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ABSTRACT

The vulnerabilities that plague computers cause endless grief
to users. Slammer compromised millions of hosts in minutes;
a hit-list worm would take under a second. Recently pro-
posed techniques respond better than manual approaches,
but require expensive instrumentation, which limits deploy-
ment. Although spreading “antibodies” (e.g. signatures)
ameliorates this limitation, hosts depending on antibodies
are defenseless until inoculation; to the fastest hit-list worms
this delay is crucial. Additionally, most recently proposed
techniques cannot provide recovery to provide continuous
service after an attack.

We propose a novel solution called Sweeper that provides
both fast and accurate post-attack analysis and efficient re-
covery with low normal execution overhead. Sweeper in-
novatively combines several techniques: (1) Sweeper uses
lightweight monitoring techniques to detect a wide array of
suspicious requests, providing a first level of defense. (2)
By cleverly leveraging lightweight checkpointing, Sweeper
postpones heavyweight monitoring until absolutely neces-
sary — after an attack is detected. Sweeper rolls back
and re-executes multiple times to dynamically apply heavy-
weight analysis techniques via dynamic binary instrumenta-
tion. Since only the execution involved in the attack is an-
alyzed, the analysis is efficient, yet thorough. (3) Based on
the analysis results, Sweeper automatically generates low-
overhead antibodies to prevent future attacks of the same
vulnerability. (4) Finally, Sweeper again re-executes to per-
form fast recovery for continuous service.

We implement Sweeper in a real system. Our experimen-
tal results with three real-world servers and four real security
vulnerabilities show that Sweeper can detect an attack and
generate antibodies in under 60 milliseconds. Our results
also show that Sweeper imposes under 1% overhead during
normal execution, clearly suitable for widespread produc-
tion deployment (especially since Sweeper also allows par-
tial deployment). Finally, we analytically show that, for a
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fast hit-list worm otherwise capable of infecting all vulnera-
ble hosts in under a second, Sweeper contains the extent of
infection to under 5%.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; C.2.0
[Computer-Communication Networks]: General—Se-
curity and protection

General Terms

Security, Performance, Reliability, Design

Keywords

Flash worm, Antibody, VSEF, Dynamic instrumentation

1. INTRODUCTION

1.1 Motivation
Modern society relies on computers; failures of these com-

puters can cost upward of six million dollars per hour [41].
Unfortunately, much software contains security vulnerabili-
ties, with memory overwrite vulnerabilities (e.g., buffer over-
flows) accounting for over 60% [11]. These vulnerabilities al-
low self propagating worms, such as Code Red [9], Blaster [8],
and SQL Slammer [10], to rapidly do billions of dollars of
damage [27]. Advanced worms demonstrate that manual
patching is insufficient–by the time an administrator reads
an alert about the worm, they are already infected [48].

Since worms attacks are clearly too fast for humans, an
automated response is imperative. Consider a hypothetical
ideal automatic worm defense with the following behavior. If
a worm attempts to infect it, the defense system first detects
the attack. It then analyzes the attack attempt to find the
underlying vulnerability. Without any human assistance, it
devises a shareable “antibody” suitable for stopping all at-
tack attempts of this vulnerability (not just this particular
exploit) with no false positives. After the analysis, the ma-
chine can recover to continue execution as if the worm had
not attacked. Finally, the overheads of running the defense
system are low enough to allow deployment on all hosts.
This ideal defense system leaves no room for worms; wher-
ever they go, they are detected, picked apart, and have the
underlying vulnerability they use sealed off. The only trace
of the worm’s existence is log messages and new antibodies.
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Essentially, what we want is an Internet worm defense
system that satisfies three properties:

• Fast and accurate attack detection/analysis: The de-
fense system needs to detect and analyze the attack
efficiently and accurately to prevent damages and fu-
ture attacks exploiting the same vulnerability.

• Low overhead for universal deployment : The defense
system has to have low overhead to enable practical
deployment on any production system, especially for
performance critical server applications.

• Efficient recovery : The defense system should recover
from an attack as efficiently as possible to provide non-
stop service, especially for high availability applica-
tions.

Unfortunately, none of the existing defense systems can
deliver the above three desired properties. First, although
some existing solutions such as PaX [2], StackGuard [15],
LibSafe [49], and ProPolice [19] add reasonably low over-
head (22%-0%) so that they can potentially deploy univer-
sally, they only detect some types of attacks (as shown by
a prior work [54]). Address space randomization [2, 20] de-
tects many memory-related vulnerabilities but provides too
limited of information about an exploit to analyze the attack
and generate antibodies against future exploits. At best, the
program will halt at the vulnerable instruction, at worst the
attack will (with low probability) succeed. Similarly, stack
canaries tell us that the stack was overwritten, but not how
it was overwritten. Tools like LibSafe only detect issues in
the specific library functions they target. We can deploy
such systems, but we will not learn much from them.

Second, most existing solutions that provide reasonably
accurate attack detection and analysis incur too much over-
head (up to 30-40X slowdowns [36]) to be practical to de-
ploy universally. Example of these tools include DIRA [45],
DACODA [16], Vigilante [14], or our own previous work,
TaintCheck [36]. The techniques that can best detect and
analyze an attack (e.g., TaintCheck or DACODA) impose
the highest overheads. To provide detailed analysis of the
exploit, they have to instrument most of the instructions,
and record many details about what happens. Due to the
high runtime overheads, such tools must instead rely on
a limited, sentinel- or canary-like deployment. If an un-
lucky worm happens to infect such a sentinel host, it will be
caught, but the bulk hosts are unmonitored, open to attack.

A partial remedy proposed in Vigilante [14] is, once caught
at a sentinel machine, to analyze the attack and generate an-
tibodies, i.e. SCAs (Self-Certifying Alerts), to efficiently and
automatically to quickly distribute to other hosts against
infection. Unfortunately fast hit-list worms can, if unim-
peded, infect every vulnerable host in milliseconds [47]; in
contrast, the time it takes to generate, distribute, and verify
an alert in a Vigilante-like system is too long. In summary,
none of these remedies completely address the fundamental
limitation of most existing solutions, i.e, failure to provide
accurate and fast detection and analysis of Internet attacks
without incurring too much overhead during normal execu-
tion.

