
Dynamic Fault-Tolerance Management in Failure-Prone and Battery-Powered
Systems

Phillip Stanley-Marbell, Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

{pstanley, dianam}@ece.cmu.edu

ABSTRACT
Emerging VLSI technologies, as well as emerging platforms, are giv-
ing rise to systems with inherently high potential for runtime failure.
Such failures range from intermittent electrical and mechanical fail-
ures at the system level, to device failures at the chip level. Techniques
to provide reliable computation in the presence of failures must do so
while maintaining high performance, with an eye toward energy ef-
ficiency, and when possible, maximizing battery lifetime in the face
of battery discharge non-linearities. This work presents one approach
for achieving reliable computation in the face of failure, and presents
a set of metrics, for characterizing system behavior in terms of en-
ergy efficiency, reliability, computation performance and battery life-
time. The proposed technique for reliable computation in the pres-
ence of failures, Dynamic Fault-Tolerance Management (DFTM), relies
solely on local decisions to attain global reliable computation. The
proposed combined metrics, referred to as ebformability measures (since
they combine the effects of energy, battery lifetime, performance and
reliability), are used to evaluate the efficacy of DFTM. For an example
platform employed in a realistic evaluation scenario, it is shown that
system configurations with the best performance and lifetime, are not
necessarily those with the best combination of performance, reliabil-
ity, battery lifetime and average power consumption.

Keywords
Energy-Efficiency, Low Power, Batteries, Performance, Fault-Tolerance, Relia-
bility, Performability.

1. INTRODUCTION
New applications of VLSI technology pose many challenges for ex-

isting CAD methodologies. The emergence of power consumption
as a critical system design constraint, particularly in battery powered
computing systems, led to the development of a slew of techniques
for power management. These efforts have further been bolstered by re-
cent attention to the effect of application profiles on battery lifetimes.
Progress in device technologies, coupled with reduction in costs, is
enabling new classes of applications, such as wireless and wired sen-
sor networks. Wired sensor networks for example, may take the form
of flexible substrates with 10’s or 100’s of low power microcontrollers
embedded per m2, with power distribution and communication fibers
embedded in the substrate. These emerging technologies pose new
CAD challenges in much the same way that the burgeoning portable
computing device market caused increased attention to power man-
agement techniques and algorithms. A new dimension in require-
ments, is that of reliability in the presence of runtime failures. Run-
time failures may be due, for example, to intermittent electrical fail-
ures due to wear and tear in a wired sensor network embedded in
a flexible substrate. They may likewise be due to changes in weather
conditions in a wireless network sensor deployed in the field. Failures
due to the depletion of energy resources (such as batteries), although
often predictable, may also occur.

Techniques for enabling reliable computation in the presence of
failure are thus necessary. In order to judge the efficacy of various
techniques in an appropriate design methodology framework, metrics

which combine energy efficiency, performance, reliability and battery
lifetime (taking into consideration nonlinearities in battery and DC-
DC converter characteristics), are required.

2. CONTRIBUTIONS OF THIS WORK
This paper introduces a methodology for dynamically adapting

failure-prone battery powered systems to counteract the effects of
failures. The proposed technique, dynamic fault-tolerance management,
(DFTM), employs only local decisions at devices in a network to
achieve the global goal of counteracting the effects of failures. The pre-
sented investigation of DFTM employs an offline approach, in which
the best system configuration, for the likely prevalent failure condi-
tions, is determined at design time.

In order to determine the efficacy of different configurations of
DFTM, we employ results from traditional performance-related relia-
bility measures (generally referred to as performability measures) as well
as introduce new measures that incorporate energy efficiency, bat-
tery discharge effects, performance and reliability, which will hence-
forth be referred to as the ebformability measures. The effectiveness
of the proposed DFTM approach, as well as the benefits of employ-
ing ebformability measures in a design methodology framework for
emerging platforms, is verified through a detailed simulation study.
The simulation framework employed, models computation (at the in-
struction level), communication (at the bit level), runtime failures in
both communication and computation, power consumption, and bat-
tery discharge effects.

The remainder of the paper begins with a survey of related research
in Section 3. A theoretical basis for evaluating dynamic fault-tolerance
management is presented in Section 4, followed by a description of the
proposed DFTM in Section 5, and a derivation of the ebformability
measures in Section 6. Section 7 presents an experimental evaluation
of the posited ideas, and the paper concludes with a summary of the
key contributions and directions for future research in Section 8.

3. RELATED RESEARCH
Particular attention has been paid to average power, peak power,

energy consumption, as well as to metrics that combine the
above with performance measures, such as the energy×delay and
energy×(delay2) metrics [9]. These metrics have enabled the devel-
opers of CAD tools to ascertain the relative benefits of algorithms
and implementations of hardware, in terms of both performance and
power/energy consumption. There have been previous efforts in pro-
viding reliable computational substrates out of possibly unreliable
components, dating back to von Neumann’s seminal work [20]. A sig-
nificant body of research has addressed combined performance and
reliability measures [1], but there hitherto have been no contributions
in the area of measures that combine performance, power consump-
tion, battery lifetime and system reliability. Analytic and simulative
models for battery life estimation [13, 2] provide means of determin-
ing which application workloads will provide longer battery system
lifetime, but they neither provide a combined measure of battery life
and performance nor a measure that takes into account battery life,
performance and reliability.

0

211

23

4 2419

18

15 20

16

9

8

6

5

3

Mapping

Guest Graph
(Application Partition)

Host Graph
(Hardware Topology)

0 1 3 4 52

6

7

8

9

10

11

22

11

72

M

10

12

13

17

14

Figure 1: Mapping the guest graph to the host graph. Nodes in
the guest graph (top) represent portions of an application. In
the host graph (hardware topology, bottom), heavy lines repre-
sent shared communication links and circles represent computation
nodes. Connections to the communication links are shown with
light lines.

