 

for input vector k and the gate-output pair Gi-Fj, found using 
our model and HSPICE, respectively. Note that this error 
includes a node-by-node analysis and not just a lumped SER 
comparison. As it can be seen from Fig. 6, the error stemming 
from the approximate gate delay model and the attenuation 
model we are using ranges from less than 1% to about 12% in 

 TABLE II 
MINIMUM, MAXIMUM AND AVERAGE SER  

SER computed as in equation (5) for the range of glitch durations (60-140)ps, 
average number of clock cycles needed to reach the steady-state and number 
of stages and number of probability distributions (PDs) used, run time and 
memory usage for three glitch durations: small (60ps), medium (100ps) and 
large (140ps).  
 

SER [FIT] 
Bench. no. 

gates
no.
PIs

no.
 POs

no. 
NSs

min max average no.  
cycles 

glitch  
size 

no.  
sub-stages 

& PDs 

run 
time 
(s) 

memory 
usage  
(MB) 

small 10,10 0.027 1.4 
medium 10,10 0.028 57.4 S27 10 4 1 3 4.78e-5 0.00134 0.00023 10 

large 10,10 0.032 57.4 
small 10,10 994 61 

medium 10,10 1000 67.2 S208 68 10 1 8 0.00025 0.00209 0.00054 10+ 
large 10,10 1000 67.2 
small 10,10 6900 71.4 

medium 10,10 6900 71.4 S298 86 3 14 14 5.25e-5 0.00135 0.00023 10+ 
large 10,10 6950 71.4 
small 5,10 385 61.8 

medium 5,10 365 61.8 S444 153 3 2 21 0 0.00132 0.00029 5 
large 5,10 360 61.8 
small 5,10 570 14.3 

medium 5,10 551 18.0 S526 165 3 21 21 1.80e-5 0.001260 0.00027 5+ 
large 5,10 550 18.0 
small 5,10 57 17.4 

medium 5,10 68 20.0 S1196 487 14 13 18 0 0.00213 0.00043 5 
large 5,10 61 20.5 
small 5,10 64 15.1 

medium 5,10 70 15.9 S1238 540 14 13 18 0 0.00212 0.00043 4 
large 5,10 71 15.9 

TABLE I  
METHOD COMPARISON 

Comparison of number of steps to reach the (approximate) steady state and 
error relative to MC power method of three methods: MC power method, MC 
aggregation and circuit unrolling.  
 

 MC power method MC aggregation unrolling
no. steps 163 109 10 

relative error [%] 0 0 3E-6 

 
Fig. 6. Comparison of results obtained from HSPICE simulation and symbolic
method on benchmark circuit S27. 
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one instance (40ps glitch), while averaging 4% overall for an 
effective 5500X average speedup (up to 11000X in some 
cases). 

C. SER evaluation 
In TABLE II, we present SER for several ISCAS’89 

benchmark circuits found using equation (5). The allowed 
interval for the initial duration of the glitch is assumed to be 
(dmin,dmax) = (60,140)ps, while initial amplitude is in the range 
(amin,amax) = (0.8,1)V. Since for glitches smaller than 60ps all 
benchmark circuits (except for a few that have very small 
number of gates) have output error induced mostly by output 
gates and their fanin gates in STAGE I, we use this duration as 
the lower bound of our interval. Similarly, as already 
explained, for glitches longer than 140ps, all benchmarks 
propagate almost all the glitches, and thus we use this as an 
upper bound. MES for each output is found within these 
allowed intervals at incremental steps ∆d = 20ps and ∆a = 
0.1V. The RPH used is 56.5 m-2s-1, Reff is 2.2·10-5, and the total 
silicon area for each benchmark circuit is derived as a function 
of gate count. As it can be seen from results presented in 
TABLE II, the SER behavior is different among the 
benchmark circuits, that is, the SER decreases very fast (e.g., 
for circuits S1196, S1238) or stays at about the same level for 
all ten clock cycles for which the circuit is unrolled (e.g., for 
circuit S208). This difference in number of cycles needed for 
the circuit to go back to non-erroneous state stems from the 
logic of the circuit and logical masking as well as from the 
number of state lines that can drive errors back to the state line 
inputs of the circuit. 

