
 
 
 
 
 

 
 

Beyond Output Voting: 
Detecting Compromised Replicas using Behavioral Distance 

 
 

Debin Gao, Michael K. Reiter, Dawn Song 
 

December 6, 2006 
CMU-CyLab-06-019 

 
 
 
 
 
 
 

CyLab 
Carnegie Mellon University 

Pittsburgh, PA 15213 
 
 
 
 
 

 



Beyond Output Voting:
Detecting Compromised Replicas using Behavioral Distance

Debin Gao
debin@cmu.edu

Michael K. Reiter
reiter@cmu.edu

Dawn Song
dawnsong@cmu.edu

Abstract

Many host-based anomaly detection techniques have
been proposed to detect code-injection attacks on servers.
The vast majority, however, are susceptible to “mimicry”
attacks in which the injected code masquerades as the orig-
inal server software (including returning the correct ser-
vice responses) while conducting its attack. In this paper
we present a novel architecture to detect mimicry attacks
using “behavioral distance”, by which two diverse repli-
cas processing the same inputs are continually monitored to
detect divergence in their low-level (system-call) behaviors
and hence potentially the compromise of one of them. We
detail the design and implementation of our architecture,
which takes advantage of virtualization to achieve its goals
efficiently. We apply our system to implement intrusion-
tolerant web and game servers, and through trace-driven
simulations demonstrate that our approach can achieve low
false-alarm rates and moderate performance costs even
when tuned to detect stealthy mimicry attacks.
Keywords: behavioral distance, intrusion detection

1 Introduction

Many host-based anomaly detection systems have been
proposed to detect server compromises, e.g., code injection
attacks exploiting buffer overflow or format-string vulner-
abilities [10, 31, 29, 24, 15, 9, 12, 8, 16, 11]. These sys-
tems detect intrusions by monitoring the execution of a pro-
gram to see if its behavior conforms to a model that de-
scribes its normal behavior. Constructing such a model for
accurate intrusion detection is challenging, especially due
to mimicry attacks[27, 30, 19, 17] that evade detection by
virtually all such models. In mimicry attacks, the injected
attack code masquerades as the original server software (in-
cluding returning the correct service responses) so that the
anomaly detector cannot differentiate execution of the at-
tack code from execution of the original server program.
Output voting in a replicated system that detects [26, 4, 3]
or masks [20, 23, 21, 6, 5, 32, 1] Byzantine faults or in-

trusions by comparing server outputs cannot detect such at-
tacks either. A replicated system that employs only output
voting will thus allow a compromised server that generates
the correct output to conduct other attacks, e.g., to leak sen-
sitive data or to attack other machines in the network.

Behavioral distance[13, 14] has been proposed to de-
tect carefully crafted mimicry attacks that would evade de-
tection by a host-based anomaly detector or output voting.
This approach compares the low-level (e.g., system call) be-
haviors of two diverse replicas when processing the same,
potentially malicious, inputs. Assuming that the two repli-
cas are diverse and vulnerable only to different exploits, a
successful attack on one of them should induce a detectable
increase in the behavioral distance. This makes mimicry
attacks substantially more difficult, because to avoid detec-
tion, the behavior of the compromised process must be close
to the behavior of the uncompromised one. Behavioral dis-
tance goes beyond output voting to measure the similarity of
server behaviors, instead of the similarity in server outputs.

In this paper, we present the design, implementation and
evaluation of a novel architecture to detect mimicry attacks
using behavioral distance. Whereas our prior work focused
on algorithms for computing behavioral distance, here we
address the systems issues necessary to make this technique
practical. We present a complete architecture based on vir-
tualization for monitoring the system call behaviors of di-
verse replicas on the same computer, and for efficiently
evaluating their behavioral distance either on or off the crit-
ical path of responding to clients. In particular, we detail
the various components of the architecture, how they com-
municate, and the responsibilities of each.

We demonstrate our architecture through the implemen-
tation and evaluation of two types of servers: a web server
and a game server. These servers present distinct challenges
in many ways. For example, the web server is a typical
request-response server, making it convenient to compute
the distance between replicas’ behaviors when processing
the same request. In contrast, much of the game server’s
processing is decoupled from individual requests, and its
responses are not in one-to-one correspondence with client
requests; this makes it necessary to pair the low-level behav-

1



iors of replicas via alternative means for computing their be-
havioral distances. The typical workload and performance
requirements for these servers are also quite different: e.g.,
a typical web server generates relatively long responses ofa
few kilobytes to a few hundred kilobytes, and throughput is
critical as it may need to provide service to a large number
of users simultaneously. In contrast, the game server gen-
erates much shorter responses of less than a hundred bytes
long, and is required to do so primarily with a short latency.
Consequently, our evaluation sheds light on the suitability
of our architecture for two very different types of servers.

The evaluation we perform is, to our knowledge, the first
trace-driven evaluation of behavioral distance; whereas the
cursory evaluations in our previous work utilized synthetic
web workloads, here we utilize recorded workloads of pro-
duction web and game server deployments to evaluate the
detection accuracy and performance of our web and game
servers. We show, for example, that our web server using
behavioral distance, when configured to detect the “best”
mimicry attacks, yielded as few as 3 false alarms when pro-
cessing a recorded workload of over 2 million client re-
quests, which is a false alarm rate about an order of mag-
nitude lower than previous results [14] on average. Simi-
larly configured, our game server yielded 14 false alarms
when processing 39,000 recorded game events. We also de-
scribe an alternative behavioral distance calculation partic-
ular to the game server that reduces the false alarm rate to
near zero while retaining the ability to detect the type of
mimicry attacks against which we perform our evaluation.
In terms of performance, the web server’s throughput drops
to about 50% compared to a standalone web server on the
same physical machine, and players experience an overhead
of 8 to 86 milliseconds (msecs) in additional latency for the
game server with 128 to 1024 concurrent players.

