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ABSTRACT

Ambient Intelligent Systems provide an unexplored hardware plat-
form for executing distributed applications under strict energy con-
straints. These systems must respond quickly to changes in user
behavior or environmental conditions and must provide high avail-
ability and fault-tolerance under given quality constraints. These
systems will necessitate fault-tolerance to be built into applications.
One way to provide such fault-tolerance is to employ the use of re-
dundancy. Hundreds of computational devices will be available in
deeply networked ambient intelligent systems, providing opportuni-
ties to exploit node redundancy to increase application lifetime or
improve quality of results if it drops below a threshold. Pre-copying
with remote execution is proposed as a novel, alternative technique
of code migration to enhance system lifetime for ambient intelligent
systems. Self-management of the system is considered in two differ-
ent scenarios: applications that tolerate graceful quality degradation
and applications with single-point failures. The proposed technique
can be part of a design methodology for prolonging the lifetime of
a wide range of applications under various types of faults, despite
scarce energy resources.

1. INTRODUCTION
Ambient intelligent systems are future electronic systems that will

bring truly ubiquitous smart environments into daily life by adapting
and responding to human actions and environmental conditions.

Fields of research such as networks of sensors [4, 5] and wearable
computing [15] have focused on the design of hardware and software
systems with the primary intent of providing accessibility, security,
communication and intelligence while remaining mostly invisible
to the users. As technology advances, devices become smaller and
cheaper, making it possible to envision and build highly distributed
and fault- tolerant ambient intelligent systems. Many of these am-
bient intelligent systems will be energy constrained and will make
use of batteries to supply the required energy. These platforms will
employ large numbers of physically minute devices and permit their
true embedding into everyday environments.

Instead of today’s rigid programming paradigm – design, build,
compile, and run – intelligent ambients [2, 8] offer a defect-tolerant
programming paradigm – design, build, compile, run, and moni-
tor. In such smart spaces, computational elements are inconspic-
uous in their environments and offer a wide area network for in-
creased defect tolerant computational power. As specific examples,
audio-visual remote controls can be incorporated into cushions. In-
terior environmental conditions can be changed by touching curtains
or wall coverings, while sensors could be used for adaptive thermal
management of rooms.
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Given an environment consisting of large numbers of failure-
prone devices, many challenges exist in designing reliable systems,
including programming large networks of energy constrained, error-
prone devices, re-programming devices after deployment and ex-
ploiting redundancy to improve system lifetime and fault-tolerance.
Some characteristics of these and other emerging platforms include:

• Large Numbers of Devices per Application: Applications can
utilize hundreds of computational nodes, sensors, actuators
and communication links. Numerous nodes imply that most
applications will utilize multiple processing units, and these
applications must be partitioned to make effective use of avail-
able hardware resources. Although applications can run on
a single node, nodes may still be coordinated in a larger
scope [4]. This contrasts sharply with wearable computing
where there is typically a single central computing device [15].

• Energy Constraints and Self-Management: Given limited en-
ergy resources, it will be imperative to design applications
in such a way as to allow their continued functionality de-
spite scarce energy resources. This relies on acheivig self-
management via code migration and on-the-fly handling of er-
ror conditions. The system should be designed in such a way
to allow continued functionality despite depleting energy re-
sources and failing computational nodes and communication
links.

• Synchronized and Coordinated Behavior: Each node will need
to participate in a coordinated effort to successfully run the
distributed application. This requires carefully designed con-
trol logic to keep this coordination deterministic and effective.

In summary, mobile ambient intelligent embedded systems will
be energy constrained and will require fault-tolerance which can be
achieved through self management and code mobility.

1.1 Related Work
The use of code migration has been successfully applied in the

field of mobile agents [6, 10, 16]. Mobile agents are an evolution
of the general ideas of process migration [9]. They can be thought
of as autonomous entities that determine their traversal through the
network, moving their code as well as state as they traverse. Process
migration has traditionally been employed in distributed systems of
servers and workstations, primarily for load distribution and fault-
tolerance [9]. Unlike the traditional implementations of process mi-
gration, the soon to be introduced technique employed in this work is
of significantly lighter weight, taking into consideration the special
properties of the target application class.

The use of remote execution to reduce the power consumption in
mobile systems has previously been investigated in [7, 13, 12]. The
goal in these efforts was to reduce power consumption by offloading



tasks from an energy constrained system to a server without con-
straints in energy consumption. The tradeoff involved determining
when it was worthwhile to transfer data to the remote sever. All
approaches involve the use of remote execution, but not code migra-
tion. The systems investigated were operating within a fast, reliable
wireless network. Such an environment is in strict contrast to the
ultra low power, failure-prone wired-network sensors with low-end
computing capabilities and possibly faulty communication and com-
putation which are of interest in this paper.