The benchmark circuits for which the results are presented 
in TABLE II have up to 20 primary inputs (PIs) or next state 
lines (NSs). In our previous work [8], we have shown results 
for some combinational circuits that have up to 40 PIs. As 
already described, the number of variables, i.e., non-terminal 
nodes in BDDs/ADDs represent primary inputs and state lines 
and thus, number of flip-flops in conjunction with the number 
of primary inputs, can increase the size of BDDs/ADDs. This 

can further increase the time necessary to create final output 
ADDs and the time needed to find the probabilities from those 
ADDs. This runtime becomes an issue only for circuits with 
overall number of primary input and state lines of more than 
40 or 50. We reported in TABLE II the results for those 
benchmark circuits for which running of the framework 
finished in a reasonable amount of time. However, our 
framework is not limited to only these circuits and can be run 
on larger benchmarks as well, but it will require longer run 
time. It is also important to note that, when compared to the 
previous work [1],[14],[20],[21], our approach gives better run 
time, while being within 4% accurate. Moreover, this 
scalability “limitation” of the current work can further be 
overcome by dividing the circuit into smaller parts (sub-
circuits) and computing output ADDs for those sub-circuits. 
We intend to apply this approach in our future work and thus, 
improve even more the scalability of our framework. 

There is also an additional aspect of SER in sequential 
circuits that we analyzed and is shown in Fig. 7. When 
different input probability distributions are applied, the 
behavior of the circuit is uniform in most cases, that is, the 
SER usually decreases (except for the circuit S208) through 
the sub-stages of the unrolled circuit. However, in a few cases, 
different input probability distributions result in a different 
SER trend. As shown in Fig. 7(a), for circuit S298, input 
probability distributions PD2 and PD10 results in an SER 
jump in the second stage and a SER decrease afterwards, while 
PD9 leads to the increase in SER in the sub-stages following 
the hit. For PD4, PD5 and PD8, the SER decreases fast after 
the hit. This is due to the fact that different input probability 
distributions will result in different sensitization probabilities 
of the paths in the circuit, thus affecting the output error 
probabilities differently. On the other hand, the experiments 
we conducted have shown that the time-dependent behavior of 
different outputs of a sequential circuit varies such that for 

 
 (a) (b) 
Fig. 9. Output SER (a) assuming hits at flip-flops only (FF), gates only (G) 
and averaging MES across overall number of gates and flip-flops, or assuming 
hit at both flip-flops and gates (all) and (b) assuming hits at flip-flops only and 
averaging MES across all flip-flops (FF), gates only and averaging MES
across all gates (G) or assuming hits at both flip-flops and gates (all). 

 
 (a) (b) 
Fig. 8. Output MES for seven benchmark circuits for 120ps initial glitch 
duration (a) averaged assuming hits at flip-flops (FF) or internal gates (G) 
only and (b) normalized with respect to the overall number of gates and flip-
flops, assuming hits at both flip-flops (FF) and internal gates (G).

 
(a) 

 
 (b) (c) 
Fig. 7. (a) Average bit SER changes in circuit S298 for ten input probability
distributions (PD1-PD10) and averaged across all distributions during ten
cycles following the particle hit; (b) Relative difference in SER of (5-9) 
unrolled sub-stages compared to ten unrolled sub-stages; (c) Runtime of the 
framework for different number of unrolled sub-stages (5-10). 
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some outputs the MES decreases in the sub-stages following 
the hit, while for the others it either increases in the second 
sub-stage and then decreases, increases slightly, or remains at 
the same level.  

Since the average SER for circuit S298 decreases in cycles 
following the particle hit, larger number of unrolled copies 
gives better accuracy, closer to the steady-state value. 
However, as the difference between the SER computed in 
subsequent cycles is decreasing, we evaluate the accuracy of 
different number of unrolled sub-stages as the following. First, 
we find the average SER in each cycle (sub-stage) following 
the particle hit (presented in Fig. 7(a), line all). Next, we find 
the average SER across all sub-stages (assuming different 
cases, i.e., different number of unrolled sub-stages, 5-10). 
Finally, we compute the relative difference in this average 
SER between the case with ten unrolled copies and the cases 
with smaller number of unrolled copies. This relative 
difference in SER for circuit S298 is presented in Fig. 7(b), 
and it can be concluded from the figure that the difference 
decreases to 3% when the results for nine and ten unrolled 
copies are compared.  