2 Related Work

Behavioral distance was introduced to evaluate the ex-
tent to which processes—potentially running different pro-
grams and executing on different platforms—behave sim-
ilarly in response to a common input [13]. The first
calculation of behavioral distance was inspired by evolu-
tionary distance [25], though it was shown to be inferior
to a subsequent proposal using Hidden Markov Models
(HMMs) [14]. These prior works focused on the algorithms
for calculating behavioral distance, and evaluated these al-
gorithms using synthetic simulations of static web page
retrievals. Neither detailed a practical system for realiz-
ing behavioral distance measurement generally, or reported
trace-driven analyses of its accuracy and performance (or
on servers other than a web server), as we do here.

N-variant systems [7] are closely related to our work. An
N-variant system executes a set of automatically diversified

variants on the same inputs, and monitors their behavior to
detect divergence. By constructing variants so that an an-
ticipated type of exploit can succeed on only one variant,
the exploit can be rendered detectable. The construction of
these variants usually requires a special compiler or a bi-
nary rewriter, but perhaps more importantly, it detects only
anticipated types of exploits, against which the replicas are
diversified. The system we propose here, instead, uses be-
havioral distance to detect potentially unforeseen types of
compromises of one of two off-the-shelf servers.

Numerous systems have employed output voting to de-
tect some types of server compromises. For example,
the HACQIT system [18, 22] uses two web servers, Mi-
crosoft’s Internet Information Server (IIS) and the Apache
web server, to detect, isolate, and possibly recover from
software failures. If the status codes of the replica responses
are different, the system detects a failure. This idea was ex-
tended by Totel et al. to do a more detailed comparison of
the replica responses [28]. They realized that web server
responses may be slightly different even when there is no
attack, and proposed a detection algorithm to detect intru-
sions with a higher accuracy. These projects specifically
target web servers and analyze only server responses. Con-
sequently, they cannot detect a compromised replica that
responds to client requests consistently, while attackingthe
system in other ways. Our system, in contrast, monitors all
behaviors (system calls) of the replicas, and is applicableto
virtually any services (not just web servers).

3 System Architecture

There are at least three components in a system that uti-
lizes behavioral distance—two replicas and a proxy. The
replicas run servers, either on different operating systems
or with programs of different code bases. The proxy serves
as a gateway between the replicas and the clients.

Our architecture hosts the replicas and proxy on a single
physical machine, using virtualization. One benefit of doing
so is that network delays for messages between the replicas
and the proxy can be minimized. When implemented as vir-
tual machines, these delays are limited only by the speed of
memory copies. Since there are at least three messages ex-
changed between each replica and the proxy for every client
request (the request forwarded from the proxy to the replica,
the response from the replica, and the system call infor-
mation from the replica), this savings can be significant.
Another advantage is that resources can be better managed
among the proxy and the replicas. This resource sharing is
handled by the scheduler on the host operating system au-
tomatically; if the proxy and replicas were running on dif-
ferent computers, available CPU cycles or memory on one
could not be used by others. Using virtual machines also
reduces the hardware and maintenance costs of the system.

2



For these reasons, virtualization is attractive for implement-
ing replicated systems that measure behavioral distance.

Below we outline the system structure, and then explain
the details with two concrete examples—behavioral dis-
tance for a web server and an online game server.

3.1 General System Structure

There are generally two approaches to setting up the
replicas and the proxy. One is to configure the host ma-
chine with three guest operating systems, each running on
an isolated virtual machine. This setup allows each virtual
machine to have a fair share of the system resources on the
host machine. A second approach is to configure the host
with only two virtual machines. In such a setup, the proxy
runs on the host operating system directly.

We choose the second approach for two reasons. First,
the proxy plays a different role in the system from the repli-
cas. The proxy connects to both the clients and the replicas,
while the replicas are required to talk only to the proxy. The
other reason is that the second setup performs faster than the
first setup according to our experiments. This is partly be-
cause the first setup imposes another operating system be-
tween the hardware and the proxy, which consumes notice-
able resources. In using the second approach, we choose
Linux as the host operating system.

Message 1: request from a client
Message 2: duplicated request from the proxy
Message 3: log for a request from the replicated server
Message 3’: response from the replicated server
Message 4: log for a request from the logger
Message 5: request for syscall info from the controller
Message 6: system call info from the kernel
Message 7: syscall info from the controller
Message 8: response from the proxy

Figure 1. Architecture of the system

Figure 1 shows the system architecture and the messages
involved in a client request and response. The lifetime of
a client request and the corresponding response is as fol-
lows. Upon receiving a request from the client (Message

1), the proxy forwards it (Message 2) to both replicas af-
ter some necessary modifications (these modifications are
discussed in Section 3.2.2). A replicated server processes
the request and sends its response (Message 3’) back to
the proxy. At the same time, the replicated server also
sends a log (Message 3) containing important information
about the processed request to the logger, which forwards
the log (Message 4) to the controller. The controller pro-
cesses the log, requests (Message 5) and receives (Message
6) system call information for the corresponding request,
and forwards the system call information (Message 7) to
the proxy. The proxy does output voting on the server re-
sponses and behavioral distance measurement on the system
call sequences. If either fails, i.e., if either the responses are
different, or the behavioral distance is greater than a prede-
fined threshold, the response will be blocked and an alarm
will be set off; otherwise, the proxy forwards the response
(Message 8) to the client. The proxy also maintains a cache
that remembers the results of behavioral distance calcula-
tions for system call sequences it has seen.