1.2 Contributions of the Paper
This paper introduces techniques for the robust execution of appli-

cations in distributed, embedded failure prone environments such as
ambient intelligent systems. The proposed techniques, based on the
idea of code migration, enable the remapping of failing applications
in environments with redundantly deployed hardware.
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Figure 1: Mapping and remapping applications under energy,
performance and fault-tolerance constraints.

With large numbers of devices per application, it will be possible
to take advantage of the multiplicity of identical elements to adapt
to the constraints imposed by high failure rates and limited energy
resources. It thus becomes necessary to efficiently map applications
onto hardware by partitioning them to match the underlying archi-
tecture. This mapping might further be iterated over the lifetime of
a system to match changing system constraints.

The proposed paradigm to be used during the lifetime of an ambi-
ent intelligent systems is shown in Figure 1. As shown, the applica-
tion (the top layer in Figure 1) is partitioned so as to match closely
the available underlying computing substrate (the bottom layer). The
computing substrate can be a set of deeply networked embedded sys-
tems, which are usually characterized by drastic energy constraints
and thus may affect the overall quality of the system by their finite
battery lifetime. The application is initially mapped onto the com-
puting substrate, or remapped depending on the application needs or
changes in the operating conditions (e.g., local energy sources run-
ning low, too many failures, etc.). Such services are provided by the
middle layer that, in addition to mapping and remapping the appli-
cation, provides support for battery level monitoring, routing around
faulty interconnect or on-the-fly re-partitioning or remapping the ap-
plication under a dynamically changing topology.

This paper opens a new venue of research in self-management
support for ambient intelligent systems. To our knowledge, this work
is the first attempt at using an application remapping process to in-
crease availability and fault-tolerance of ambient intelligent systems.

The applications employed in evaluating the proposed techniques
are beamforming and software radio. These applications were par-
titioned for use on distributed ambient intelligent systems and their
executions simulated using a cycle-accurate simulator. Beamform-
ing is a highly symmetric application, simple to partition for execu-
tion on multiple processing units. Software radio, on the other hand,
is highly asymmetric and slightly more challenging to partition in
the way needed to match a given architecture.

The remainder of this paper is organized as follows. A new tech-
nique for performing code pre-copying as well as a brief overview
of the known techniques for performing code remapping is given
in Section 2. Section 3 describes a theoretical framework for pre-
copying scheduling for a given set of nodes connected through a
shared communication bus. A description of the beamforming and
software radio driver applications is given in Section 4. Section 5 de-
scribes the simulation infrastructure and details the setup employed
in the investigations. Section 6 presents the experimental results and
analysis. The paper is concluded with a summary of the contribu-
tions of this work and some directions for the future.

2. APPLICATION REMAPPING
In the presence of exceptional conditions, such as critically low

levels of energy resources or increasingly rampant intermittent fail-
ures, it is desirable to re-map application execution from one de-
vice (s) to another. Deciding if and when to perform remapping in-
volves tradeoffs. For example, with low energy resources, remap-
ping should occur early enough so as to have sufficient energy to
complete. Acting too early can lead to unused energy resources go-
ing to waste, while acting too late may result in permanent failure.

One possibility for remapping is the use of baseline code migra-
tion, which remaps executing code to available nodes when the bat-
tery depletes past a predetermined threshold. This energy resource
threshold must be set conservatively so as to ensure migration even
in the presence of intermittent link failures. To provide more flexi-
bility over this baseline code migration scheme, this paper proposes
a new mechanism for performing migration which permits the stag-
ing of the migration process so that effectively lower thresholds may
be used that still guarantee successful migration.

2.1 Code Migration
The code migration scheme employed in this work is a compro-

mise between implementation complexity and flexibility. In the ideal
case, migrating an executing application will mean the application it-
self can be unaware of this move, and can continue execution on the
destination host without any change in behavior. This transparent
migration requires that the entire state of the executing application
(code, data, machine state and state pertinent to any underlying sys-
tem software) must be migrated faithfully. Such migration is how-
ever often too costly in terms of data that must be transmitted to the
target host and in terms of implementation complexity.