Unlike efforts aimed at providing guarantees in system perfor-
mance, employing a central layer of control [11], the proposal of this
work, is to provide general fault-tolerance management, using only
identical local policies at each node in a network. Without a central
point of control, a challenge is to provide resilience to faults on the
macro scale, from decisions performed at individual nodes.

The application domains that stand to benefit greatly from both
techniques for reliable computation in the presence of failures, and
metrics for judging the efficacy of such techniques, are the emerging
technologies of wireless sensor networks [5] as well as wired sensor
networks such those embedded into flexible substrates [12].

4. WORST CASE PERFORMANCE LIMITS FROM RECON-
FIGURATION FOR FAULT-TOLERANCE

Prior work in dealing with faulty arrays of computing elements
has shown that it is possible to provide an effectively fault-free sub-
strate in the presence of failures [20], and to do so with constant slow-
down [4]. The parameters contributing to slowdown in [4] are used
here as metrics for reasoning about potential benefits of the proposed
DFTM techniques.

Techniques for providing fault tolerance usually employ
redundancy—in the presence of failures, redundant devices or
spares are employed to provide correct system behavior. Invariably,
portions of the executing application must be moved from failing
devices to redundantly deployed ones. In gracefully degrading systems,
the redundantly deployed devices might also be employed for
computation, to provide better system performance in the absence of
failures.

The re-mapping of applications to the underlying hardware sub-
strate to counteract the effect of failures, may be expressed formally
as the problem of finding an embedding of a fault-free guest graph in a
faulty host graph, following the arguments in [4]. The guest graph rep-
resents the structure of an application to be executed on a networked
system. The nodes in the graph represent components of an appli-
cation and the links represent communication dependencies between
components—there is a link between any two nodes that must directly
communicate (e.g. exchange values) at any point during the lifetime

Figure 2: Detail of a flexible substrate with embedded communica-
tion links from Kirstein et al[8]. Conductors can be used for both
communication, and for supplying power to processing elements,
which can be embedded in the substrate to mimic the topology in
Figure 1.

of the application. For example, the top half of Figure 1 depicts a guest
graph for an application which is comprised of 9 units of concurrency,
which communicate. In normal operation, the node shaded dark (la-
beled M) communicates with the lightly shaded nodes1.

The host graph corresponds to the hardware substrate on which the
application will be executed. The application must be mapped to the
hardware substrate, such that the units of concurrency in the appli-
cation are assigned to hardware components. In mapping the nodes
of the guest graph to those of the host graph, it might be necessary
to map multiple nodes from the guest graph to a single node in the
host graph. The maximum number of nodes from the guest, that are
mapped to a single node in the host, for a given embedding, is re-
ferred to as the load, l. The interconnection topology between nodes
in the host graph limits which nodes may communicate directly with
each other. Therefore, for a particular embedding, it may become nec-
essary to map nodes in the guest graph to those in the host graph such
that two nodes that are adjacent in the guest graph are no longer so
when mapped to the host graph. The maximum increase in the dis-
tance between two nodes in the guest graph when they are mapped
to the host graph, is referred to as the dilation, d. A particular embed-
ding might also lead to the need for multiple nodes in the host graph
to share edges that were previously unshared in the guest graph. The
increase in the number of nodes sharing a given edge in an embed-
ding is referred to as the congestion, c.

It has previously been proven [4] that for a given embedding, Π, the
slowdown, s, a measure of the degradation in system performance, is
given by:

s = O(c + l · d)

In attempting to negate the effects of runtime faults, DFTM will at-
tempt to perform re-mapping, moving components of the application
across hardware components—in other words, performing a new as-
signment of the guest graph to a host graph. In order to maximize its
effectiveness, DFTM must therefore attempt to minimize each of c, d
and l.

To put these metrics in perspective, the mapping of a guest graph to
a substrate that consists of computing devices is illustrated in Figure 1.
This topology corresponds to an actual physical platform (Figure 2)
which incorporates communication conductors as well as power dis-
tribution conductors in a woven fabric [8], as a substrate for the attach-
ment of computing devices. Such a hardware substrate may contain
large numbers of computing devices (of the order of 100’s of process-
ing elements per m2), embedded in a flexible medium. The process-
ing elements will typically be physically small 8- or 16-bit microcon-
trollers, DSPs or small programmable logic devices. Such a hardware
substrate has uses ranging from intelligent building materials in home
and office environments, to aerospace and military applications.
1This particular graph is that of the driver application (beamforming for, e.g.,
active antenna arrays) that will be used in the evaluations in Section 7.

The node labeled 12 in Figure 1 has 20 neighbors with which it may
communicate directly over one of the shared communication links.
Node 12 can communicate with all nodes except nodes 0, 4, 20 and
24, over one of the shared links to which it is connected. The shaded
nodes in the host graph (hardware topology) in the lower half of Fig-
ure 1, represent an embedding of the guest graph in the host graph.
This embedding has a load, l = 1, a dilation d = 1 and a congestion
c = 0.3333, since the node labeled M in the guest graph is connected
to its neighbors through up to 3 possible paths.

5. DYNAMIC FAULT-TOLERANCE MANAGEMENT
In traditional low power and portable computing systems, dynamic

power management [14] exploits variations in application requirements,
to adjust performance and power consumption of a system to applica-
tion behavior. By employing simple rules and predictions (e.g. if the
system has been idle for x minutes, spin down the disk), traditional
power management techniques enable longer lifetime in the presence
of workload variations and energy resource constraints. Dynamic
fault-tolerance management (DFTM) aims to encompass a broader
range of constraints besides power consumption—to take advantage
of variations in both application and environment behavior, enabling
maximal application lifetime with a possible tradeoff for performance.
Environment behaviors may include not just limited energy resources
and battery performance, but also runtime failures, which (although
not prevalent in traditional computing systems), will be a key con-
sideration in emerging technologies. In a battery powered networked
system that may witness a large number of runtime failures, for ex-
ample, DFTM must determine actions to be performed to maximize
system lifetime.