We also show the changes in runtime for different number 
of unrolled sub-stages for circuit S298 (Fig. 7(c)). We used the 
large glitch (120ps long) to measure the runtime, since in that 
case the effect on runtime is emphasized the most. However, 
in order to compute SER, we used several different glitch 
sizes. As it can be seen from Fig. 7(c), the runtime for circuit 
S298 increases exponentially when increasing the number of 
unrolled copies. This may seem as the limitation of the 
proposed approach, but as we described in Section V, and as 
the comparison with HSPICE simulations has shown (Section 
VII.B), unrolling of up to ten sub-stages provides a reasonable 
runtime and the results that are on average 4% accurate. 

The results for one small benchmark S444 (153 gates, 3 
inputs) and one larger benchmark, S1196 (487 gates, 14 
inputs) are presented in Fig. 11 (two left charts). As it can be 
seen from Fig. 11, both circuits converge to steady-state after 
five clock cycles after the hit. The only difference between 
these two circuits is the magnitude of SER. 

D. Flip-flop vs. gate error impact  
Assuming that a particle hit can occur at either flip-flops 

only or gates only, we show in Fig. 8 (a) the average output 
MES for several benchmark circuits. Note that, due to the 

assumption we make, we find the MES for each output using 
equation (3), with the difference that the total number of gates 
nG is given by number of flip-flops only or number of internal 
gates only (and not the overall number of gates and flip-flops). 
Doing so, we can see that if only flip-flops or only internal 
gates are considered, the output MES values are comparable 
and have similar values in both cases.  

However, these results may be misleading, since in typical 
sequential circuits, the number of internal gates is usually 
much larger than the number of flip-flops. Thus, in Fig. 8 (b), 
we show the MES values assuming effects from both flip-flops 
and internal gates, normalized to 100% so the effect of each 
component (flip-flops vs. internal gates) can be determined 
easily. As it can be seen from Fig. 8 (b), when normalized 
with respect to all possible particle hit locations, the impact of 
flip-flops is 3-49X smaller than the impact of internal gates. 
While this confirms the fact that the impact of internal gates 
on output error susceptibility is much larger than that of flip-
flops (e.g., larger circuits like S1196 and S1238), it also shows 
that for smaller sequential circuits, the impact of flip-flops 
cannot be ignored either (e.g., circuits S208 and S298). 

We further consider the SER stemming from either flip-
flops only or gates only, and compare it to the overall SER. 
Since the SER can be computed using MES values [9], we can 
take two different approaches: either assume that flip-flop or 
gate MES is found by averaging across flip-flops or gates only 
(as in Fig. 8 (a)), or assuming that the MES is found by 
averaging across overall number of gates and flip-flops (as in 
Fig. 8 (b)). The SER results for these two possible approaches 
are shown in Fig. 9 (a) and Fig. 9 (b). While the results 
presented in Fig. 8 (a) and Fig. 8 (b) are found for only one 
glitch size, the results in Fig. 9 (a) and Fig. 9 (b) are computed 
across different glitch sizes. Furthermore, the results in FF and 
G bar in Fig. 9 (a) are found by multiplying the probability of 
error at a given output with the area of flip-flops and gates, 
respectively, while the results in all bar are found from overall 
circuit MES and by multiplying with the overall circuit area. 
The final SER results in Fig. 9 (b) are found similarly, while 
the only difference is in computation of MES, as already 
described. As it can be seen from Fig. 9 (a) and Fig. 9 (b), the 
SER stemming from gates is higher than the SER stemming 
from FFs, for all benchmark circuits. 

E. Gate resizing impact on SER 
In the HSPICE experiments that were conducted to find the 

necessary radiation hardening resizing factors for gates, the 
parameter values that were used are Qcoll = 60fC, τrise = 1ps 
and τfall = 40ps. These values are found according to the data 
from [22] and also assuming that the resulting current pulse 
lies on the upper bound of the glitch sizes that we used in our 
SER experiments. It is important to note that the main goal 
here was to show that it is possible to incorporate soft error 
mitigation techniques into our framework, and gate resizing 
was one example of such technique. Therefore, the parameters 
that we assumed in our HSPICE experimental setup are by no 
means the limiting factor for the overall framework, and can 
easily be updated to accommodate more realistic cases, if such 

(a)  

(b)  
Fig. 10. Average bit SER for several benchmarks without and with gate sizing
for several MEI thresholds: (a) Case 1: MEI averaged across all stages and (b)
Case 2: MEI in the 1ST stage. 
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cases exist. Next, we create the HSPICE circuit description in 
which current Iin(t) (equation (10)) is included in the chain of 
gates as a current source at the output of a middle gate. The 
size (width) of the gate is increased, until the point where the 
current source is not strong enough to flip the value of the 
output signal of the gate is reached. This procedure is repeated 
for each gate type from the library that we are using. We can 
further use the new gate width in our framework to find new 
delay of the resized gate and its input neighbors.  