In addition to the above limitation, a parallel shortcom-
ing of existing solutions is recovery: most fail to provide
efficient recovery because they have to stop the service and

restart after an attack. For example, although TaintCheck
will identify the improper use of untrusted data and stop
execution, our original implementation of TaintCheck can-
not undo the bad effects; any overrun buffers will remain
overrun. We merely stop the attack, delegating recovery
to restart. Unfortunately, restarting a system or an appli-
cation usually takes up to several seconds [51]. For servers
that buffer significant amount of state in main memory (e.g.,
data buffer caches), it requires a long period to warm up to
full service capacity [5, 52].

In summary, to maximize the level of defense against se-
curity attacks, it is highly desirable to develop a solution
that can meet all three properties, namely fast and accurate
detection/analysis, low overhead for universal deployment,
and efficient recovery.

1.2 Contributions
To achieve the above goal, we propose a defensive solu-

tion called Sweeper 1 that is able to meet the three desired
properties described above by innovatively combining sev-
eral new techniques.

First, by leveraging a lightweight checkpointing and mon-
itoring support, we postpone heavyweight monitoring until
absolutely necessary — after being attacked. In other words,
during normal execution, the system takes only lightweight
checkpoints to allow re-execution and recovery in case of
an attack. It also performs lightweight monitoring to de-
tect a wide range of suspicious requests that exploit both
unknown and known vulnerabilities (detecting unknown at-
tacks through address randomization and low-overhead dy-
namic memory bug detection, and detecting known attacks
through antibodies generated during on-line attack analy-
sis). Both checkpointing and monitoring impose very low
overhead, making universal deployment practical. In addi-
tion, Sweeper also supports partial deployment (discussed
in more detail in Section 6).

After an attack is detected, Sweeper can “go back in time”
(i.e., rollback) and dynamically add heavy-weight instru-
mentation and analysis during replay to conduct a thor-
ough attack analysis, including such techniques as memory
bug detection and dynamic taint analysis. This analysis re-
sults in automatically generated antibodies in the form of
input signatures and vulnerability-specific execution filters
(VSEF) [33] (antibodies are further discussed in Section 3).
Doing such allows detailed analysis to be performed only for
those recent messages and execution periods that are rele-
vant to the occurred attack—server initialization and long
runs of harmless inputs/normal execution need not suffer ex-
pensive monitoring and information recording. This use of
checkpoint and rollback allows us to have both low overhead
and thorough analysis.

Second, we again leverage checkpoint/re-execution, this
time to achieve recovery: after an exploit attempt is detected
(and any necessary analysis is performed) we roll back, and
re-execute the program while dropping the attacker’s input.
This allows us to use not only input signatures, but VSEFs
as well; without recovery, VSEFs only transform a code-
execution vulnerability into a denial-of-service vulnerability.

We implement these ideas in a real system. Our function-
ing prototype is implemented in Linux, building on a mod-
ified version of our previous Rx framework [40]. Sweeper

1Like a sweeper in soccer, Sweeper is intended to be fast,
tough, and add depth to the defense.

116



uses address space randomization for lightweight detection,
backed by post-exploit analysis tools such as dynamic mem-
ory bug detection, dynamic taint analysis [36], and backward
slicing [53]. We use the PIN [30] dynamic instrumentation
tool to add these analysis tools on-demand. We also imple-
ment both input based filtering and VSEFs for defense on
both hosts performing analysis and those hosts that choose
not to.

As this paper focuses on protecting vulnerable applica-
tions, our current design and implementation assumes that
the operating system is secure. This assumption is not fun-
damental because (1) our Sweeper should be able to detect
most attacks (known or unknown) before they affect the
operating system. (2) If necessary, we can also push most
Sweeper’s system-level operations into the virtual machine
hypervisor in a way similar to ReVirt [18].

We test Sweeper using 4 real exploits in 3 servers: Apache,
Squid, and CVS. The overhead during pre-attack execution
(normal execution) is under 1%, making Sweeper clearly
suitable for widespread production deployment. Antibodies
can be generated in under 60 ms. Finally, we present an-
alytical results showing that even when partially deployed,
Sweeper is capable of containing fast hit-list worms. To sum-
marize, Sweeper has the following advantages compared to
previous solutions:

1. It imposes low overhead during normal exe-
cution. During normal execution, only lightweight
monitoring and lightweight checkpointing are active.
Lightweight monitoring techniques such as random-
ization [12, 20, 55] or lightweight dynamic bug detec-
tion [17, 39, 58] impose reasonable amount of over-
head (nearly zero for address space randomization),
feasible for production run deployment. In-memory
checkpointing, such as our previous Flashback and Rx
works [40, 46], also impose only marginal amounts
of overhead (e.g., 1-5%). As we demonstrate in our
experimental results (Section 5.1), the low overhead
makes widespread production run deployment feasible.

2. It performs comprehensive and thorough at-
tack analysis, and generates effective antibod-
ies. Low overhead during normal execution is achieved
without sacrificing the analysis power. When the light-
weight monitoring trips, we can roll back and re-execute
with heavyweight analysis. Sweeper then dynamically
uses binary instrumentation tools (e.g., PIN [30]) to
insert analysis such as dynamic taint analysis [36] or
backward slicing [53] after the fact. Therefore, we do
not pay for expensive analysis for requests that do not
need it, but only for those requests where it matters.

3. It allows fast recovery. Simply detecting that an
exploit has been attempted is insufficient; we have
to restore the server to a safe state. Once an at-
tack is detected, we can use rollback/re-execution to
re-execute without the attacker’s input. Rollback re-
moves the corruption the attacker may have left, while
re-execution allows us to complete servicing concurrent
and further valid requests without restarting the pro-
gram, thus achieving fast recovery.