Unlike in the case of power constraints where decisions are based
solely on local resources, failures in individual components are gen-
erally addressed by providing an external component—redundancy—
such that failing components may be superseded by functional ones.
Approaches to manage fault tolerance as opposed to those that manage
power consumption, must therefore consider reconfiguration of system
resources.

A structured approach to these reconfiguration decisions will be es-
sential for tractability in defining algorithms for fault-tolerance man-
agement. In this work, we propose a structuring of policies which pro-
vide, in addition to local decisions (exemplified by traditional power
management techniques), a framework for policies for system recon-
figuration. Policies to be enabled at each node in the system, must
enable the minimization of the effects of load, congestion and dilation,
minimizing the system slowdown, but without requiring global coor-
dination between devices. Dynamic fault-tolerance management, as
proposed in this work, therefore consists of three components:

• Local Decision Policies (L-Class) : Changing the local behavior of
a node in the current embedding, such that the node’s behavior
with respect to its neighbors decreases one or all of the conges-
tion, c, load, l or dilation, d. For example, a decision of whether
or not to forward data between links to which a node in a net-
work is connected, will affect congestion and dilation.

• Re-mapping Decision Policies (M-Class) : Determining when to
change an embedding, Π, to an alternate embedding, Λ.

• Re-mapping Destination Policies (D-Class) : Finding the appro-
priate alternate embedding, Λ. For example, experiencing exces-
sive faults at a node in a network, may necessitate transfer of
execution to an alternative redundantly deployed device.

In this paper, a specific implementation of the aforementioned
classes of policies is presented, targeted at battery powered net-
worked embedded systems, comprising of large numbers of nodes,
with a fraction of the nodes being redundantly deployed. In the pres-
ence of failures, execution of components of an application may be
relocated to these redundant devices. Since multiple policies are de-
fined for each class, with the possibility that multiple policies might

Table 1: A possible set of DFTM Policies. Local policies (L0–L2),
re-mapping decision policies (M0–M3) and migration destination
policies (D0–D4).

Policy Description
L0 Do not forward packets.
L1 Do not accept migrating applications.
L2 Never cache information.
M0 Battery too low : migrate.
M1 Too many node faults : migrate.
M2 Too many collisions : migrate.
M3 To many carrier sense errors : migrate.
D0 Pick a random redundant node to migrate to.
D1 Migrate to redundant node with lowest number

of collisions.
D2 Migrate to neighbor with lowest number of

carrier-sense errors.
D3 Migrate to neighbor with most energy.
D4 Migrate to redundant node with most direct

links to communication target.

be relevant at the same instant (i.e. policies might not necessarily be
orthogonal in some settings), it will be necessary, where appropriate,
to define priorities for the different policies. Such a priority scheme is
not pursued in this work, and is a direction for future research.

To adapt a system to time-varying failure rates and modes, in or-
der to provide fault-free macroscopic behavior from a faulty substrate, it is
essential to perform on-line monitoring of failures. For a networked
system consisting of battery powered devices, with high probabilities
of failures in the interconnection links and devices, the statistics that
may be monitored include: (1) Remaining battery capacity, (2) Link car-
rier sense errors, (3) Link collisions and (4) Node faults.

Table 1 provides a set of DFTM policies for a system with the afore-
mentioned failure statistics monitored. Nodes must employ heuris-
tics to ascertain these properties at their neighbors, based on locally
measured values. For example, in the case of a device connected to
multiple communication links, if one of those links is experiencing a
significant number of failures, the device can infer that nodes attached
to that same interface will be experiencing similar conditions.

5.1 L-Class Policies
The local decision policies or L-class policies aim to adapt the ex-

ecution of applications to prevailing conditions, without performing
application re-mapping. The L0 policy, which determines whether or
not nodes forward packets, has a direct effect on the performance of
the system as a whole, while minimizing work performed locally, and
hence extending the local lifetime. If there exists a node in the system
whose only communication path is through a node with the L0 pol-
icy enabled, for example, due to failures in its other links, then such a
node will be effectively disconnected from the network. Thus, rather
than greedily enabling local decision policies to minimize consump-
tion of local energy resources, devices must take into consideration
the role they play in the system as a whole. Rather than permanently
enabling L0 to conserve energy resources, a node in a network may
periodically or randomly enable this policy. The L1 policy is relevant
to redundantly deployed nodes in a system. A node with L1 enabled
will not permit applications to be re-mapped onto it. This can be desir-
able if it is more important for the node to use its energy, for example,
to forward packets. Finally, the L2 policy determines whether or not a
node should cache information. Caching data might reduce the need
to communicate in some applications, but can constrain nodes from
aggressive power management—e.g. going into a deep sleep mode
might lead to loss of such cached data, thus the requirement to cache
data might preclude devices from entering a deep-sleep state.

5.2 M-Class Policies
In systems which contain redundantly deployed nodes, it is possi-

ble to remap execution of applications from nodes witnessing adverse
conditions to those experiencing more favorable conditions. The M-
class policies determine when to perform such re-mapping. The M0
policy in this case specifies to attempt to re-map an executing appli-
cation when battery levels fall below a critical threshold. The thresh-
old associated with an M0 policy must be conservative enough to en-
sure that the re-mapping process completes before energy resources
are completely exhausted. The M1, M2 and M3 policies cause appli-
cation remapping to occur when a threshold in number of faults that
have occurred in a node, link collisions and link carrier-sense errors
respectively, have exceeded their associated, specified threshold.

5.3 D-Class Policies
The remapping destination policy strives to determine a node that

an application should be re-mapped to. The D1, D2 and D4 policies
are well suited to situations in which links in a system fail and it is
desirable that applications adapt around these failures. The D3 policy
is relevant to all systems with limited battery resources.

The first step in this investigation of DFTM is to employ an of-
fline approach, in which the best set of policies for the likely preva-
lent conditions are determined for a system at design time. An online
approach in which the policies to be activated are themselves deter-
mined by some other meta-policies is a challenging area of future re-
search.