A desirable compromise is to implement applications in a manner
in which they can be asynchronously restarted while maintaining
state persistence. Figure 2 illustrates such a solution. The sensor
node consists of a processor and memory. The memory space is
partitioned between the application and the device’s firmware. The
memory region in which the application runs is occupied by the dif-
ferent parts of the running application: program code (text), ini-
tialized data (data), uninitialized data (bss), stack (grows down-
wards from the top of the memory region) and heap (grows upwards
from bss), as illustrated by the blow-up in Figure 2. By placing in-
formation that must be persistent across restarts in the data and
bss segments of the application, it is possible to maintain state
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Figure 2: Lightweight migration of application code and state.
Only program code, data and uninitialized data are transferred
during migration.
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Figure 3: Message exchange during migration of application be-
tween a dying node and a redundantly deployed one.

Each node has pre-loaded into it firmware (also called monitor)
which is responsible for receiving applications and loading them into
memory. Each application can transmit its text, data and bss
segments, and when these are loaded by a remote monitor, the mi-
gration is complete. The sequence of messages that are exchanged
between a node attempting to migrate and a redundant one that re-
ceives it is illustrated in Figure 3.

Each node attempts to migrate its application code when the avail-
able energy left falls below a certain threshold Blow. This threshold
must be chosen conservatively so as to ensure that each node can
successfully migrate in the presence of bus collisions and link errors
before they completely deplete their energy resource and die.

2.2 Remote Execution
Remote execution is an alternative to code migration. In a system

employing remote execution, each application that will be run on any
node in the system must be duplicated on every node in the system.
Using remote execution, applications simply need to transfer their
application state and subsequently transfer control of execution to
the destination node at a desired point in time to complete migration.
Transfer of state is inexpensive compared to full application copying,
as the text segment need not be transmitted. This is particularly
useful when communication is prohibitively expensive, as is the case
in wireless networks [12]. The disadvantage is the requirement of
ample memory on each device to store every application.

2.3 Pre-Copying with Remote Execution (PCRE)
Pre-Copying with Remote Execution (PCRE) is proposed in this

work as a means of improving code migration and remote execution
by borrowing ideas from both. The primary goal is to distribute the

time at which migration of application code occurs without actually
transferring execution of applications until energy resources fall to
a critical threshold. At this point, a final message is sent to the des-
tination where the application code was previously pre-copied, and
execution is transferred. This enables the threshold for migration to
be set much lower, resulting in more complete usage of the energy
resource. It also has a beneficial impact on the case of catastrophic
failures, in which case the spare node could restart execution if the
hand-off signal never arrives.

The lifetime of a system is defined as the amount of time that the
system remains functioning. Assume that N is the minimum num-
ber of nodes required to keep the system alive and a total of P pro-
cessing nodes are available. If each node in the system contains an
equal amount of limited battery energy, the system lifetime can be
increased by, at most, P/N times if the P-N nodes are used as spares
for migrating code. When the number of all available processing
nodes P is large, this potential increase in system lifetime can be
considerable and is worthwhile for investigation. While a similar
impact would be acheived by just increasing the battery capacity by
P/N times, we note that the size of such a local power source may be
prohibitive for the type of applications under consideration.

Consider a processing node with an average time to live TSL and
migration time TM assuming no communication link collisions or
errors. Each of the N active nodes is identified by a unique number,
i, ranging between 0 and N-1. A migration slot beginning at time
TPi

is assigned to each processing node:

TPi
= i · W ·

�
TSL

N �
W is a factor ranging from 0 to 1 that is proportional to the time

needed for pre-copying TM . An example with N = 14 is shown in
Figure 4. In this case, for W = 0.7, the 14 slots are equally divided
between t = 0 and W · TSL.

Figure 4: Determining the migration slots for N = 14.

After pre-copying, the node resumes executing the application un-
til its battery falls below a low threshold, Bvlow. At this time, the
final step to complete migration is to have that active node send a
final network packet to the redundant node, indicating to it that it
must resume execution of the re-mapped application.

When migration occurs over a shared bus, the condition:

TM ≤ W ·

�
TSL

N � (1)

must hold for bus collisions to be avoided. Of course, when the
communication graph is complete (i.e., there is a communication
link between every pair of nodes), then this condition is not nec-
essary. However, assuming the time to pre-copy the application is
negligible compared to the node lifetime or, more precisely, if:

N · TM << TSL (2)

then using this pre-copying scheme for migration is effective re-
gardless of the network topology of the distributed system.

As an example, if TSL = 5 hours, TM = 20 seconds, and N = 30
then it is safe to make W as small as 1

30
and it would still be possible

to use PCRE over a single, shared migration bus.