3.2 Web Server Implementation

In this section, we detail how we have applied this ar-
chitecture to protect Apache web servers servinghttp re-
quests. The two replicas in this system run Apachehttpd
on a Linux and a Windows operating system, respectively.
The Apache web server is a multi-process application on
Linux and a multi-threaded application on Windows. A pro-
cess/thread is assigned to eachhttp request and is respon-
sible for processing that request. Our system measures the
behavioral distance between the system calls of the corre-
sponding process and thread that serve the same request.

3.2.1 System call hook

To capture system calls on Linux, we modify the kernel
source to record system calls made by a program and save
the system call numbers in the kernel space. A new system
call1 is used for a user program running asroot (the con-
troller, see Section 3.2.3) to send commands to the kernel
to start/stop system call interception and to request system
call numbers recorded for a process ID. Upon receiving a
request, the kernel sends all system call numbers recorded
for the process ID to the user program via a UNIX pipe.

On Windows, system call2 hooking is implemented as a
kernel driver, which locates and overwrites the KiSystem-
Service table. The KiSystemService table contains the ad-
dresses of all system call handling functions. By overwrit-

1We utilize system call numbers that are reserved but not implemented
yet on the 2.6.15 Linux kernel.

2System calls on Windows are also called native API calls or system
services.

3



ing them with addresses of new system call handling func-
tions, system call information can be extracted. The new
system call handling functions simply save the system call
numbers in the kernel, and then invoke the original system
call handling functions. Unlike the case of Linux, Windows
provides an interface for a user program to send requests to
and receive responses from a kernel driver. Therefore we do
not have to implement a new system call to do this.

3.2.2 Logger

One of the most difficult tasks in implementing such a
system for real-time behavioral distance measurement is
to match a system call sequence with its corresponding
http request. This is nontrivial because when the server is
heavily loaded, there could be many requests from clients,
which are being processed simultaneously by different pro-
cesses/threads; therefore, simply using the timing informa-
tion would not reliably match system call sequences with
their corresponding requests/responses. To do this match-
ing in a reliable way, we insert a tag into each request when
it first enters the system and trace the tag to match system
call sequences with their corresponding requests/responses.

The tag, which is just a unique index number, is inserted
into thehttp header by the proxy. Since a proxy has to
insert its proxy information anyway according to thehttp
RFC, the insertion of this tag does not result in much addi-
tional overhead. After inserting the tag, we modify the con-
figuration file to instruct Apache to log the value of the tag
as well as the process ID of the process (or the thread ID of
the thread) that served the request, and send this information
to the logger. Upon receiving the tag and the process/thread
ID, the logger simply forwards it to the controller, which is
explained in the next section.

Note that we have to implement the logger as a separate
program instead of a component of the controller because
the logger is instantiated by Apache, whereas the controller
has to start its execution before Apache starts up.

3.2.3 Controller

The controller is the most intelligent component in a replica.
For eachhttp request, it first receives a log from the log-
ger (which contains the tag and the process/thread ID), and
then sends a request to the system call hook in the kernel to
ask for the system call information for that process/thread
ID. Upon receiving the system call information, it locates
the subsequence that corresponds to the processing of the
request and sends it to the proxy along with the tag. Fig-
ure 2 shows the content of each message exchanged among
various components for a client requestreqi. Communica-
tions among the logger, the controller and the proxy are via
UNIX pipes or sockets.

Message 1: 〈reqi〉 Message 5: 〈pidi〉
Message 2: 〈reqi, tagi〉 Message 6: 〈Spidi

〉
Message 3: 〈tagi, pidi〉 Message 7: 〈tagi, Sysi〉
Message 3’: 〈respi〉 Message 8: 〈respi〉
Message 4: 〈tagi, pidi〉

reqi The ith client request
tagi The unique tag forreqi

pidi The ID of the process/thread that servesreqi

respi The response toreqi

Sk The system call sequence for process/thread ID k in kernel
Sysi The system call sequence forreqi (Sysi is a subsequence ofSpidi

)

Figure 2. Content of each internal message
when processing a client request reqi

When the web server is heavily loaded, a process/thread
will be processing one request after another; therefore, the
controller needs to break the long system call sequence for
each process/thread into shorter pieces, such that each piece
corresponds to the processing of anhttp request.

One way to do this is to rely on temporal information.
E.g., we can instruct Apache to log the time when a request
is received, and instruct the system call hook to record the
time when each system call is made. However, we find that
this is not a reliable way because the timing information
provided by Apache and the operating system is not precise
enough. E.g., Apache only logs up to seconds, which is
far from the precision we require. We also tried modifying
the Apache source to log the most precise timing informa-
tion provided by the operating system. However, many sys-
tem calls are still made “at the same time” because they are
made between two consecutive hardware time interrupts.

We decide to take a more reliable and more precise ap-
proach. We analyze the Apache source code to identify the
last instruction in processing a request. We then insert a
short piece of assembly code (one line), which does noth-
ing but makes a special system call3. This special system
call tells the controller when the processing of a request fin-
ishes, and helps the controller to break a long system call
sequence into subsequences precisely at the end of the pro-
cessing of eachhttp request.