Before discussing the experimental evaluation of a system with a
subset of the above policies implemented, new measures which en-
able a combined evaluation of performance, power consumption, re-
liability and the effect of the application power consumption profile
on battery life are described next.

6. ENERGY- AND BATTERY-CONSCIOUS PERFOR-
MANCE AND RELIABILITY MEASURES

For fault-tolerant systems in which it is possible to trade off per-
formance for reliability (gracefully degrading systems [3]), it has been
necessary to employ measures that combine both system performance
and reliability [1] to determine the benefits of different designs. For
systems in which performance, power2 and battery lifetime3 may be
traded off for reliability, similar measures are required to ascertain the
usefulness of CAD methodologies for managing fault-tolerance in ad-
dition to energy, for individual components or an entire system. This
section proposes such measures, which will be used subsequently to
evaluate the performance of the previously proposed DFTM method-
ology.

Assumptions: It is assumed that failures in the system under study
are exponentially distributed, i.e., the probability of failure of a com-
ponent is independent of its past histories of failures. This is a reason-
able assumption for intermittent electrical failures. The assumption
enables the use of Markovian analysis to derive expressions for the
failure probabilities over time. For mechanical failures, or those in-
duced by the aging of a battery subsystem, such an assumption will
not hold, and alternative means of deriving the expressions must be
employed—the applicability and meaning of the derived measures
will however not change. In the following, F is the set of failure states,
a subset of the states in the Markov model, which are indexed with the
variable i. The initial system state is always denoted by I .

The behavior of the networked embedded application under study
can be characterized as consisting of a collection of distinct states in
a Markov model, each state corresponding to a given level of perfor-
mance. For example, in a gracefully degrading system with N nodes,
3 or more of which must be functioning in order for the system to be
considered “alive”, the system may be modeled as a set of N+1 states,
0..N , of which three states, 0, 1, 2, are the set of failing states, F .
2Average and peak power, and overall energy consumption.
3Battery lifetime is a non-linear function of the variation in power consump-
tion over time.

Based on data obtained from observing the system, or from simula-
tion, the transition probabilities between states in the Markov model
may then be used to obtain the transition probabilities between states
after n steps (for a discrete time Markov chain) or over time (for a con-
tinuous time Markov chain). For a discrete time Markov chain, the
steady-state probabilities are given by the Chapman-Kolmogorov equa-
tion [18]:

P
(n) = P

(l)
P

(n−l)
, for 0 < l < n. (1)

where P is the matrix of the one-step transition probabilities. The
probability of being in a given state after n steps, can be solved for us-
ing either direct or iterative methods such as the power method [18],
using the initial conditions for state probabilities, PI (0) = 1 and
Pi(0) = 0, for some initial state I 6= i. For example, in the experi-
mental evaluation of Section 7, the initial conditions employed will be
P8(0) = 1 and Pi(0) = 0, ∀i 6= 8. The variation of probability of being
in a given state as the system evolves, can now be used to determine
the measures of interest.

In extending traditional reliability measures4 to include perfor-
mance in gracefully degrading systems, prior work [1] performed a
transformation from the time domain to the computation domain, to
obtain a computation availability, T , as shown below. For the inclu-
sion of the effect of power consumption, as proposed herein, a further
transformation to the time-power domain is necessary, to obtain the
computation availability per Watt, Tpw:

T = α · n (2)

Tpw = αpw · n =
α

Avg. Power Consumption
· n (3)

where α is the computation capacity, the amount of useful computation
per unit of time performed in a given state and n is the number of time
steps. Similarly, αpw is the amount of useful computation per Watt of
power dissipated in a given state. The quotient of performance and
power is employed in αpw rather than the product (as in the case of,
say, the energy-delay product), because for congruence with α, it is
desired for larger values of αpw to be better.

Ci(T), the capacity function, is the probability that the system exe-
cutes a task of length T before its first failure, given that the state at
the start of computation was i:

Ci(T) =
�

j 6∈F

P
∗
j (T) (4)

P ∗
j (T) (or Pj(n) expressed in terms of T = α · n) is the probability of

being in a given state after T = α · n amount of computation. Natu-
rally, larger values of Ci(T) are desirable for a given T .

Ci(T) does not take into account the limitation on lifetime imposed
by an energy source. It is therefore applicable to systems that either
are not battery-powered, or in which an infinite supply of redundant
devices with fresh batteries are available, for re-mapping. Even in
systems which are not battery powered, the power consumption is
still of interest, since it dictates, for example, the cost of cooling and
indirectly affects the reliability of the system. The capacity function
per Watt, Cpwi(Tpw) is given as:

Cpwi(Tpw) =
�

j 6∈F

P
∗
j (Tpw), (5)

where
P

∗
j (Tpw) = Pj(n) with Tpw = αpw · n

In a battery powered system, the variation of Ci(T) will be affected
by the battery state of charge profile, and will be bounded by the bat-
tery life. The battery-aware capacity function, Cbatti(T), is defined as:

Cbatti(T) =
�

j 6∈F

P
∗
j (T) · ζbatt(T) (6)

4A traditional reliability metric, the availability [1], is given by the limit of the
sum of the steady state probabilities of being in a non-fail state. The Mean Time
To Failure (MTTF), is equivalent to the availability with absorbing failure states.

where ζbatt(T) is the normalized variation of the state of charge of
the battery with the amount of computation. It is obtained by trans-
forming the variation of the battery state of charge versus time curve,
(which can be derived from the data-sheet for a particular battery cell),
into the computation domain. In addition to the battery-aware capac-
ity function, it might be important in a battery-powered system to also
consider a battery-aware capacity per Watt, Cbattpw(Tpw):

Cbattpwi(Tpw) =
�

j 6∈F

P
∗
j (Tpw) · ζbatt(Tpw) (7)