3. OPTIMAL REMAPPING SCHEDULING
While PCRE as described so far offers a feasible alternative to

baseline code migration, it assumes migrated code size is identical



and thus, it does not guarantee optimality in terms of overall system
lifetime in the most general case. To address this issue, this section
considers the general case of pre-copying for applications with vari-
able workload characteristics. The goal is to find qualitative guide-
lines for scheduling the pre-copying process depending on the code
size or the average computational load for each migrated application.

To model the battery characteristics for a variable workload
characterized by the compute-migrate-compute-hand-off paradigm,
the generalized battery model with nonlinear effects found in [11]
is used. Consider the following notation, consistent with the one in
Section 2:
TSL = time to live
TM = time for pre-copying the code
TP = time to begin pre-copying the code
S = battery capacity
β= nature of battery nonlinearity= π

√
D

ω
where

D= diffusion coefficient,
ω= length of diffusion region,
(β = 0.637 for a rechargeable 2.2 Watt-hour Li-ion battery)
IC = current drawn during computation
IM = current drawn during migration

The battery capacity required to achieve a particular lifetime for
a compute-migrate-compute-hand-off cycle can be predicted by the
equation [11]:

S (TSL, TM , TP , IC , IM ) =

IC · � TP + 2 ·

∞�
m=1

e−β2m2(TSL−TP ) − e−β2m2TSL

β2m2 � +

IM · � TM + 2 ·
∞�

m=1

e−β2m2(TSL−TP −TM ) − e−β2m2(TSL−TP )

β2m2 �
+IC · � TSL − TP − TM + 2 ·

∞�
m=1

1 − e−β2m2(TSL−TP −TM )

β2m2 �
In the following, theoretical results that support the slot schedul-

ing process are presented. As it will be shown, tasks which draw
more current during computation, or involve larger costs during the
migration process, should be scheduled earlier for pre-copying to
maximize overall system lifetime.

Lemma 1: If IM ≥ IC , S is monotonically increasing with
TP , i.e., S (TSL, TM , T ′

P , IC , IM ) ≥ S (TSL, TM , TP , IC , IM ) iff
T ′

P ≥ TP .
Proof: According to the equation for battery capacity S:

S � TSL, TM , T
′
P , IC , IM � − S (TSL, TM , TP , IC , IM )

= 2 (IM − IC)

·

∞�
m=1

e−β2m2(TSL−TP ) · � eβ2m2TM − 1 � · � eβ2m2(T ′

P
−TP ) − 1 �

β2m2

Since IM ≥ IC and the terms of the sum are positive if T ′
P ≥ TP ,

then S (TSL, TM , T ′
P , IC , IM ) ≥ S (TSL, TM , TP , IC , IM ).

Lemma 2: If IM ≥ IC and IM is sufficiently small, S is mono-
tonically increasing with TSL, i.e., S (T ′

SL, TM , TP , IC , IM ) ≥
S (TSL, TM , TP , IC , IM ) iff T ′

SL ≥ TSL.
Proof: From the equation for battery capacity S:

S � T ′
SL, TM , TP , IC , IM � − S (TSL, TM , TP , IC , IM )

= IC � T ′
SL − TSL � + 2 ·

∞�
m=1

� e−β2m2TSL − e−β2m2T ′

SL �
β2m2

· � IC − (IM − IC) e
β2m2TP · � eβ2m2TM − 1 ���

If IM is sufficiently small, IC

IM−IC
≥ eβ2m2TP · � eβ2m2TM − 1 �

for all values of m relevant for computing S (m ≤ 10 for all practi-
cal purposes [11]).

Thus, T ′
SL ≥ TSL and hence S (T ′

SL, TM , TP , IC , IM ) ≥
S (TSL, TM , TP , IC , IM ).

Theorem 1: In single node migration, migrating earlier (with
smaller TP ) provides better overall battery lifetime TSL.

Proof: Consider the diagram in Figure 5. If we put S′′ = S, then
according to Lemma 1 and Lemma 2, a later migration T ′

P ≥ TP

will trigger a shorter overall lifetime T ′
SL ≤ TSL.

Figure 5: The impact of later precopying on time-to-live TSL for
the same battery capacity.