3.3 Game Server Implementation

A web server is one of the most common services pro-
vided over the Internet, and therefore is a typical example
in which behavioral distance is useful for defending against
software intrusions. However, it is also relatively simplein
the sense that each transaction consists of a single request
and a response. In this section, we show another system in

3On Linux, we use the same system call number that was used for
sending commands from the controller to the system call hook (see Sec-
tion 3.2.1), with a different parameter. On Windows, we use a new system
call that has not been implemented.

4



which behavioral distance is used to protect an online game
server. This is more complicated because a message from a
player may result in zero or multiple responses to the sender
as well as other players. The fact that server responses are
dynamically generated also make it more complex, when
compared to simple web servers in which most responses
are statichtml pages.

The online game server we choose to work with is the
Peekaboom game server (www.peekaboom.org). Peek-
aboom [2] is an online game for two players (single-player
games are also possible; please seewww.peekaboom.
org for details), in which one of the players (Boom) con-
tinuously reveals parts of an image, and the other player
(Peek) tries to guess the word that is associated with the im-
age. Usually there are more than 1,000 player logins to the
Peekaboom game server per day; on busy days, there could
be as many as 20,000 logins. Each player spends roughly
25 minutes per login on average.

The Peekaboom server is implemented in Java, and so is
theoretically immune to the code injection attacks that area
primary motivation for our work. However, Peekaboom is
the only server available to us that is both representative of
more complex, dynamic services and accessible for record-
ing traces. We believe that both the adaptation of our archi-
tecture to this application and its evaluation (Section 4.3)
provide a realistic view of the suitability of our approach to
similar services written in C/C++, for example.

3.3.1 Game events

The Peekaboom server utilizes a request handling model
different from the Apache web server. Instead of assign-
ing an isolated process/thread to process each request as in
the Apache web server, the Peekaboom game server uses
a single thread to process nearly allgame eventsfrom dif-
ferent players. A game event is an object representing an
action from a player (e.g., mouse clicking to reveal parts of
an image or typing of a guess) or the consequence of such
an action (e.g., the consequence of typing a correct guess is
a game event that ends the current game).

A player request may generate zero or multiple re-
sponses. For example, a guess from Peek generates three
events: aguess eventto be processed by the game server
to see if the guess is correct; twonew game eventssent
back to both players if the guess is correct, or twoguess
resolve eventssent back to the players if the guess is in-
correct. Some game events are not triggered by any mes-
sages from the players, e.g., a timeout event is generated by
the timer on the game server. Due to these complexities,
the request/response transaction model used in the Apache
system for behavioral distance measurement does not work
well here. Instead, we measure behavioral distance between
the system call sequences for processing game events.

3.3.2 Logger and Controller

Since the Peekaboom server itself does not provide the nec-
essary logging feature as in the Apache web server, we im-
plement it as a shared library loaded by the game server
using JNI (Java Native Interface). As in the Apache sys-
tem, we need to attach a tag to every game event, so that
the proxy is able to find system call sequences for the same
game event on different replicas. This turns out to be dif-
ferent from the case of Apache because the Peekaboom
game server uses a single thread to process game events for
all players. Therefore, process/thread IDs cannot help to
separate system calls for processing different game events.
However, we can use the player ID in conjunction with the
game event type as the tag. Since the player ID and event
type are available in the original Peekaboom server source
code, we do not have to insert additional information to the
messages to and from the players.

The logger also makes a special system call before and
after the processing of every game event to indicate the start
and end of the processing of that game event. This is the
primary reason why the logger is integrated with the main
server using JNI: making system calls is not platform in-
dependent, and is best implemented in languages like C or
C++ instead of Java.

The controller in the Peekaboom system works very sim-
ilarly as in the Apache system.

3.3.3 Implementation issues

Nondeterminism As behavioral distance is best mea-
sured when the replicas are performing the same tasks, and
to accommodate output voting in addition to behavioral dis-
tance measurement, we take a number of steps to eliminate
nondeterminism in the server replicas.

First, there are random number generators, e.g., to ran-
domly select an image for the game, and to randomly se-
lect a label for an image (there are multiple valid labels for
every image). In order to make both replicas generate the
same “random” numbers, we change the source of the game
server to use the same fixed seed.

Second, when both players in a game are sending mes-
sages to the server, the server behavior may depend on the
sequence in which the two messages are received. This
turns out to be a problem because even if the proxy forwards
the message from one player to both replicas and then the
message from the other player, the two replicas may still
receive the two messages in different orders (e.g., because
the different message sizes and different network delays on
the socket connections4). We found that this problem oc-
curs in at least two scenarios: one is when the two players

4For each active player, there is one socket connection between the
player and the proxy, and one socket connection between the proxy and
each replica.

5



request to start a game at about the same time, and the other
is when the two players are in a bonus game (to see what
a bonus game is, please refer towww.peekaboom.org
for details). To solve this problem, we associate a server
acknowledgement with every message from a player. (Most
of the player messages are already associated with server
acknowledgements in the original program. We just need to
add acknowledgements for messages sent in the above sce-
narios.) With the acknowledgements, the proxy ensures that
a message from a player is forwarded to the replicas only
after all acknowledgements for messages from the player’s
partner have been received. This results in some additional
delay in server responses.

Third, the behavior of certain Java classes is not deter-
ministic. For example, the sequence in which objects are
returned by thegetNext() method is not defined for the
Iterator of a HashSet object. The Peekaboom game
server uses aHashSet object for matching players in a
game. It first puts all new players in a pool, which is a
HashSet object, and then matches players in the pool by
calling thegetNext() method of theIterator object
of the pool. Since objects may be returned in different or-
ders on the replicas, players are matched differently. We
solve this problem by replacing theHashSet object with a
LinkedHashSet object, which returns objects in the se-
quence in which they were added. (Note that the sequence
in which players are added to the pool is deterministic once
the change explained in the previous paragraph is applied.)