4. It provides partial deployment option to hosts
that demand even lower overhead. Although the

overheads involved are low, there may be hosts that
do not wish to deploy the analysis tools. We do not
leave such hosts completely defenseless. As we show in
Section 6, Sweeper also provides an effective commu-
nity defense option that can protect most hosts even
in a hit-list worm attack when only a fraction deploy
the Sweeper analysis mechanisms.

2. ARCHITECTURE

2.1 Overview
The Sweeper system has four functions: 1) during nor-

mal execution, light-weight monitoring for detecting attacks
and light-weight checkpoint for potential rollback-and-re-
execution for attack analysis; 2) after an attack, analyz-
ing the exploit attempt via multiple iterations of rollback-
and-re-execution; 3) generating and deploying an antibody
against future exploits; and 4) recovery after an attack is
detected and analyzed.

Figure 1 shows the architecture of Sweeper. The above
four functions are provided by three modules: runtime, anal-
ysis and antibody. Section 3 describes the details of each
component; here we discuss their overall function and their
interactions.
Runtime module The run time module supports (1) light-
weight monitoring and checkpoint during normal execution,
(2) re-execution during attack analysis, and (3) recovery af-
ter attack is analyzed. During normal execution, the run-
time module employs low overhead monitoring techniques
such as address randomization and other techniques dis-
cussed in more details in Section 3 to detect suspicious re-
quest. Moreover, it also uses input signatures and VSEFs
generated by the analysis and antibody modules on past
attacks to filter out malicious requests and detect exploits
of previously known vulnerabilities. In addition to light-
weight monitoring, the run time module also takes periodic
light-weight, in memory checkpoints similar to our previous
work Rx [40] and FlashBack [46] to ensure rollback-and-re-
execution for analysis and recovery in case of attacks.

The checkpoints taken by the runtime module, as well as
Sweeper’s other private state, are isolated from the process
we are protecting. The checkpoints themselves are stored
inside the operating system as shadow processes; unless an
attacker compromises the operating system’s own memory
space (contrary to our assumptions described in the intro-
duction), the checkpoints cannot be touched. Further, the
analysis tools are applied after an attack is detected. They
take control of the execution path, and disallow any access to
their internal state. After they are applied, no instructions
are executed without the instrumentation tool first being
given the opportunity to monitor it. In this manner, an at-
tacker is prevented from subverting either the analysis tools
or the checkpoints.

After an attack is detected, the runtime module is also
responsible for providing rollback and re-execution support
as guided by the analysis module to perform various attack
analysis. To support re-execution from a previous check-
point, it needs to replay all of or a selected subset of incom-
ing network messages received since that checkpoint based
on the type of analysis performed. During re-execution,
all side-effects such as outgoing network messages are sand-
boxed and silently dropped.
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Figure 1: Architecture diagram of Sweeper

Finally, after the attack is analyzed and an antibody is
generated, the runtime module rolls back and re-executes
again from a selected checkpoint to perform recovery for
providing continuous service. The continuing execution will
have the new antibody (input signatures and VSEFs) in
place to detect future exploits to the same vulnerability.
During recovery, the output commit problem and the ses-
sion consistency are handled in a way similar to our pre-
vious work, Rx [40]. We will briefly discuss these issues
in Section 4, but for more details refer to our previous Rx
work [40].
Analysis module Analysis is performed by the analysis
module to generate input filters and VSEFs. The analy-
sis module is activated only when absolutely necessary —
after an attack is detected by the light-weight runtime mon-
itors. By using the checkpoint/rollback capabilities of the
runtime module, the analysis module can inspect and re-
inspect the execution as necessary, going back to a point
prior to the attacking requests being read in. Because the
execution to be monitored represents only a short amount
of time, a few tens of hundreds of milliseconds depending on
the checkpoint interval, even expensive analysis tools com-
plete quickly. Performing heavy-weight analysis only on the
periods of execution where it is necessary greatly improves
the efficiency of analysis and also enables more thorough
and accurate analysis.

After rollback, the analysis module dynamically attaches
various analysis tools that are implemented using dynamic
binary instrumentation. There are many possible analysis
techniques that could be applied; in our implementation (see
Section 3 for details) we perform a static analysis of the
memory state, dynamic memory bug detection similar to
Valgrind [32] and Purify [22], dynamic taint analysis similar
to our previous TaintCheck work [36], and dynamic back-
ward slicing [53]. The overheads of the dynamic techniques
range from 20x to 1000x (for backward slicing). Yet since
analysis is only performed when necessary and only on a
short execution period that is related to the occurring at-
tack, the total expense is small.
Antibody module The antibody module uses the analy-
sis results to derive antibodies of detect future exploits to
the same vulnerability. There are two types of antibodies
supported by Sweeper: input signature filters, and vulnera-
bility specific execution filters (VSEF) [33]. Given the input
responsible for the exploit, an input signature for filtering
can be generated [24, 26, 35, 44]. Also, given the instruc-
tions involved in the exploit (especially for buffer overflows),

len = 64 + strlen(user) + ...;

t = xcalloc(len, 1);

t

\0

t

\0

x x x x \0

buf
bufsize = strlen(user)*3 +1;

buf = xcalloc(bufsize,1);

return buf;

//Copy from buf to t
x x x x \0

t

x x x x \0

buf

strcat(t, rfc1738_escape_part(user));

Resulting Heap

Overflow!

Code
(1)

(2)

(3)

Figure 2: A buffer overflow in Squid (CVE-2002-
0068).

we can generate a VSEF. In the case of a memory bug (e.g.
stack smashing), the VSEF consists of monitoring the in-
struction that cause the buffer overflow, or monitoring the
return address of the susceptible function. Since these only
involve a handful of instructions, these VSEFs are inexpen-
sive. Together, these antibodies are sufficient to prevent
future exploit attempts from succeeding. Also, they can be
distributed to other hosts. If the other hosts are untrusting,
it is sufficient to give them the exploit-containing input; they
can then generate their own signatures and VSEFs.