Theorem 1 suggests that instead of employing code migration,
which does both code copying and hand-off towards the end of the
application lifetime, it is always better to schedule pre-copying as
early as possible and hand-off the execution to the redundant node
whenever a critical battery level is reached. However, when mul-
tiple nodes share the same communication bus, having each node
pre-copy its code in the beginning will create collisions and prolong
the migration process, thus negating any benefit from early schedul-
ing of pre-copying. Centralized arbitration for relieving conegstion
would be too expensive to use for the type of applications con-
sidered, and thus, it thus makes sense to consider the problem of
scheduling the pre-copying process. The goal is to maximize the
overall lifetime, while allowing each application to pre-copy its code
to a spare node in non-overlapping intervals. The following result
gives a qualitative set of guidelines for choosing candidate applica-
tions for earlier versus later migration on a shared communication
bus.

Theorem 2: For a given battery capacity and communication cost
IM , if IM ≥ IC earlier scheduling of pre-copying for applications
with larger IC (i.e., higher computation workload) generates longer
overall system lifetime. Similarly, earlier scheduling of pre-copying
for applications with larger TM (i.e., higher communication over-
head during migration) results in longer overall system lifetime.

Proof: S is monotonically increasing with IC , that is:

S � TSL, TM , TP , I
′
C , IM � − S (TSL, TM , TP , IC , IM )

= � I ′
C − IC � · (2 ·

∞�
m=1

e−β2m2(TSL−TP ) − e−β2m2TSL

β2m2
+

(TSL − TM ) + 2 ·
∞�

m=1

1 − e−β2m2(TSL−TP −TM )

β2m2
) ≥ 0



if I ′
C ≥ IC .

Thus, using a similar reasoning as in Theorem 1, one can conclude
that to achieve the same lifetime, it is necessary that T ′

P ≤ TP . Thus,
applications with larger IC should be scheduled for pre-copying ear-
lier. Similarly, S is monotonically increasing with larger TM :

S � TSL, T
′
M , TP , IC , IM � − S (TSL, TM , TP , IC , IM )

= (IM − IC) · ( � T ′
M − TM �

+2 ·

∞�
m=1

e−β2m2(TSL−TP ) · � eβ2m2T ′

M − eβ2m2TM �
β2m2

) ≥ 0

if IM ≥ IC (which is usually the case) and T ′
M ≥ TM . Thus, larger

time needed for migration implies larger S or shorter lifetime TSL

(according to Lemma 2) and thus, for a given S, scheduling pre-
copying earlier for applications with larger code size should help
minimize the decrease in overall system lifetime.

In most cases, applications can be pre-characterized in terms of
their workload requirements (IC) as well as the time needed for mi-
gration (TM ). Specifically, TM is proportional to the code size in-
volved in the migration process as it is a function of the number of
frames sent to the spare node. Given these guidelines, one can come
up with a schedule for the pre-copying process of different appli-
cations and can assign slots in a similar manner to what has been
discussed in Section 2.3. Since migration time TM is usually rela-
tively small compared to the overall application lifetime, we expect
that priority in assigning earlier slots should be given to applications
exhibiting higher computational workloads (IC) and breaking the
ties based on migration costs (TM ).

4. DRIVER APPLICATIONS
This work employs beamforming and software radio as its driver

applications. Beamforming has the properties of degrading grace-
fully with failing nodes as well as being trivially partitioned for ex-
ecution over a collection of devices. Software radio, on the other
hand, is dependent on each active node during execution and is also
less trivial to partition.

While code migration or PCRE are used primarily to increase ap-
plication longevity, at the same time, they should not offset their
benefits by reducing the quality of application at hand. In the fol-
lowing, we describe two types of applications and an example of
each: applications that tolerate graceful degradation in quality, and
application with single-point failures for which additional care must
be taken.

4.1 Application with graceful degradation: Beamform-
ing

In this case, applications running on a computing substrate of net-
worked embedded systems may tolerate various nodes in the net-
work being down during the migration process. One such example
is the beamforming application. A beamformer consists of an array
of sensors working in conjunction with a centralized node1 with the
objective of estimating propagating wave signals (either electromag-
netic or auditory) in the presence of noise and interference.

The beamforming implementation considered in this work con-
sists of repetitive rounds in which all computational nodes partic-
ipate in accomplishing the overall goal of signal recovery. At the
beginning of a round, the master node sends a broadcast message to
all slave nodes instructing them to begin sampling. Next, each slave

1These processing elements are henceforth referred to as “slave nodes” and the “master
node,” respectively.