Fourth, the game server updates the amount of idle time a
player should wait before giving up. Such update messages
are sent before and after a game starts, and the amount of
idle time depends on the local clock of the game server,
which is not the same for different replicas. There are a
few ways to fix this, including synchronizing the clocks on
replicas. We choose to apply a simple fix, instead, to simply
remove the update message and let the client uses its default
setting (8 seconds) for the timeout. This simple fix turns out
to work well without sacrificing any important features of
the game server.

The above four issues require modifying or adding 13
lines of code in the original Peekaboom server source. In-
cluding the changes we made to attach a tag to every game
event as explained in Section 3.3.2 (32 lines), we have mod-
ified less than 1% of the Peekaboom source.

Critical path of server responses Our implementation
for Peekaboom does not place behavioral distance measure-
ment on the critical path of server responses. This is be-
cause of the complexity of the game server. In order to have
behavioral distance measurement on the critical path, we
need to precisely define the server responses’ dependencies
on game events. However, in the case of the Peekaboom
game server, a response may be the result of zero or multi-

ple messages from the players and many game events. It is
too complex to define such dependencies precisely. There-
fore, we choose not to associate the result of individual be-
havioral distance measurement with any particular server
response, and simply set off an alarm and tear down the
game connections when any results of the behavioral dis-
tance measurements exceed the predefined threshold.

4 Evaluation and Discussion

In this section, we evaluate the two systems we have
implemented, i.e., the replicated web server and the repli-
cated online game server. We want to see how well our
systems behave in detecting carefully crafted mimicry at-
tacks [27, 30, 19, 17]. We will consider the same type of
mimicry attack as in our previous work [12, 13, 14], in
which the attacker tries to make a system callopen fol-
lowed by a system callwrite, as this is seemingly the least
the attacker must do to modify or create data on the server
machine. We also evaluate the performance overhead of the
systems when detecting these attacks.

4.1 Hardware and software configuration

Since we use virtual machines, only one physical com-
puter is required. The computer we use is a Dell PowerEdge
2800 with two Intel Xeon CPUs running at 3.2 GHz each
with Hyper-Threading enabled. It has 8 GB of memory
and two SCSI hard drives in a RAID 1 configuration. The
host computer is running the Linux operating system with
a 2.6.15 SMP (Symmetric Multiprocessing) kernel. In both
systems (the web server and the online game server), the
host is connected to clients via an isolated local area net-
work. VMware Workstation 5.5.2 is used to create and run
two virtual machines as the replicas.

Both virtual machines are configured with two virtual
CPUs, 2 GB of virtual memory and a 15 GB virtual SCSI
hard drive. One of them runs the Linux operating system
with a 2.6.15 SMP kernel, and the other runs Windows
Server 2003 Enterprise Edition with Service Pack 1. A vir-
tual gigabit switch is created to connect the two virtual ma-
chines and the host.

4.2 Web Server

We want to see how the system behaves when serving
real web traffic instead of traffic simulated by a bench mark-
ing tool as in previous projects [13, 14]. The trace we use
consists of a five-month-long log of client requests for static
pages on the public web server of CyLab (www.cylab.
cmu.edu). This five-month-long data consists of more
than 2 million requests on about 2,700 distinct URLs, in-
cludinghtml pages, images, videos and etc.

6



The behavioral distance measurement for this system
follows the HMM approach [14]. In this approach, a train-
ing set is used to build the HMM, a validation set is used
to detect overfitting the training data, and a testing set is
used to evaluate the accuracy of the model. The training set
contains a subset (of a size that varies per experiment; see
Section 4.2.1) of the 2,700 distinct URLs. We request each
URL in this subset once, and use the system call sequences
induced to build the HMM. The validation set consists of
URLs on a typical weekday, which has about 12,000 re-
quests. After the model is built using the training set and
the validation set, it is evaluated on the testing set, whichis
simply the entire trace dataset excluding the validation set.
Both replicas run Apachehttpd 2.2.2.5

4.2.1 Detection accuracy

To evaluate the detection accuracy, we measure the num-
ber of false alarms generated when the threshold of behav-
ioral distance is set to detect the “best” mimicry attack. A
mimicry attack [27, 30, 19, 17] is one of the most power-
ful attacks against an intrusion detection system, in which
it is assumed that the attacker has a copy of the model used
by the anomaly detector. The attacker analyzes the model
and executes its attacks in a way that induces behaviors (a
system call sequence) that the model does not distinguish
from normal. In the case of HMM-based behavioral dis-
tance, the distance threshold can always be set to detect a
mimicry attack; the only question is what false alarm rate
does that setting induce? To evaluate this, we compute the
estimated best mimicry attack for our HMM (see [14]) in
the cases where the exploitable vulnerability is on Linux or
Windows. In each case, we set the threshold of the system
to detect this mimicry, and then measure the number of false
alarms the system generates when processing the testing set.

We perform this test a few times, by setting the size of
the training data to be certain percentages of the distinct re-
quests. This is to simulate the scenario in which when new
contents are added to a web server, the system administra-
tor may not want to re-train the behavioral distance model.
Therefore, the training set may not contain all the distinct
requests. Figure 3 shows the number of false alarms when
the training set consists of 40% to 100% of the distinct
requests, when the system is tested on about 2 million re-
quests recorded in 150 days.