Together, these modules make up the complete Sweeper
system. Deploying all of them together is the assumed de-
fault case. Ideally, all hosts would use all of the modules;
it is possible, and still beneficial, to run only a partial set.
This is further discussed in the Section 6.

2.2 Process
To clarify how the system works, we present a concrete

walk-though of a real vulnerability. Figure 2 shows an ex-
ploitable buffer overflow bug in Squid. In step (1), heap
buffer t is allocated as 64 + strlen(user) bytes long. In
step (2), the function rfc1738 escape part(...) allocates
a buffer buf to be strlen(user) * 3 + 1 bytes long, and
then fills it in with an escaped version of the string user.
In step (3), buf is copied into t using strcat(...); since
strcat(...) is not bounds checked, t can overflow. The
bug is triggered whenever there are many characters that
are escaped in the user string.
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Figure 3: Sweeper defense process.

Figure 3 illustrates the Sweeper defense process. Dur-
ing normal operations, Sweeper takes periodic checkpoints.
At an attack, the light-weight sensors and monitors detect
that something is amiss—for example, a randomized mem-
ory layout has caused a segmentation fault to occur. So,
Sweeper begins its attack analysis. The execution is rolled
back to the previous checkpoint, and heavier weight anal-
ysis techniques are performed. In our current implemen-
tation, the first analysis is an examination of the memory
state (i.e., analyze the core dump). This is a very fast step,
and it generates a good-quality VSEF. In the Squid vulner-
ability, this tells us that the segmentation fault occurred at
instruction 0x4f0f0907 in strcat. For this example, this is
enough to build an initial VSEF: check for out-of-bounds
accesses at that particular instruction. Actually, a small re-
finement is necessary, since strcat is a library function: the
return address at that time must also match (0x0804ee82,
or ftpBuildTitleUrl). Although later analysis steps can
be used to detect with more certainty, this VSEF is more
effective than the generic sensors and it is available within
only 40ms of the first sign of trouble.

Next, memory bug detection is performed. This is more
expensive, but it generates improved VSEFs, so we do it sec-
ond. The analysis includes bounds checking, stack-smashing
detection, double free detection, and dangling pointer detec-
tion. Monitoring all memory accesses is impractical for nor-
mal execution, but since Sweeper can dynamically add in-
strumentation to a replay from a checkpoint, the overhead is
manageable. In our Squid example, the heap is inconsistent,
and memory bug detection points out instruction 0x4f0f0907
in strcat as the source. This confirms the earlier results,
and takes around 37 seconds.

The next step is dynamic taint analysis [36]. This allows
us to isolate the input for a signature. Dynamic taint anal-
ysis traces the influence of “untrusted” data (e.g. network
inputs) through the program, looking for “illegal” uses of
tainted data, such as a branch target. Once an illegal use
of tainted data is detected, we can trace the taint back to
the particular request responsible. The identified request
can then be passed on to a signature generator to generate
input signatures to filter out further attacks [24, 26, 35, 44].
The identification of the original input responsible for the

attack also allows us to do fast recovery: we simply rollback
the process and re-execute without the malicious input, and
thus bring the process back to a safe state.

The last analysis step is dynamic slicing. The slicing col-
lects the full dependency graph, including data and control
flow dependencies, of the instructions executed since the
checkpoint. Having the complete set of involved instruc-
tions and data allow us to verify the results of the previous
results: if they identify an issue that is not in the slice,
then they are incorrect. The graph is only for execution
on the malicious input, since the checkpoint. Running full
slicing from the very beginning of execution, even in replay,
is impractical. Depending on the program, slicing imposes
from 100x to 1000x overhead. Only by dynamically inserting
the graph collection from a checkpoint the slicing overhead
becomes acceptable and practical for automatic defenses.
In the Squid example, within around 107 seconds, Sweeper
generates a backward slice that exactly shows the reason of
the vulnerability: t is allocated too small, and there is no
bounds check. Further, none of the other tools report any-
thing outside of the backward slice; if they did, we would
suspect that the other tools were incorrect. Backward slicing
can then act as a sanity check against the other tools.

In this particular example, everything points to the same
instruction, 0x4f0f0907 in strcat. The later, more thorough
analysis steps serve as a confirmation of the previous steps;
here they all fully agree. Consider instead a stack-smashing
attack: the crash may occur well after the buffer overflow.
Although it is possible to detect from a core dump, and we
can create a VSEF (use stack canaries or a separate return-
address stack for the effected function), it would be prefer-
able to target the buffer overflow itself. This, however, is not
possible until after memory bug analysis is performed. Also,
generating a worm signature requires identifying the specific
input responsible; again, this is not possible with the simple
core analysis. In combining multiple analysis techniques, we
get something better than any one; fast but potentially weak
results from static analysis can augment slow but thorough
results from dynamic analysis.

3. DESIGN AND IMPLEMENTATION
As discussed in Section 2, Sweeper has three components,

one for runtime support, one for post-attack exploit anal-
ysis, and one for dealing with antibodies. Here we further
describe the details of each individual components.

3.1 Runtime Support
During normal execution, Sweeper needs to: 1) monitor

against generic attacks, 2) monitor network flows and exe-
cution against specific attacks, and 3) take checkpoints suf-
ficient to replay execution for later analysis and recovery.
Since these three tasks are being performed continuously,
they are performance critical: the higher the overhead im-
posed, the fewer sites will be willing to sacrifice the perfor-
mance for protection.

Runtime Monitoring Monitoring against generic attacks
can be performed with any lightweight bug detector. In
our current prototype implementation, we rely on address
space randomization [2, 3, 4, 12, 20, 21, 55], although there
are many other mechanisms that could be used [2, 13, 15,
21], including some of our own previous work such as Safe-
Mem [39], LIFT [38]. The advantage of automated diversity
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mechanisms like address space randomization, which places
the starting point of the stack and heap at a random ini-
tial offset and randomizes library entry points, is that they
detect many attacks with high probability while imposing
minimal performance overhead in processing non-attack re-
quests.