Ci(T), Cbatti(T), Cpwi(Tpw) and Cbattpwi(Tpw) are used to cal-
culate the Mean Computation Before Failure (MCBF), Mean Computation
Before Battery Failure (MCBBF), Mean Computation per Watt Before Fail-
ure (MCPWBF) and Mean Computation per Watt Before Battery Failure
(MCPWBBF) respectively:

MCBF =

∞�

0

CI(T), (8)

MCBBF =

∞�

0

CI(T) · ζbatt(T) (9)

MCPWBF =

∞�

0

CpwI(Tpw), (10)

MCPWBBF =

∞�

0

CpwI(Tpw) · ζbatt(Tpw) (11)

where I is the initial system state at n = 0 (and T = 0 or Tpw = 0).
The computation reliability, R∗(n, T) is the probability the system ex-

ecutes a task of length T, given that the system state is i at time-step
n. Likewise the computation reliability per Watt is Rpw∗(n, Tpw):

R
∗(n, T) =

�

i6∈F

Ci(T)Pi(n) (12)

Rpw
∗(n, Tpw) =

�

i6∈F

Cpwi(Tpw)Pi(n) (13)

Similar definitions can be given for computation reliability before battery
failure and computation reliability per Watt before battery failure. They
are omitted here for brevity, since they will not be employed in sub-
sequent evaluations in Section 7. It is desirable for a system to have
both its R∗(n, T) and Rpw∗(n, Tpw) decline slowly with increasing
n, T and Tpw. In other words, a higher expected reliability with in-
creasing task size (amount of computation) is desirable. Similarly, for
a fixed amount of computation, a larger expected reliability with in-
creasing time (for example, due to slower computation) is desirable.

The above measures can be used to determine the efficacy of a sys-
tem in providing fault-tolerance with the best power consumption
and longest battery lifetime, and will be used in the next section to
evaluate the proposed DFTM. Instrumental to the process of deter-
mining the metrics are the one-step state transition probabilities (pij

for some i and j). In the following section, they are determined from
a detailed cycle-accurate simulation of the system, for a given set of
DFTM policies in effect. The distribution of the probabilities will be
different for different tuples of policies. Likewise the power consump-
tion, performance and battery life will vary with different policies,
and the above measures enable the determination of the best policy in
terms of combined performance, power, reliability and battery life.

7. EXPERIMENTAL EVALUATION
7.1 Driver Application

DFTM enables individual nodes to adapt to faults, using redundant
computing resources, by re-mapping executing applications from fail-
ing systems to redundantly deployed ones. In this work, the re-
mapping of the guest graph to a host graph is achieved by lightweight
code migration, although other techniques such as remote execution may

Table 2: Relevant parameters employed in experimental evaluation.
Attribute Value

Operating Frequency 60 MHz @ 3.3V
Idle Mode 15MHz @ 0.85V

Battery Capacity 0.5 mAh
Battery Parameters Panasonic CGR18 family

DC-DC Conv. Efficiency Maxim MAX1653
Communication Power 250mW (RX/TX)

Link Speed 200 Kb/s
Link Maximum Frame Size 1024 bits

be substituted—the ideas of DFTM are not tied to any particular re-
mapping approach.

In what we term lightweight code migration [17], in contrast to tradi-
tional process migration [10], applications are implemented in a man-
ner in which they can be asynchronously restarted while maintaining
persistence for important state. By placing information that must be
persistent across restarts in the initialized and uninitialized data seg-
ments of the application, it is possible to maintain state across migra-
tion while only transferring the program code, initialized data and
uninitialized data segments.

The driver application used in the subsequent analysis of the ef-
ficacy of DFTM is beamforming [19]. The goal in beamforming is to
detect the location of a signal source, and “focus” a set of sensors (e.g.
microphones) on this source. In a traditional implementation, sam-
pled signals from spatially distributed sensors are sent to a central
processor, which processes them to determine the location of the sig-
nal source and reconstruct a desired signal.

Each sample is processed (filtered), and this processing is largely in-
dependent of the processing of other samples. In a system with a
processing device at the location of each sensor (slave node), the ap-
plication may be partitioned by applying the filter operation at each
sensor before sending the samples to a central device (master node)
for final processing (e.g. summation). Figure 1 previously illustrated
the logical and physical organizations, for a wired network of sensors
used to perform beamforming.

7.2 Platform
The framework used in the evaluation of DFTM is a cycle accurate

simulator of computation, communication, power consumption, bat-
tery discharge characteristics and node/link failures [15]. The model-
ing of the battery and DC-DC converter subsystem employ a discrete-
time battery model based on [2]. The simulation of instruction execu-
tion and associated power consumption is based on [16].

For example, to model the topology shown in Figure 1, 25 process-
ing nodes and 12 communication links are instantiated in the simula-
tor. The operating frequencies and voltages of the processing nodes
may be specified, affecting both the performance (time scale) and
power consumption during simulation. The instantiated communi-
cation links are configured with specific link speeds, link maximum
frame sizes, transmit and receive power consumption and other pa-
rameters. Each instantiated processor, e.g. node 0 in the lower half of
Figure 1, is configured to have 4 network interfaces, and these inter-
faces are attached to specific network communication links, links 6, 1,
7 and 0 (lower half of Figure 1) in the case of node 0. Both the nodes
and the links may be configured with failure probabilities for inter-
mittent failure, as well as maximum failure durations. In the case of
Figure 1, the links are used as multiple access communication links,
however, they may also be used as direct links between nodes. The
simulation of processing clock cycles is synchronized with that of the
data transmission, thus the modeling of communication and compu-
tation are cycle accurate with respect to each other. A few simulation
parameters of relevance are listed in Table 2. When not actively per-
forming computation, nodes in the system place themselves into an
idle mode, to conserve battery resources.

The experiments conducted can be categorized into three groups.

Table 3: Experiments used to investigate the efficacy of a subset of
the proposed DFTM policies. The topology on which the beam-
forming application executes is that from Figure 1.