From the results we can see that our system is able to de-
tect software intrusions with very high accuracy. In partic-
ular, our system generates only 3 false alarms in processing
more than 2 million requests, when the training set con-
sists of all distinct requests. When some requests are not
included in the training set, the number of false alarms in-
creases to about 60, which is still very good. These results

5Apache on Linux and Apache on Windows are different code bases.

40 50 60 70 80 90 100

Percentage of distinct requests as training data

0

20

40

60

N
um

be
r 

of
 fa

ls
e 

al
ar

m
s 

in
 1

50
 d

ay
s

Mimicry attack on Linux
Mimicry attack on Windows

Figure 3. Number of false alarms when de-
tecting the “best” mimicry attack

are also about an order of magnitude better than those pre-
viously reported [13, 14]. From these results, it is recom-
mended that the model is re-trained when the training set
consists of less than 90% of the distinct requests, if very
low false-alarm rate is desired.

4.2.2 Performance overhead

A typical way of evaluating the performance overhead of
a web server is to measure the throughput when the server
is fully loaded. In order to fully load the web server, we
simulate concurrent clients. Figure 4 shows the throughput
of the Apache web server with varying number of concur-
rent clients, when the Apache web server is the only service
running on our host computer, i.e., when there is no virtual
machine running. We can see that once the number of con-
current clients exceeds ten, further increasing the numberof
concurrent clients will not improve the overall throughput.
When there are virtual machines running, less than ten con-
current clients are sufficient to fully load the system, but we
choose to simulate ten of them for all other tests.

0

200

400

600

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

0 10 20 30 40 50 60
Number of concurrent clients

Figure 4. Throughput of the web server with
different numbers of concurrent clients

We perform four tests to evaluate our system in different
configurations. The first test (T1) we perform is to measure
both output voting and behavioral distance on the critical
path of server responses. This is the configuration with the

7



best security property, and at the same time gives the largest
overhead on both throughput and latency because responses
are forwarded to the client after output voting and behav-
ioral distance measurement finish. In the second test (T2),
we do not perform behavioral distance measurement on the
critical path. This should result in slightly better throughput
and latency because responses are forwarded to the client
right after output voting is performed. Behavioral distance
is not measured in the third test (T3). In the third test, we
have a simple replicated system in which output voting is
performed before responses are sent to the client. The last
test (T4) we do is to run the Apache web server directly on
the host operating system without any replicated services.

Figure 5 shows the overall throughput of the system in
all the four tests, when throughput is measured in terms of
the total number of requests processed per second. Table 1
shows the average latency measured by the clients on the
same local area network.

0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

0 50 100 150 200 250 300
Test time (sec)

Behavioral distance calculation on the critical path (T1)
Behavioral distance calculation not on the critical path (T2)
Output voting only (T3)
Single Linux server, no replica (T4)

Figure 5. Throughput of the web server

T1 T2 T3 T4
Average latency (msec) 38.48 33.30 27.33 16.09

Table 1. Average latency measured by clients

Figure 5 and Table 1 show that we lose the throughput
and latency by a factor of about 2 when providing the best
security property (T1), when compared with the results in a
non-replicated system (T4). Slightly better throughput and
latency results are obtained when behavioral distance is not
on the critical path of server responses (T2), or when the
system utilizes output voting only (T3).

In order to better understand the system in the first three
tests, we instrument the proxy to find what the system does
from the time a request enters the system until it leaves. The
average results are shown in Figure 6, where L and W de-
note the replicas running Linux and Windows, respectively.

We first compare the results of T1 and T2. Although in
T2 responses are sent to the client earlier, messages from the
replicas (including thehttp responses and the system call

Figure 6. Average latency measured by proxy

information) appear to have a longer delay in T2 than in T1.
Ironically, this is because behavioral distance measurement
is not on the critical path of server responses in T2. The
system continues to process new requests while measuring
behavioral distances for previous requests. So at any time
in T2, the server has a higher workload, in the sense that it
not only processes current requests, but performs behavioral
distance measurement for previous requests. So, messages
from the replicas appear to have longer delays.

Another interesting finding is that the replica running
Linux spends longer sending a response than the replica
running Windows. Upon further investigation, it appears
that the Linux web server tends to use smaller packet size,
and have more context switches among processes that are
competing for the system resources. On Windows, server
threads tend to finish sending all of their packets before giv-
ing up the system resources to other threads.

Figure 6 also confirms earlier predictions [14] that
caching behavioral distance results on the proxy is very ef-
fective, as we can see that behavioral distance calculation
takes very little time on average in both T1 and T2.

4.3 Game Server

Again we want to perform a trace-driven evaluation,
which we achieved by playing real recorded games on the
Peekaboom game server. The recorded games describe the
actions players performed in a game. We developed an au-
tomatic player program to replay these recorded games to
generate requests to the system. For each new game, the
game server chooses an image and a label for the chosen
image (pseudorandomly; see Section 3.3.3). Our automatic
player program then searches the recorded games to locate
those for the given image and label, and then chooses one
of the games and replays the client requests.

8



4.3.1 Detection accuracy

To evaluate the detection accuracy of behavioral distance on
the Peekaboom game server, we take a similar approach as
in the Apache system. We run the system as described in
Section 3.3 and (randomly select and) replay the recorded
games. System calls made for processing each game event
are collected on both replicas. We collected system call
sequences for a total of over 60,000 game events on each
replica, out of which about 10,000 were used for training,
about 11,000 were used for validating, and the remaining
39,000 were used for testing.