Monitoring for specific attacks has two parts: input mon-
itoring and execution monitoring, based on the antibodies
automatically generated by Sweeper’s antibody module from
past attacks. Monitoring inputs for attack signatures is al-
ready widely deployed in network IDS systems. We combine
such monitoring with the input logging that is required to
support replay; it would be possible to separate the mon-
itoring to a separate machine (e.g. a firewall) if desired.
Execution monitoring must occur on the machine in ques-
tion. We implement execution monitoring by adding dy-
namic binary instrumentation with PIN [30]. PIN allows
the efficient addition of instrumentation to an already run-
ning process. However, any instrumentation tool that allows
dynamically attaching to a running process would be feasible
(e.g. dynInst [1]); we choose PIN due to familiarity and ef-
ficiency. Since only a minute portion of the execution needs
to be monitored (generally only the instruction that causes
a buffer overflow), PIN instrumentation for such monitoring
is of negligible overhead; only a handful of extra instructions
are inserted, and only in that one location.

Checkpointing Another task performed during normal ex-
ecution is checkpointing. We modify the Rx [40] checkpoint
and rollback system. Checkpoints are taken using a fork()-
like operation, which copies all process state (e.g. regis-
ters and file descriptors) and uses copy-on-write to dupli-
cate modified memory pages. The use of in memory check-
points is feasible since we keep them for a short time (a few
minutes at most) and then discard them. The advantage
is much lower overhead than present in systems that write
checkpoints to disk.

Similar to Rx [40], a checkpoint is captured using a shadow
process. This provides a unique advantage for security pur-
pose because a shadow process has a separate address space
from the monitored process and is entirely invisible at the
user level, even though some of their virtual pages may point
to the same physical pages due to copy-on-write. Since
we assume that the operating system is secure, an attack
which corrupts the monitored process is unlikely to affect
any checkpoint state; the first update to any page in the
monitored process after a checkpoint will trigger the oper-
ating system’s copy-on-write engine to copy the old page to
a different location.

Rollback is also straightforward: reinstate the stored state
back to the process. This is nearly instantaneous as it
is almost identical to a context switch. File state can be
handled similarly to previous work [29, 46] by keeping a
copy of accessed files and file pointers at the beginning of a
checkpoint interval. Network state is logged by a separate
proxy process; this proxy facilitates replaying messages for
re-execution and also implements signature-based input fil-
tering. The re-execution runs faster than the original, due
to lower IO costs (that is, there are no network delays or
disk cache misses). More details can be found in the Rx
paper [40].

Recovery As mentioned, the identification of the original
input responsible for the attack also allows us to do fast re-

covery: we simply rollback the process and re-execute with-
out the malicious input, and thus bring the process back
to a safe state. In our system, rollback is accomplished by
reverting to a previously saved system checkpoint. We then
restart the system and replay legitimate (non-malicious) re-
quests received after the checkpoint. We further discuss is-
sues related to recovery of stateful services in Section 4.

3.2 Exploit Analysis
After the lightweight monitors have triggered, Sweeper

performs a more thorough analysis of the attack. We use a
variety of static and dynamic analysis tools, including static
core dump analysis, memory bug detection, dynamic taint
tracking, and dynamic backward slicing.

Core dump analysis By looking at the state of the pro-
gram at the time when the lightweight monitor detects an
attack, we can learn some things about the attack. This tool
checks the consistency of the heap data structures, walks the
stack to check for consistency, and determines the faulting
instruction. This step is very fast (a few milliseconds), and
can provide an initial VSEF. The disadvantage is that, given
only a static glimpse of the program, we cannot achieve
highly precise results. It is possible that an exploit may
trigger the monitors and leave memory in a seemingly con-
sistent state. Hence, we must still use more powerful tools
later. For straightforward attacks (e.g. a stack buffer over-
flow ) this step is sufficient to create a VSEF targeting the
exact buffer overflow. If the attack is a stack-smashing at-
tack, and it is detected at the time of the ret instruction,
a VSEF to add stack canaries to that function can be gen-
erated. Although a more precise VSEF would be desired
(target the overflow directly), this initial analysis is avail-
able almost immediately. Furthermore, anything detected
in this stage, useful for a VSEF or not, is a potential start-
ing point for dynamic backward slicing.

Memory bug detection Memory bug detection is a im-
portant step for vulnerability analysis because memory bugs,
such as heap overflows or stack smashing, are commonly ex-
ploited for security attacks [20]. Detecting the misbehaving
memory instruction usually gives an important clue to find
the exploited instruction. Furthermore, detecting a memory
bug gives a straightforward VSEF: insert the checks neces-
sary to catch that particular bug.

There are many existing powerful memory bug detection
tools commonly used by experienced programmers during
debugging. They are usually not used in production runs
due to the huge overhead (up to 100X slowdowns [58]). For-
tunately, in Sweeper, such tools are dynamically plugged in
during replay after an attack is detected, when overhead
is less of a concern and can also be minimized due to the
focused monitoring period. Operationally, we dynamically
attach the memory bug detectors during sandboxed replay.
In the short period of replay from the previous checkpoint,
memory operations are monitored and many types of mem-
ory bugs throughout this period can be caught.

Specifically, Sweeper detects three important types of mem-
ory bugs, all of which are serious security vulnerabilities.
The first is stack smashing. The memory bug detector records
the stack return address location at every function entry
and monitors this location for writes. Pre-existing stack
frames are inferred from the stack frame base pointer reg-
ister (ebp). The second memory misbehavior we detect is
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heap overflow. Sweeper uses a modified red-zone technique
that is simple and reasonably efficient—use malloc()’s own
inline data structures. We monitor these areas for invalid
access (e.g., not by malloc() or free()). Buffers allocated
prior to the checkpoint are inferred from the memory image
at the checkpoint. This technique has the advantage, over
many existing techniques, that it can begin mid-execution.
For the third type of memory bug—double free, all malloc()
and free() calls are monitored to catch any free() calls to
a previously freed location.