Figure 6: Organization of beamforming application. Application
is partitioned across master and slave nodes. The arrows in the
Figure indicate communication.

obtains a sample from its attached sensor and performs a K-tap FIR
filter operation on this sample. The slave node then waits for its pre-
determined time-slot, based on its identification number, to send the
result to the master node for analysis. During this analysis step, the
master node combines the individual samples to obtain a compos-
ite reading for that sampling period. Finally, at the completion of a
round, the master node waits for the beginning of the next round to
send the next sample request broadcast and continue operation. This
work focuses on the slave nodes, the master node, and the network
linking together the individual slaves to the master node as shown in
Figure 6.

4.2 Application with single-point failures: Software Ra-
dio

In this case, applications may be fully connected and thus, a
single-point failure (such as the case of a battery running out or a
node in the process of migrating) anywhere in the network has catas-
trophic effects on the overall quality of the system. Such an example
is the software radio application which is a common DSP algorithm
that takes, as input, a modulated signal real-time streaming signal
and outputs the baseband signal. The application can be divided into
five main steps as shown in Figure 7. The first step is the acqui-
sition of the modulated signal, perhaps with the use of an antenna.
The second step is the low pass filtering of the modulated signal to
prevent aliasing due to demodulation. Next is the actual demodula-
tion of the signal, transforming the signal from the carrier frequency
down to the baseband frequency. Following demodulation is equal-
ization. The final step is the sink, which simply is the collector of
the resulting samples.

The software radio implementation in this work maps each of
these five steps onto a single computational node in the distributed
architecture, except for the equalization step, which is further parti-
tioned eight ways and mapped onto eight processing nodes as shown
in Figure 7. In Figures 6 – 7, redundant nodes are the ones which
the active nodes will use to perform code remapping.

5. EXPERIMENTAL SETUP

5.1 Simulation Infrastructure
The simulator used in this study is built around a publicly avail-

able energy estimating architectural simulator for the Hitachi Su-
perH embedded processor architecture [14]. It models a network
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of embedded processors, each consisting of a Hitachi SH3 micro-
controller, memory and communication interface. The simulation
environment permits the instantiation of a large number of nodes as
well as interconnection links (it has been used to simulate networks
on the order of 100s of nodes).

The modeled processor in each system may be configured to run at
different voltages and, hence, different operating frequencies. Each
simulated processor can be configured with multiple network inter-
faces. Each of these network interfaces may be attached to an instan-
tiated communication link. The communication links can be config-
ured for data transmission at different bit rates and link frame sizes.
Both the processing nodes and the interconnection links can be con-
figured for independent or correlated runtime failures with different
failure probabilities.

The simulation of both the processor elements and the intercon-
nection network is cycle-accurate. The simulation of computation
happens at the instruction set level. The simulation of the intercon-
nection network is at the data-link layer of the Open System Inter-
connection (OSI) model. The power estimation performed for each
individual processor is based on an instruction level power model.
The model used within the simulator has been verified to be within
6.5% of measurements from the actual hardware. The power es-
timation for the communication links assigns fixed costs for both
transmitting and receiving. Each individual processor, or groups of
processors, may be attached to batteries of configurable capacity.
The battery model employed is based on well-known discrete-time
battery models [3, 11].

Failures are modeled in the links that interconnect the process-
ing elements. These failures are modeled after intermittent electrical
failures, with a parameterizable probability of failure (referred to as
the failure rate in Section 6). These probabilities of failure are with
respect to one simulation time step. For example, a stated failure
rate of 1E-8 implies a probability of failure of 1E-8 per simulation
step. The correlation coefficient is the likelihood that a link error
will cause a node error on a node connected to that link.

Simulation Parameter Beamforming Software Radio

Operating Modes (each node) 60 MHz, 3.3V 60 Mhz, 3.3V
15 MHz, 0.85V 15 Mhz, 0.85V

Battery Size (each node) 1 mAh 1 mAh
Trans. and Rec. Power 100 mW 250 mW

Link Speed 200 kbps 10 Mbps
Frame Size 1024 bits 8192 bits

Frame Headers 288 bits 296 bits
Node Failure Probability 1E-8 1E-8
Correlation Coefficient 0.1 0.1

Baseline Migration Thresh., Blow 0.6 0.2
PCRE Migration Thresh., Bvlow 0.06 -

Table 1: Simulation variables and their associated values for
both driver applications

Topology Errors? CPU MHz

1 Dual-Bus (BF) None 60 MHz
2 Dual-Bus (BF) L.E. 60 MHz
3 Dual-Bus (BF) N.E. 60 MHz
4 Dual-Bus (BF) Ind. L.E. + N.E. 60 MHz
5 Dual-Bus (BF) Cor. L.E. + N.E. 60 MHz
6 Dedicated Migration Link (BF) None 60 MHz
7 Dedicated Migration Link (BF) L.E. 60 MHz
8 Dedicated Migration Link (BF) N.E. 60 MHz
9 Dedicated Migration Link (BF) Ind. L.E. + N.E. 60 MHz