In our tests, an HMM is built using the training and val-
idation sets [14]; the threshold of the system is set to de-
tect the estimated best mimicry attack; and the model is
then evaluated on the testing set. During the evaluation, we
recorded 14 false alarms (the same number of false alarms
are recorded for mimicry attacks on Linux and Windows)
for over 39,000 game events in the testing set. Note that
these results were obtained when we use the same HMM
for all game events.

Our examination of the system, however, revealed a
potentially more effective approach for the game server,
namely one using a distinct model per game event type.
There are 19 different types of game events. One such event
type is a request parsing event that is invoked when the
game server receives a client request. During this event, the
game server preprocesses the request to create a game event
object that describes the request, and then passes it to the
corresponding event processing function. This request pars-
ing event is special in that we expect it to be the only event
that occurs on the uncompromised replica when an attack
message is received, since for the types of attacks we antic-
ipate, the attack invocation will almost certainly be treated
as malformed by the uncompromised replica. In this case,
the attack system calls must have a small behavioral dis-
tance with those produced by only the request parsing event
on the uncompromised replica: if the attack generates other
events on the compromised replica, behavioral distance will
detect an anomaly since only the request parsing event is
observed on the uncompromised replica. Moreover, neither
replica makes awrite system call during the request pars-
ing event. As such, the attack we consider (in which the
attacker attempts anopen followed by awrite) would al-
ways be detected if performed during the attack invocation,
provided that the proxy checks that the two replicas perform
the same types of game events, and maintains the set of sys-
tem calls that is allowed during processing each event type
on each replica. Moreover, if this set for each event type is
complete, this model should yieldno false alarms.

This alternative behavioral distance calculation is made
possible because we are able to obtain fine-grained event
type information from the Peekaboom game server on
both replicas. This is non-trivial especially when replicas

are running different code bases. Another limitation of
our analysis is that we have considered only one type of
mimicry attack, albeit one (open followed bywrite) that
is seemingly the minimum an attacker must do to modify or
create data on the system being protected.

4.3.2 Performance overhead

In evaluating the performance overhead of the Peekaboom
game server, we focus on the latency that players expe-
rience. Since a single connection between a player and
the proxy is used throughout the game for each player, the
proxy program does not have enough information to mea-
sure this latency; therefore we measure the latency from the
automatic player program.

Similar to what we did for the Apache system, we per-
form evaluations in three different system configurations.In
the first configuration (E1), both behavioral distance mea-
surement and output voting are performed to protect the on-
line game servers. Note, however, that behavioral distance
measurement is not on the critical path of server responses;
see Section 3.3.3. In E2, only output voting is used. In
E3 we only run the original Peekaboom game server on the
host operating system without any virtual machines.

The latency measured by the automatic player program is
defined as the difference between the time when a message
is sent and the time the corresponding acknowledgement is
received. We run a few tests, each with a different number
of concurrent players. In each test, at least ten games, each
of length 210 sec, are played and the average results and
their standard deviations are presented in Figure 7.

2 4 8 16 32 64 128 256 512 1024

Number of concurrent players

10
2

10
3

10
4

10
5

A
ve

ra
ge

 la
te

nc
y 

(u
se

c)

Behavioral distance and output voting (E1)
Output voting only (E2)
Single Linux server, no replica (E3)

Figure 7. Average latency measured by
clients on the same LAN

Results show that our replicated system adds 3.5 to 8 mil-
liseconds to the latency when there are less than (or equal
to) 128 concurrent players, which is hardly noticeable by
human beings. (The actual Peekaboom server usually has
less than 80 concurrent players.) When the server is very
busy, e.g., when there are 1024 concurrent players, the play-
ers experience an additional 86-millisecond latency, which
is still hardly noticeable. Also note that the results pre-

9



sented in Figure 7 are latencies measured by an automatic
player program running on the same local area network of
the server. A human player over the Internet would also ex-
perience the round trip time to the server machine, which is
typically over 100 msecs,6 which means the additional la-
tency our system adds to the end-user experience is about
8% when there are 128 users playing at the same time.

Figure 8 shows the CPU load of the replicas and the
proxy for the three tests reported bytop on the host oper-
ating system. Results show that the CPU resource is not the
bottleneck in most cases. (Only when there are 1024 con-
current players does the system become almost fully loaded
in E1 and E2.) The latency in E1 and E2 when there are
less than 128 concurrent players is mainly due to network
delays — packets need to travel a much longer path. The
increase in latency when there are more than 128 concur-
rent players is because of the threading model used by the
Peekaboom server, in which a single thread is used to pro-
cess game events for all players. We suggest using a multi-
threaded model if this latency needs to be reduced.

5 Conclusion

In this paper, we presented a novel architecture to de-
tect compromised replicas using behavioral distance. Our
system monitors the system-call behaviors of diverse repli-
cas to detect mimicry attacks that can evade detection by
output voting on a replicated system or host-based anomaly
detection system on an isolated computer. We detail the
design and implementation of intrusion-tolerant web and
game servers using our architecture, and show that we can
achieve low false-alarm rates and moderate performance
overhead when detecting very stealthy mimicry attacks.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson,
M. K. Reiter, and J. J. Wylie. Fault-scalable Byzan-
tine fault-tolerant services. InProceedings of the 20th
ACM Symposium on Operating Systems Principles,
October 2005.

[2] L. Ahn, R. Liu, and M. Blum. Peekaboom: a game for
locating objects in images. InProceedings of the 2006
Conference on Human Factors in Computing Systems
(CHI 2006), 2006.

[3] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter.
Fault detection for Byzantine quorum systems.IEEE
Transactions on Parallel Distributed Systems, 12(9),
September 2001.

6We measured the RTT between a server on our department network
(www.ece.cmu.edu) andwww.google.com. Results were between
108 msecs and 119 msecs in 20 runs.