With the above described memory bug detection, Sweeper
can generate efficient and accurate vulnerability monitor
predicates, and use them to guard the application from fu-
ture exploits. Specifically, bounds checking inserted at the
effected instruction(s), or monitoring for double-frees at that
particular free, can catch future exploit attempts. This mon-
itoring is much more efficient than full memory bug detec-
tion, since it only involves a few code locations.

Dynamic Taint Analysis As we demonstrated in our pre-
vious work [36], dynamic taint analysis is a powerful means
of detecting a wide range of exploits, including buffer over-
run, format string, and double free attacks, some of which
may be missed by the aforementioned memory bug detec-
tion. For Sweeper, we have reimplemented TaintCheck using
PIN, so that it can be inserted after an exploit is detected.

TaintCheck tracks the flow of “taint” throughout a pro-
gram: data read from untrusted sources are tainted, and the
taint is maintained through data movement and arithmetic
operations. Further, TaintCheck verifies that tainted data
is not used in a sensitive manner, e.g. as a return address or
as a function pointer. If tainted data is used in such a way,
we can trace back to the responsible input, identifying the
instructions that passed it along the way. For more details,
please see [36].

Dynamic Backward Slicing A backward program slice is
the set of instructions that effected the execution of a partic-
ular instruction [53]. That is, for a specific instruction, the
backward slice is the set of dynamic instructions which were
necessary for the instruction to execute. Instructions not
in the slice are therefore irrelevant : if they were skipped,
the execution of the selected instruction would not be in-
fluenced. This is similar to dynamic taint tracking, however
all influences, including control flow and pointer indirection,
are tracked. Consider the following code:

j=read(taint);

if(w==0)

x=y[i];

else

x=y[j];

z=x;

Suppose w were 3. In a backward slice from z=x, we would
find a dependence on x=y[j], if(w==0), and j=read(taint).
We would also find a dependence on whichever instructions
assigned to y[j] and w last. Dynamic taint analysis would
not notice the dependence on j or w, and hence not identify
that z is tainted.

We implement dynamic backward slicing in a way simi-
lar to [57]. We track the last dynamic instruction to write
to each register and memory location, as well as the last
to modify the control flags. The PC depends on the last
conditional or indirect jump. Instructions, in turn, depend
on any registers they read, any memory they read, and the

PC. We construct a dependency tree from these relations;
generating a backward slice from this tree is as simple as
walking backward from the selected instruction.

Dynamic backward slicing gives similar (but more thor-
ough) results as dynamic taint analysis, however it is much
much more expensive: our implementation imposes 100x to
1000x overhead. Only because this analysis is performed
only when necessary is it at all practical. This again shows
the benefits of deferring analysis until after an attack is de-
tected.

It is also possible to compute a forward slice: the set of all
instructions influenced by a starting instruction. A forward
slice from the exploit input would reveal all instructions and
memory potentially tainted by it. The dependence tree we
generate can compute such a slice; currently we do not do
so.

3.3 Antibodies
Sweeper’s antibodies provide protection against further

attacks. They can either be input signatures, or vulnerabil-
ity specific execution filters (VSEFs).

Input Signatures Input filters are commonly used to elim-
inate known exploits before they reach vulnerable servers [24,
26, 36, 35, 44]. Based on the input that caused the exploit
(derivable from either dynamic taint analysis or backward
slicing), many existing techniques can be used to generate
filters. Since Sweeper has VSEFs to provide a safety net, we
can start by generating signatures as exact matches. This
has the benefit of very low false positives, and being imper-
vious to malicious training [34]. Polymorphic signatures are
also feasible; see our work [7] for details.

VSEFs Vulnerability specific execution filters, or VSEFs [33],
provide a low false-negative approach to detecting attacks.
VSEFs in Sweeper function like the heavyweight dynamic
analysis tools, except that they only monitor the instruc-
tions necessary to detect the exploit. Since the number of
instructions monitored is much smaller, they are no longer
heavy-weight but are light-weight. VSEF-hardened binaries
are able to reliably detect various attacks against the same
vulnerability, even in the face of poly- and meta-morphism.
Since they look for the same behavior as the heavyweight
dynamic analysis, they have similar false negative and false
positive properties. Sweeper considers VSEFs derived both
from memory bug detectors and from dynamic taint analy-
sis.

Memory-bug derived VSEFs consist of the instruction re-
sponsible for the memory bug, and the type of the bug. For
a buffer overflow, this is the store instruction which over-
flows the buffer. For a double-free, this is the call to free()

which is redundant. In both cases, the implementation of
the VSEF is to monitor for the type of bug at that location:
is the write within bounds, or is the buffer to be freed already
free? In the case of stack overflows, this may be relaxed to
simply ensure that a return address is not being overwrit-
ten, if information about the stack layout is not available.
The static memory analysis may generate another sort of
memory VSEF: monitor the return address of one particu-
lar function. The call who’s return address is overwritten
is recorded in the usual place, and also copied separately.
Just prior to the ret call that pops the return address, the
stored value is compared to the stack’s value. This is simpler
than using canaries because the structure of the stack can
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remain the same. All of these memory bug derived VSEFs
only insert a handful of instrumentation instructions, and
therefore impose negligible overhead.

Dynamic taint analysis VSEFs consist of a list of instruc-
tions that propagated the taint, and the instruction which
incorrectly consumed tainted data. Ordinary dynamic taint
analysis instrumentation is applied for those instructions
only. Again, this imposes much less overhead than full
analysis. For more details, please refer to our paper on
VSEFs [33].

Distribution The generated anti-bodies can be dissemi-
nated to other hosts to protect them against further attacks.
The concrete manifestation of an antibody to be dissem-
inated is a set of VSEFs and an exploit-triggering input.
Together, these allow hosts to protect themselves in multi-
ple ways. Including the exploit-triggering input allows hosts
to verify the antibodies: in a sandbox, feed the input to the
vulnerable program while performing heavy-weight analysis.