Exp. Config. Description
0 No DFTM No intermittent faults, only low batt.

Migrate to a pre-assigned redundant
node, when battery levels run low.

1 No DFTM Intermittent faults in links, rate 1E-8.
Migrate to a pre-assigned redundant
node, when battery levels run low.

2 No DFTM Intermittent faults in link #9, rate 1E-6.
Migrate to a pre-assigned redundant
node, when battery levels run low.

3 (M0, D0) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on low battery
to a random redundant node.

4 (M0, D1) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on low battery
to redundant node with fewest
collisions.

5 (M0, D3) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on low battery
to redundant node with most energy.

6 (M0, D4) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on low battery
to redundant node with most links
to master node.

7 (M2, D1) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on too many
collisions, to the redundant neighbor
with fewest number of collisions.

8 (M3, D2) Intermittent faults in link #9, rate 1E-6.
DFTM policy: migrate on too many
carrier sense errors, to the redundant
neighbor with fewest number of
carrier-sense errors.

The first group (Exp. 0–Exp. 2 in Table 3) of experiments serves as a
baseline, and illustrates the performance of the system in the absence
of DFTM. The second group (Exp. 3–Exp. 6 in Table 3) investigate the
efficacy of the different DFTM D-class policies (i.e. migration destina-
tion decisions), for a system with a localized failing link5 and migra-
tion initiated only on low battery levels (i.e. M0 from the M-class of
policies). The last grouping (Exp. 7–Exp. 8 in Table 3) investigates the
performance of the system with the logical grouping of DFTM M-class
and D-class policies, that relate to failing links.

The failure rates are the failure probabilities per simulation time
step of 16ns. When links fail, nodes that attempt to transmit data on
the failed link incur a carrier-sense error. Such nodes will retry their
transmissions after sleeping for a random period. When nodes at-
tempt to transmit on a link which is occupied (another node is in the
process of transmitting data), they incur a collision error, and similarly
sleep for a random period before retrying. In choosing failure rates to
provide appreciably adverse conditions for DFTM, a failure rate of 1E-
6 for the configured faulty link was employed in all the experiments
with DFTM. In previous investigations of the application and simu-
lated hardware, it was observed that a failure rate of 1E-7 was the
breakpoint at which the system was not able to hide the additional
cost imposed by the failures, under the available slack. Failure rates
in the range 1E-6 to 1E-8 are similar to those of first generation net-
working and computer hardware [6, 7], and seem reasonable choices
therefore for emerging hardware technologies in failure-prone envi-
ronments.
5Without loss of generality or applicability of the results, we have chosen to
induce failures in link #9.

Figure 3: Variation of α (product of CPU idle-time fraction and ap-
plication average sample throughput) with DFTM policy.

7.3 Effect of DFTM Policy on Performance
The CPU occupancy is a measure of the attainable system load, l,

as defined in Section 4, and is indicative of the possibility of map-
ping multiple applications to a single processing element, given the
requisite system software support. The product of the idleness (1 –
CPU occupancy), and the application throughput (average number
of samples per round in beamforming application) is what is used as
the computation capacity, α, defined in Section 6. Larger values of α

indicate better combined performance and efficiency in using compu-
tation resources.

Figure 3 shows the variation in α across experiments. The DFTM
policies that exhibit the best computation capacity, α, are the (M0, D3),
(M2, D1) and (M3, D2) policies, in order of increasing performance.
From Table 3, these three policies aim to maximize available energy
resources and minimize communication errors. Thus, the result is to
be expected—in the presence of limited energy resources and faulty
communication links, they provide the most efficient solutions6.

Figure 4: Effect of DFTM policy on system lifetime.

The variation in overall system lifetime across different DFTM pol-
icy tuples is shown in Figure 4. The system which witnesses the
longest lifetime is Exp. 5, the (M0, D3) policy tuple, which aims to
maximize available energy resources, with a 13.7% improvement over
the baseline (Exp. 2). Comparing the lifetime trends to those for com-
putation capacity in Figure 3, it is immediately apparent that the sys-
tem configuration with the longest lifetime is not the most compu-
tationally efficient. The results for the computation capacity per Watt
(not shown) also indicate it does not exhibit the best combined compu-
tation and power consumption. Both of these results however, neither
provide a measure of which set of policies provides better reliability
in the limit, nor do they provide a measure of the combined reliability,
power consumption and battery life.
6The computation capacity per Watt, αpw , not plotted here for brevity, wit-
nesses an identical trend. In some systems however, it may be that the trends
for α and αpw might differ, providing a different tradeoff.

7.4 Reliability, and Mean Computation
The previous set of results evaluated the performance of the various

DFTM policy tuples in terms of traditional measures of performance.
The policy tuple leading to the longest system lifetime (M0, D3) may
not indeed provide the best performance (from Figure 3, this was at-
tained by Exp. 8, the (M3, D2) policy). However, neither of these
pieces of information provide any insight into which system is more
reliable during its lifetime, and which system has the best combina-
tion of performance, battery lifetime and reliability. The measures de-
rived in Section 6 however make it possible to reach such conclusions
with a combination of constraints.

(c) R*(n, T)

0

2000

4000

6000

T

500

1000

1500
2000

n

0

 -15
1. 10

 -15
2. 10

0

2000

4000

6000

T

(d) Rpw*(n, Tpw)

0
500

1000

1500

2000

Tpw 100

200

n

0
0.2
0.4
0.6
0.8
1

0
500

1000

1500

2000

Tpw

0
0.2
0.4
0.6
0.8
1

1000 2000 3000 4000 5000 6000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) Exp. 2 (b) R*(n, T)

0
200

400

600

800

T 100

200

n

0
0.2
0.4
0.6
0.8
1

0
200

400

600

800

T

0
0.2
0.4
0.6
0.8
1

Figure 5: Variation of Capacity Ci(T), Reliability R∗(n, T) and
Power-Aware Reliability Function Rpw∗(n, Tpw) with task length,
T , and task length per Watt, Tpw, for baseline system without
DFTM (Exp. 2).