[4] R. W. Buskens and R. P. Bianchini, Jr. Distributed on-
line diagnosis in the presence of arbitrary faults. In
Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing, June 1993.

[5] C. Cachin and J. A. Poritz. Secure intrusion-tolerant
replication on the Internet. InProceedings of the 2002
International Conference on Dependable Systems and
Networks, 2002.

[6] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery.ACM Transactions
on Computer Systems, 20(4), November 2002.

[7] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems – A secretless framework
for security through diversity. InProceedings of the
15th USENIX Security Symposium, August 2006.

[8] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller. Formalizing sensitivity in static analysis for
intrusion detection. InProceedings of the 2004 IEEE
Symposium on Security and Privacy, 2004.

[9] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack infor-
mation. InProceedings of the 2003 IEEE Symposium
on Security and Privacy, 2003.

[10] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for Unix processes. InPro-
ceedings of the 1996 IEEE Symposium on Security and
Privacy, 1996.

[11] D. Gao, M. K. Reiter, and D. Song. Gray-box extrac-
tion of execution graph for anomaly detection. InPro-
ceedings of the 11th ACM Conference on Computer &
Communication Security (CCS 2004), 2004.

[12] D. Gao, M. K. Reiter, and D. Song. On gray-box pro-
gram tracking for anomaly detection. InProceedings
of the 13th USENIX Security Symposium, 2004.

[13] D. Gao, M. K. Reiter, and D. Song. Behavioral dis-
tance for intrusion detection. InProceedings of the
8th International Symposium on Recent Advances in
Intrusion Detection (RAID 2005), 2005.

[14] D. Gao, M. K. Reiter, and D. Song. Behavioral dis-
tance measurement using Hidden Markov Models. In
Proceedings of the 9th International Symposium on
Recent Advances in Intrusion Detection (RAID 2006),
2006.

[15] J. Giffin, S. Jha, and B. Miller. Detecting manipu-
lated remote call streams. InProceedings of the 11th
USENIX Security Symposium, 2002.

10



2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 C

P
U

 c
yc

le
s 

co
ns

um
ed

Windows replica
Linux replica
Proxy

(a) Behavioral distance calculation and out-
put voting (E1)

2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 C

P
U

 c
yc

le
s 

co
ns

um
ed

Windows replica
Linux replica
Proxy

(b) Output voting only (E2)

2 4 8 16 32 64 128 256 512 1024
Number of concurrent players

0

10

20

30

40

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 C

P
U

 c
yc

le
s 

co
ns

um
ed

Single Linux server, no replica

(c) Single Linux server, no replica (E3)

Figure 8. Average CPU load of the replicas and the proxy

[16] J. Giffin, S. Jha, and B. Miller. Efficient context-
sensitive intrusion detection. InProceedings of Sym-
posium on Network and Distributed System Security,
2004.

[17] J. Giffin, S. Jha, and B. Miller. Automated discovery
of mimicry attacks. InProceedings of the 9th Inter-
national Symposium on Recent Advances in Intrusion
Detection (RAID 2006), 2006.

[18] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt,
R. Maglich, and J. Rowe. Learning unknown attacks
- A start. In Proceedings of the 5th International
Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2002), 2002.

[19] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Automating mimicry attacks using static
binary analysis. InProceedings of the 14th USENIX
Security Symposium, August 2005.

[20] L. Lamport. The implementation of reliable dis-
tributed multiprocess systems.Computer Networks,
2, 1978.

[21] M. K. Reiter. Secure agreement protocols: Reliable
and atomic group multicast in Rampart. InProceed-
ings of the 2nd ACM Conference on Computer and
Communication Security, November 1994.

[22] J. Reynolds, J. Just, E. Lawson, L. Clough, and
R. Maglich. The design and implementation of an in-
trusion tolerant system. InProceedings of the 2002
International Conference on Dependable Systems and
Networks (DSN02), 2002.

[23] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial.ACM
Computing Surveys, 22(4), December 1990.

[24] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A
fast automaton-based method for detecting anomalous

program behaviors. InProceedings of the 2001 IEEE
Symposium on Security and Privacy, 2001.

[25] P. H. Sellers. On the theory and computation of evo-
lutionary distances.SIAM J. Appl. Math., 26, 1974.

[26] K. Shin and P. Ramanathan. Diagnosis of processors
with Byzantine faults in a distributed computing sys-
tem. InProceedings of the 17th International Sympo-
sium on Fault-Tolerant Computing, 1987.

[27] K. Tan, J. McHugh, and K. Killourhy. Hiding intru-
sions: From the abnormal to the normal and beyond.
In Proceedings of the 5th International Workshop on
Information Hiding, October 2002.

[28] E. Totel, F. Majorczyk, and L. Me. Cots diver-
sity based intrusion detection and application to web
servers. InProceedings of the 8th International Sym-
posium on Recent Advances in Intrusion Detection
(RAID 2005), 2005.

[29] D. Wagner and D. Dean. Intrusion detection via static
analysis. InProceedings of the 2001 IEEE Symposium
on Security and Privacy, 2001.

[30] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. InProceedings of the 9th
ACM Conference on Computer and Communications
Security, 2002.

[31] A. Wespi, M. Dacier, and H. Debar. Intrusion detec-
tion using variable-length audit trail patterns. InPro-
ceedings of the 2000 Recent Advances in Intrusion De-
tection, 2000.

[32] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. InProceedings of
the 19th ACM Symposium on Operating System Prin-
ciples, October 2003.

11