10 Dedicated Migration Link (BF) Cor. L.E. + N.E. 60 MHz
11 Dual-Bus (BF) None 20 MHz
12 Software Radio None 60 MHz
13 Software Radio Cor. L.E. + N.E. 60 MHz

Table 2: Details showing how each experiment was setup (L.E.
= Link Errors, N.E. = Node Errors, Ind. = Independent, Cor. =
Correlated, BF = beamforming application).

5.2 Simulation Setup
Several relevant simulation variables, and their associated values,

are given in Table 1. The software radio application is a much more
demanding application, requiring a much higher communication link
speed and was configured with a higher transmit and receive power
dissipation rate on the communication links.

All the beamforming experiments employ an implementation with
1 master node and 10 slave nodes. In every experiment, half the slave
nodes are inactive and used as targets for migration. The software
radio application employs 12 nodes, one for each of the source, low-
pass filter, demodulator and sink nodes, and 8 nodes for the equalizer
stage. This partitioning of the software radio application is illus-
trated in Figure 7.

As can be seen from Table 1, each node is attached to a battery
with a capacity of 1.0 mAh. For the design alternative of using a
larger battery per node, each node is attached to a battery with twice
the capacity, or 2.0 mAh. These battery capacities are on the order of
10 times smaller than a common wristwatch battery [1]. Such a small
battery in today’s technology would have a size of 1 mm3 and cost
much less than a dollar. 2 The threshold for PCRE, Bvlow in Table 1
is 10 times lower than that for baseline migration in the beamform-
ing experiments because only one frame needs to be transmitted to
complete migration.

Eleven experiments are conducted to compare PCRE in the case of
the beamforming application with two other design solutions: using

2This size of battery was chosen to limit the simulated system’s lifetime and make
simulation possible in a reasonable amount of real time.



Figure 8: Two topologies considered in experiments: Dual Bus
and Dedicated Migration Link topologies (S = slave node, R = re-
dundant node)

the baseline migration scheme as defined in Section 2.1, and using
a larger battery per processing node instead of using code migration
at all. PCRE is well suited for remapping the beamforming appli-
cation because beamforming degrades gracefully with the removal
of nodes. Therefore, using non-overlapping migration time-slots as
in PCRE permits graceful degradation of performance during migra-
tion. Software radio, in contrast, is highly dependent on the func-
tioning of each of its components. Migration for each active node
occurring simultaneously provides the best application lifetime pos-
sible, and therefore baseline migration is more well-suited for this,
and other similar applications.

The details of each configured experiment are shown in Table 2.
Two topologies for interconnecting the master, slave and redundant
nodes are considered for the beamforming application, and are de-
picted in Figure 8. In one topology, referred to as Dual-Bus, shared
communication buses are employed, one for exchanging samples
between the master and slave nodes and the other for migration of
slaves to redundant nodes. In the second topology, the single shared
bus for the exchange of samples is maintained, but Dedicated Mi-
gration Links are employed for migrating the slaves to the redundant
nodes. In Figure 8, the redundant nodes are labelled R and the slave
nodes labeled S.

To investigate the robustness of the new code migration technique
in the presence of faults, simulations are performed with intermittent
failures in the slave and redundant nodes, failures in the links, as
well as independent and correlated failures in both the nodes and
the links. Table 1 shows the node and link failure probabilities per
simulation cycle. A 1E-8 per 16.6ns cycle time error probability, for
a link operating at 200 kbps, translates to an error rate of 3.125E-6
per bit transmitted for the beamforming application.

6. RESULTS AND DISCUSSION
The results using baseline migration are presented for use in both

beamforming and software radio. A detailed evaluation of PCRE is
presented for the beamforming application.