Figure 5 illustrates the variation of the capacity, Ci(T), reliability,
R∗(n, T) and reliability per Watt, Rpw∗(n, Tpw) functions (as de-
scribed in Section 6) with time and computation performed, for the
baseline system without DFTM. Figure 5(a) shows the variation of
the capacity function, the probability that the system executes a task
of a given length, starting from its initial conditions. Based on the
Markov model constructed from the experimental data for that sys-
tem configuration, the probability of the system executing a task of a
given length approaches zero as the task length (T), approaches 1000
units. The unit of task length, is the product of the average number of
samples received, the average fraction of CPU idle time (a measure of
how processor efficient a given configuration is) and the correspond-
ing number of time steps.

The reliability of the baseline system, the probability that the sys-
tem executes a task of a specified length T , given that the system is in
a non-failed state at time step n, is shown in row of Figure 5(b). The
front-left face of the cube represents equivalent of the capacity func-
tion, since the system starts of, in that case, with n = 0. The rear-left
face of the cube likewise gives the amount of computation than can
be obtained with increasing time steps, of a task of length zero. Fig-
ure 5(c) provides detail on the region of greatest change for R∗(T, n),
which occurs as its value reaches zero. From Figure 5(c), it can be seen
that for T > 4000 or n > 1200, the system has a reliability of 0.

Figure 5(d) shows the system reliability per Watt. Tpw is the quo-
tient of the task length and the average power consumption. The abil-
ity of the system to execute a task of a given length per Watt of power
consumed, is limited at 5000 units per Watt of power consumed. In
Figure 5 and subsequent figures, the range of Tpw is greater than the
range of T , since the average power consumption of the nodes in the
system are all fractions, less than 1 Watt.

Equivalent trends for the policy setting which achieves the longest
lifetime (Exp. 5, See Figure 4) are shown in Figure 6. Compared
to the baseline system without DFTM, this configuration exhibits a
much slower decline in the probability of the system being in a non-
failure state—thus, it provides a better reliability of executing a task

(c) R*(n, T)

0
2000

4000

6000

8000

T

500

1000

1500
2000

n

0

0.01

0.02

0.03

0
2000

4000

6000

8000

T

0

0.01

0.02

0.03

(d) Rpw*(n, Tpw)

0

1000

2000

3000

Tpw 100

200

n

0
0.2
0.4
0.6
0.8
1

0

1000

2000

3000

0
0.2
0.4
0.6
0.8
1

2000 4000 6000 8000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) Exp. 5 (b) R*(n, T)

0
250

500

750

1000

T 100

200

n

0
0.2
0.4
0.6
0.8
1

0
250

500

750

1000

T

0
0.2
0.4
0.6
0.8
1

Figure 6: Variation of Capacity Ci(T), Reliability R∗(n, T) and
Power-Aware Reliability Function Rpw∗(n, Tpw) with task length,
T , and task length per Watt, Tpw, for DFTM policy (M0, D3) which
aims to maximize battery life.

of a given length for increasing task lengths, and for increasing dura-
tions of time in which to do so. As can be seen from the detail plots for
the reliability (R∗(n, T)), the system maintains a non-zero probability
of being in a nonfailure state past T = 8, 000, and approaching 30,000
units per Watt of energy dissipated.

(c) R*(n, T)

0

5000

10000
T

500

1000

1500
2000

n

0.9998

0.9999

1

0

5000

10000
T

(d) Rpw*(n, Tpw)

0

2000

4000

6000

Tpw 100

200

n

0
0.2
0.4
0.6
0.8
1

0

2000

4000

6000

Tpw

0
0.2
0.4
0.6
0.8
1

2000 4000 6000 8000 10000 12000 14000
Computation Capacity, T(CPU, n)

0.2

0.4

0.6

0.8

1

C
ap

ac
ity

 F
un

ct
io

n,
 C

(T
)

(a) Exp. 8 (b) R*(n, T)

0

500

1000

1500

T 100

200

n

0
0.2
0.4
0.6
0.8

1

0

500

1000

1500

T

Figure 7: Variation of Capacity Ci(T), Reliability R∗(n, T) and
Power-Aware Reliability Function Rpw∗(n, Tpw) with task length,
T , and task length per Watt, Tpw, for DFTM policy (M3, D2).

The configuration with the greatest lifetime however does not wit-
ness the best trend in combined reliability and power consumption.
The equivalent trends for the policy configuration (M3, D2), which
witnesses the best performance (Exp. 8, see Figure 3), are shown
in Figure 7. From the experimental data, the probability of the con-
structed Markov process being in a non-failure state, remains effec-
tively unity, over time.

The above results might suggest that, for a given goal in compu-
tation to be performed per Watt of power consumed, in the presence
of failures, the configuration (M3, D2) has a clear advantage over all
other policy configurations. The above measures however, although
including both the effects of average power consumption, reliability
and performance, do not include the effects of the power consumption
profile on the battery lifetime. Due to the non-linearities of battery
discharge characteristics7, a manifestation of the underlying battery
electrochemical processes, it is necessary to also consider the effects
on a battery system.
7DC-DC converters, which are needed to stabilize the output voltage of bat-
tery cells also exhibit non-linearities in efficiency across different current draw
profiles.

exp. 0 exp. 1 exp. 2 exp. 3 exp. 4 exp.4 exp. 6 exp. 7 exp. 8

25

50

75

100

125

150

175

200

Figure 8: Variation of Mean Computation Before Battery Failure
(MCBBF, shown with dark colored bars) and Mean Computation
per Watt Before Battery Failure (MCPWBBF, shown with light col-
ored bars) across experiments, with system lifetime limited by a sin-
gle battery (single re-mapping step).