We show in Fig. 10 the SER for several benchmark circuits 
before (baseline) and after gate resizing (threshold 0.2, 0.1, 
0.05, 0.02, 0.01, 0.005 and 0.002 columns). Additionally, in 
Fig. 11 (right two charts) we show the impact of gate resizing 
in five cycles following the particle hit, for a threshold 0.002 
(Case 1) for benchmarks S444 and S1196. As it can be seen 
from Fig. 11, gate resizing can have different impact on the 
overall circuit SER for different input probability distributions 
and the improvement in SER can range up to 90% in STAGE 
I. In Fig. 10 (a), resizing is applied to gates whose MEI 
averaged across all stages (STAGE I and STAGE II) of an 
unrolled circuit is larger than a given threshold ranging 
between 0.002 and 0.2. The difference between the range of 
SER values for circuits in Fig. 11 and Fig. 10 are due to the 
fact that, in Fig. 11 only four distributions are used, as 
opposed to ten different distributions for Fig. 10. In Fig. 10 
(b), we show the results when the resizing is applied to gates 
whose MEI in STAGE I only is larger than a given threshold 
ranging between 0.005 and 0.2. As it can be seen from the 
presented results, resizing can improve SER by as much as 
80% for a threshold of 0.01 (for circuit S444).  

The results presented in Fig. 10 (a) (Case 1 criteria) show 
that SER decreases monotonically with the decrease in 
resizing threshold, while in Fig. 10 (b) (Case 2 criteria) this is 
not the case. There are two factors that result in this kind of a 
behavior. First, different gates in the circuit can have different 
impact on overall circuit error: some gates have MEI that 
decreases fast through sub-stages of the unrolled circuit, while 
for some gates MEI remains at about the same level. Thus, 
there are cases when one gate has higher STAGE I MEI than 
some other gate, but on average, the MEI of the first gate is 
smaller than the MEI of the second one. Second, when gates 
are resized in order to increase the critical charge, the gate 
delay is actually decreased and this affects the glitch 

attenuation. If the impact of the glitches originating at the 
resized gate is not significant, but the attenuation that this gate 
provides is important, it may happen that the overall circuit 
SER increases due to resizing. Since for the Case 2 criteria the 
order in which gates are chosen for resizing does not reflect 
the monotonicity in their average MEI, the SER increase for 
smaller thresholds is more emphasized. On the other hand, 
Case 2 criteria allows for more gates to be resized leading to 
the faster decrease in SER. However, there is a tradeoff, since 
this also leads to higher area overhead. The area overhead 
varies for different glitch sizes and different benchmarks. For 
example, when the initial glitch is 60ps long, the number of 
gates resized is minimal and varies from 1.7% for benchmark 
S444 (threshold 0.01) to 38% for benchmark S27 (threshold 
0.002) in Case 1, and 0.3% for benchmark S1238 (threshold 
0.01) to 55% for benchmark S208 (threshold 0.005) in Case 2. 
Moreover, Case 2 approach treats the sequential circuit as if it 
is a combinational circuit, since its criterion is defined with 
respect to the first cycle only. Therefore, Case 2 is not suitable 
for SER reduction in sequential circuits and (as shown in Fig. 
10 (b)) it does not guarantee a reduction in SER in subsequent 
cycles. 

VIII. CONCLUSION 
In this paper, we presented a symbolic modeling 

methodology for efficient estimation of the soft error 
susceptibility of a sequential circuit. We have demonstrated 
the efficiency of our method by comparing it to another 
symbolic model that relies on MC theory, to HSPICE detailed 
circuit simulation and applying it on a subset of ISCAS’89 
benchmarks of various complexities. We have also shown 
that, by using the information obtained from the framework, 
we can resize the gates that have largest impact on circuit 
reliability, such that their impact is decreased and SER is 
improved. Finally, we have shown that the choice of criterion 
for gate resizing can affect the SER reduction in cycles 
following the particle hit. 
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