Since receiving and applying VSEFs is a time-critical op-
eration, hosts may want to apply them without verifying
them first. By deferring verification, hosts reduce their ex-
posure to infection. A VSEF is a set of instruction ad-
dresses that need to have certain monitoring (e.g. buffer
overflow monitoring, dynamic taint analysis, etc.). By their
nature, then, VSEFs cannot be harmful; incorrect or mali-
cious VSEFs will result in unnecessary bounds checking or
taint tracking, but cannot create behaviors that full moni-
toring would not. At worst they cause a performance degra-
dation. Unneeded VSEFs can be removed when they are
verified. Since verification is deferred, we distributed anti-
bodies piecemeal. As each step completes, a host will dis-
tribute results as it generates them. Similarly, hosts consum-
ing antibodies apply them as they receive them, deferring
verification until after the exploit input is isolated.

4. ISSUES AND DISCUSSION

4.1 Recovery and Re-Execution
The Rx-based re-execution allows recovery in many prac-

tical cases. However, there may be instances where drop-
ping the attacking requests and re-executing is not sufficient
to maintain consistency. Consider, for example, an SSL-
enabled web server. Session keys depend on random num-
bers; for connections concurrent to the attack these num-
bers may turn out different on re-execution. An alternative
to Rx is to use a Flashback [46] based checkpointing sys-
tem. Flashback logs all of the system calls made by the
process, in order to allow deterministic re-execution. For
Sweeper, this allows us to either re-execute the application
with more consistency or, failing that, to detect the incon-
sistency and abort. If the execution depends on a system
call returning the same result (e.g. a read() to a file, or
a call to gettimeofday()), Flashback will replay the same
result as previous executions. Therefore, differences in the
results of system calls will not perturb the execution. To
verify the consistency of results, Sweeper can compare the
re-execution’s calls to write() to the previous results Flash-
back recorded; if they match, we know that we have been
successful. In the case that the lack of the attack has caused
a change in program state (e.g., a counter of the number of
connections accepted) that changes the output, we can abort
the re-execution and resort to restart. It is our practical ex-

perience with Rx that this is a rare case, however, for those
instances where the execution is sensitive to small changes,
this alternative exists.

A further issue is reliance on other, non-checkpointed pro-
grams, or the possibility that the operating system itself
becomes compromised prior to the lightweight monitoring
tripping. In both cases we would be unable to apply a cor-
rect rollback and re-execution. To prevent this, we could
apply the same checkpointing techniques to the whole OS
through a virtual machine (e.g. as done in Time Traveling
Virtual Machines [25]). This allows rollback of an entire
software stack, including the OS, any helper applications,
and even disk state. Although we feel that the OS is un-
likely to be corrupted prior to the lightweight monitoring
registering an attack, we can certainly feel safe that the VM
hypervisor will not become corrupted by a network-based
attack on one of its guests.

4.2 Sampling to Catch More Attacks
In order to deal with a broader range of attacks, Sweeper

can use more expensive monitoring to analyze a fraction of
requests. Although many security attacks involve memory
corruption attacks that can be noticed by lightweight bug
detectors, those which are not can be caught through sam-
pling and analysis with heavy-weight detection mechanisms.
Since the instrumentation is dynamic, the decision to more
thoroughly analyze a message can be made at runtime. It
would even be feasible for hosts to use heavier-weight detec-
tion when they are idle, and shift to address space random-
ization as they become fully loaded.

4.3 Effects of Limited Deployment
Although Sweeper has very low overhead, widespread de-

ployment does not necessarily mean 100%; it is unlikely to
reach such high levels. Sweeper does not require universal
deployment to function. Hosts may choose to act as con-
sumers of antibodies; the lightweight monitoring will still
make them more difficult to exploit. There will be, how-
ever, a chance that such hosts will become infected, since
multiple infection attempts are likely to be made before an
antibody is available. If deployment rates are too low, the
worm is too fast, and the antibodies are too slow to be de-
livered, Sweeper will be unable to contain the worm. Com-
pared to previous systems, however, failure comes in more
extreme conditions. Section 6 discusses in much greater de-
tail the performance of Sweeper as a whole under varying
conditions.

5. EXPERIMENTAL RESULTS

5.1 Experiment Setup

Implementation We implemented Sweeper in Linux by
modifying the Linux kernel 2.4.22 to support lightweight
checkpoint and rollback-and-replay. The various monitor-
ing and analysis techniques are implemented using the PIN
binary instrumentation tool [30]. All of the tools are inte-
grated together except for taint analysis; it is implemented
stand alone and we are in the processes of integration. Hence
we provide functionality results but not performance num-
bers for taint analysis. In lieu of taint analysis performance,
we measure the time to isolate the exploit input by sending
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Name Program Description CVE ID [50] Bug Type Security Threat Description

Apache1 Apache-1.3.27 CVE-2003-0542 Stack Local exploitable vulnerability enables
web server Smashing unauthorized access

Apache2 Apache-1.3.12 CVE-2003-1054 NULL Remotely exploitable vulnerability
web server Pointer allows disruption of service

CVS cvs-1.11.4 CVE-2003-0015 Double Remotely exploitable vulnerability provides
version control server Free unauthorized access and disruption of service

Squid squid-2.3 CVE-2002-0068 Heap Buffer Remotely exploitable vulnerability provides
proxy cache server Overflow unauthorized access and disruption of service

Table 1: List of tested exploits

the potentially suspicious requests one at a time. Both pro-
vide the exploit input as a result, but we expect taint analy-
sis to be faster, based on our experience with Valgrind-based
TaintCheck.

Experiment Environment and Parameters Our ex-
periments are conducted on single-processor machines with a
2.4GHz Pentium 4 processor. By default, Sweeper keeps the
20 most recent checkpoints, and checkpoints every 200ms.

Evaluation Applications We evaluate Sweeper on four
real vulnerabilities in three server applications, as shown
in Table 1. All of the vulnerabilities are recorded by US-
CERT/NIST [50].