Performance results for the software radio implementation using
baseline code migration is given in Figure 9. In this case, the lifetime
of the application is extended by 30%. The figure shows data points
representing whether or not each particular sample value (spaced 4
milliseconds apart) successfully exited the pipeline or not. Using
baseline code migration improved the operational longevity of soft-
ware radio. Exp. #12 lived 65.1% as long as the case of using a
battery with twice the capacity, and Exp. #13 lived only 52.6% as
long as this ideal case. However, there is overhead in attempting mi-
gration and checking for the right time to do so, and this prevents the
results from reaching the ideal value of 100%

Figures 10 and 11 show the number of samples received by the
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Figure 9: (Exp. #12)Performance of baseline migration scheme
for the software radio application. The data points in the graph
are spaced at 4 milliseconds apart and indicate whether the sam-
ples exit the pipeline successfully “1” or not at all “0”. The graph
indicates that migration happens for the equalizer, low-pass fil-
ter, demodulation, and source nodes, in this order.
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Figure 10: Performance of PCRE in Dual Bus Topology, no er-
rors, 60 MHz processors

master node as well as the remaining usable battery energy for the
beamforming application as it evolves for Exp. #1. In the case of
PCRE, the scheduling algorithm presented in Section 3 has been
employed. The solid line of Figure 10 shows that the first 10 sec-
onds is the time in which pre-copying is taking place by each active
node, and this unique “sawtooth” shape helps to prevent possible
link collisions during pre-copying.

At approximately 35 seconds, all nodes send their final FIN frame
to the redundant node to complete migration. For the baseline mi-
gration implementation, as is apparent in the solid line of Figure 11,
nodes begin migration around 15 seconds and completely resume
normal operation by 20 seconds. The dotted lines show that, for the
baseline migration scheme, the amount of usable battery energy de-
creases considerably in the region of 15 to 20 seconds because, in
this region, each slave node is abandoning what remaining energy it
may have left by performing the migration. The amount of usable
energy remaining using PCRE also drops during the final migration
stage, but not as drastically as in the baseline migration case.

In Exp. #11, the processor’s active voltage mode was scaled down
until the operating frequency was 20 MHz, and that processor is not
computationally strained when handling beamforming with a 100ms
sampling time. The system lifetimes in that experiment was 25.4
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Figure 12: System lifetime for two migration schemes, normal-
ized to the system lifetime resulting by simply using batteries
with twice the capacity

minutes for the PCRE migration scheme and 20.6 minutes for the
baseline migration scheme. Additionally, these experiments all as-
sume that there is no means by which the batteries can recharge after
being partially or completely depleted of energy. With rechargeable
batteries, these system lifetimes can be extended much further, and
the platform able to support multiple, concurrent distributed appli-
cations.

Summarizing results for all the beamforming experiments appears
in Figure 12. On average, PCRE increases the system lifetime over
the baseline migration scheme by 57.9%. For baseline migration,
Exp. #9 did not successfully migrate mainly due to random node
and link errors, so this impressive increase is largely due to the great
improvement in lifetime for this experiment. Removing this exper-
iment from consideration results in an average system lifetime im-
provement of 28.6% for PCRE compared to baseline migration. Fig-
ure 12 shows these lifetimes, normalized to the system lifetime of the
“ideal” configuration where each node has twice the battery capacity
and no migration occurs. As it can be seen, PCRE achieves, in most
cases, a system lifetime within 10% of the ideal case while baseline
migration is usually 30% worse than the ideal system lifetime.

The availability of the beamformer was improved using PCRE
compared to baseline migration. In Exp. #1, PCRE had an aver-
age of 4.698 samples received during its lifetime per round, with a
standard deviation of 0.795. Baseline migration, meanwhile, suf-
fered somewhat with only 4.498 samples received per round, with a

higher standard deviation at 1.273. Similar arguments can be made
for the other experiments, as well.

Next, the energy efficiency is also improved using PCRE as op-
posed to baseline migration. For Exp. #1, PCRE consumes 115.26
Joules of its 118.8 Joule total capacity with a system lifetime of 72.3
seconds, and baseline migration consumes 95.2 Joules of its 118.8
Joule total capacity with a system lifetime of 54.4 seconds. This
gives PCRE a ratio of 0.627 seconds lifetime per Joule consumed,
and the baseline migration 0.571 seconds lifetime per Joule con-
sumed. Therefore, for Exp. #1, PCRE enjoyed an energy efficiency
improvement of 9.8% compared to the baseline migration scheme.

7. CONCLUSION
Ambient intelligent systems are a promising emerging platform

that presents unique challenges to communities in both hardware
and software design and testing. Environment-driven failures may
be common and redundancy in nodes will be required to provide a
satisfactory level of application performance. This paper explores
various methods for performing code remapping as a form of fault-
tolerance and implements these techniques with two driver applica-
tions, beamforming and software radio. Our experimental results
show 28.6% average improvement in overall beamforming lifetime
using PCRE and about 30% improvement in system lifetime for soft-
ware radio using baseline code migration.
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