The mean computation before battery failure (MCBBF), represents
the limiting amount of computation that can be obtained from a par-
ticular battery. (i.e. for a given batteries variation in state of charge
with discharge, captured by ζ defined in Section 6.) The MCBBF
for the different system configurations investigated are shown in Fig-
ure 8. The surprising result, which could not be reached without con-
sidering the effect of the policy on battery discharge, is that, there is
little discernible difference between the (M2, D1) policy (i.e. Exp. 7)
and the (M3, D2) policy (i.e. Exp. 8). The reason for this is that, al-
though the (M2, D1) policy leads to a better battery lifetime (Figure 4)
and has better smaller probability of being in a failure state over time
(not shown in the figures), the (M3, D2) policy exhibits better perfor-
mance (Figure 3).

8. SUMMARY AND FUTURE WORK
This paper presented a novel approach for achieving reliable com-

putation in the face of failure. The proposed approach, Dynamic Fault-
Tolerance Management (DFTM), is presented in conjunction with a new
set of metrics for characterizing ebformability, a combination of system
energy-efficiency, battery lifetime, performance and reliability. The
proposed metrics can be used to assess the quality of various de-
sign methodologies and tools for emerging platforms characterized
by joint energy, reliability and performance constraints.

Using the proposed techniques, it was shown that techniques pro-
viding best performance do not necessarily provide the best combined
performance, reliability, power consumption and battery life. For bat-
tery powered devices, inclusion of battery discharge characteristics
into the model enables better judgment as to the potential computa-
tion that may be performed by a system in the presence of runtime
failures, before it reaches an absorbing failure state.

The first step in this investigation of DFTM was to employ an of-
fline approach, in which the best set of policies for the likely preva-
lent conditions are determined for a system at design time. An online
approach in which the policies to be activated are themselves deter-
mined by some other meta-policies is a challenging area of future re-
search. This paper proposed several classes from which DFTM poli-
cies may be defined. Since multiple policies may be defined for each
class, with the possibility that multiple policies might be relevant at
the same instant (i.e. policies might not necessarily be orthogonal in
some settings), it will be necessary, where appropriate, to define pri-
orities for the different policies. Such a priority scheme is not pursued
in this work, and is a direction for future research.

Acknowledgments
This research was supported in part by DARPA Information Process-
ing Technology Office under contract F33615-02-1-4004 and Semicon-
ductor Research Corporation under grant 2002-RJ-1052G.

9. REFERENCES
[1] M. D. Beaudry. Performance-related reliability measures for

computing systems. IEEE Transactions on Computers,
c-27(6):540–547, June 1978.

[2] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. A discrete-time battery model for high-level power
estimation. In Proceedings of the conference on Design, automation
and test in Europe, DATE’00, pages 35–39, January 2000.

[3] B. R. Borgerson and R. F. Freitas. A reliability model for
gracefully degrading and standby-sparing systems. IEEE
Transactions on Computers, c-24:517–525, May 1975.

[4] R. J. Cole, B. M. Maggs, and R. K. Sitaraman. Reconfiguring
arrays with faults part I: worst-case faults. SIAM Journal on
Computing, 26(6):1581–1611, December 1997.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
Century Challenges: Scalable Coordination in Sensor Networks.
In Proceedings of the 5th annual International Conference on Mobile
Computing and Networking, pages 263–270, 1999.

[6] F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C.
Wadia. The Interface Message Processor for the ARPA Network.
Proceedings of the 1972 SJCC, AFIPS Conference Proceeedings,
40:551–567, 1972.

[7] F. E. Heart, S. M. Ornstein, W. R. Crowther, and W. B. Barker. A
New Minicomputer/Multiprocessor for the ARPA Network. In
Proceedings of the 1973 NCC, AFIPS Conference Proceeedings, pages
529–537, 1973.

[8] T. Kirstein, D. Cottet, J. Grzyb, and G. Troster. Textiles for Signal
Transmission in Wearables. In Workshop on Modeling, Analysis
and Middleware Support for Electronic Textiles, October 2002.

[9] A. J. Martin, M. Nyström, and P. Penzes. ET2: A Metric For Time
and Energy Efficiency of Computation. In Power-Aware
Computing, 2001. R.Melhem and R.Graybill, ed., Kluwer
Academic Publishers.

[10] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
Process Migration. ACM Computing Surveys, 32(3):241–299,
September 2000.

[11] M. Perillo and W. Heinzelman. Optimal Sensor Management
Under Energy and Reliability Constraints. In Proc. of the IEEE
Wireless Communications and Networking Conference, March 2003.

[12] E. R. Post, M. Orth, P. R. Russo, and N. Gershenfeld. E-broidery:
Design and fabrication of textile-based computing. IBM Systems
Journal, 39(3&4):840–860, 2000.

[13] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery Lifetime
Prediction for Energy-Aware Computing. In International
Symposium on Low Power Electronics and Design, ISLPED’02,
pages 154–159, August 2002.

[14] T. Simunic, L. Benini, P. W. Glynn, and G. De Micheli. Dynamic
power management for portable systems. In Mobile Computing
and Networking, pages 11–19, 2000.

[15] P. Stanley-Marbell. Myrmigki Simulator Reference Manual.
Technical report, CSSI, Dept. of ECE, Carnegie Mellon, 2003.

[16] P. Stanley-Marbell and M. Hsiao. Fast, flexible, cycle-accurate
energy estimation. In Proceedings of the International Symposium
on Low Power Electronics and Design, pages 141–146, August 2001.

[17] P. Stanley-Marbell and D. Marculescu. Exploiting Redundancy
through Code Migration in Networked Embedded Systems.
Technical report, CSSI, Dept. of ECE, Carnegie Mellon, April
2002.

[18] W. J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.

[19] B. D. Van Veen and K. M. Buckley. Beamforming: a versatile
approach to spatial filtering. IEEE ASSP Magazine, 5(2):4–24,
April 1988.

[20] J. von Neumann. Probabilistic logics and the synthesis of
reliable organisms from unreliable components. Automata
Studies, pages 43–98, 1956.