Experimental Design In our experiments, we evaluate
the functionality of Sweeper, as well as the efficiency of ex-
ploit and vulnerability analysis. We also show the normal
overhead of checkpointing for various checkpoint intervals.

5.2 Functionality Evaluation
Table 2 presents a summary of Sweeper’s functionality

results for four exploits. The second column summarizes
the results: for all four exploits, Sweeper detects the attack,
generates a VSEF, and identifies the original input that trig-
gered the fault.

The detailed results columns show what each of the anal-
ysis steps determines. The first step, memory state anal-
ysis, looks at the stack, heap, and instruction pointer at
the time the lightweight monitoring trips. For all four vul-
nerabilities, this results in a VSEF; for the Apache2 and
Squid bugs this VSEF ends up being the final “best” VSEF.
The second step, memory bug detection, identifies various
memory bugs through dynamic instrumentation. For the
Apache1 and CVS exploits this step provides a more specific
VSEF. Consider specifically the Apache1 VSEFs. The ini-
tial VSEF only protects the return address. For this exploit,
this is sufficient. However, the specific buffer overflow may
also be exploitable by overwriting a stack function pointer2;
the initial VSEF won’t catch this. The improved VSEF
identifies more exactly the underlying software flaw the re-
sulted in the vulnerability: “stack buffer overflow”. The
initial VSEF captures a subset vulnerability: “overwrite re-
turn address”. However, the initial VSEF will still catch all
instances of this exploit, and all exploits that use the specific
sub-vulnerability; hence it will still stop the worm outbreak.

The third step is input/taint analysis—the purpose is to
identify the input responsible so that it can be fed to a
signature generator. This is done successfully for all four

2To the best of our knowledge, this particular buffer overflow
does not have such multiple methods of exploitation.

vulnerabilities. For the Apache1 bug, however, the input is
configuration specific. This makes it difficult to share the
result with other hosts, but it also makes it difficult to ex-
ploit. Finally, dynamic slicing is performed. It serves as a
sanity check on the other stages; if a previous stage claims
an instruction or data value is involved in the attack and dy-
namic slicing disagrees, then the previous step is incorrect.
In all four cases, however, dynamic slicing is consistent with
the other analysis steps.

These results demonstrate that Sweeper is capable of de-
fending against a variety of vulnerabilities: a stack overflow,
a null pointer dereference, a double free, and a heap buffer
overflow. In all four cases, Sweeper generates a VSEF and
identifies the exploit input.

5.3 Performance Evaluation
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Figure 4: Performance at varying checkpoint inter-
vals for Squid

Checkpointing Since Sweeper is intended for widespread
deployment, overhead is an important concern. As demon-
strated by Figure 4, the performance overhead of check-
pointing and network logging is low; at a 200ms checkpoint
interval, Sweeper only degrades performance by .925% —
throughput drops from 93.45 Mbps to 92.59Mbps. The
fastest checkpoint interval, 30 ms, only shows a 5% per-
formance degradation. These results clearly demonstrate
that the checkpoint overhead is nominal, and suitable for
production run deployment. More detailed discussion of the
performance of checkpointing can be found in our previous
Rx paper [40].

Vulnerability Monitoring Sweeper’s VSEFs only check
a small subset of instructions; hence they have good perfor-
mance properties. It is not necessary to bounds check the en-
tire program, but only the one vulnerable callsite. For Squid,

123



App.
Defense Detailed Processes and Results
Result Summary Step Technique Main Results From Each Step

Apache1

Correct buggy instruction
#1

Memory State Crash at 0x805e33f (try alias list); stack inconsistent
and memory location Analysis VSEF: use a side stack for (try alias list)

#2
Memory Bug Stack smashing by 0x808c3ee (lmatcher)

Correct VSEFs Detection VSEF: 0x808c3ee should not overflow stack buffer
#3 Input/Taint Analysis GET.../trigger/crash.html...

Configuration-specific input #4 Slicing Verifies results

Apache2

NULL pointer dereference
#1

Memory State Crash at 0x8060029 (is ip); accessing NULL pointer
correctly identified Analysis VSEF: check for NULL pointer

#2
Memory Bug No memory bug detected, just

Correct VSEFs Detection a NULL pointer dereference
#3 Input/Taint Analysis * Referrer: (ftp://|http://){0}? *

Finds input #4 Slicing Verifies results

CVS

Correct buggy instruction
#1

Memory State Crash at 0x4f0eaaa0 (lib. free); heap inconsistent
and memory location Analysis VSEF: Check for double frees

#2
Memory Bug Double free by 0x808d7ac (dirswitch)

Correct VSEFs Detection VSEF: 0x808d7ac should not double-free
#3 Input/Taint Analysis [CVS request stream]

Finds input #4 Slicing Verifies results

Squid

Correct buggy instruction
#1

Memory State Crash at 0x4f0f0907 (lib. strcat); heap inconsistent
and memory location Analysis VSEF: Heap bounds-check 0x4f0f0907 (in lib. strcat)

when called by 0x804ee82 (ftpBuildTitleUrl)

#2
Memory Bug Heap buffer overflow at 0x4f0f0907 (lib. strcat)

Correct VSEFs Detection VSEF: Verified above
#3 Input/Taint Analysis ftp://\\...\\@ftp.site

Finds input #4 Slicing Verifies results

Table 2: Overall Sweeper results

Time to Time to Initial Total Component Diagnosis Time
Application First Best Analysis Analysis Memory State Memory Bug Input/Taint Dynamic

VSEF VSEF Time Time Analysis Detection Analysis Slicing
Apache1 60 ms 14 sec 24 sec 68 sec 0.06 sec 14 sec 9 sec 45 sec
Squid 40 ms 40 ms 38 sec 145 sec 0.04 sec 30 sec 7 sec 108 sec

Table 3: Sweeper failure analysis time. The component diagnosis times are the times for each individual component;

the other time values are cumulative from the lightweight monitoring triggering. After the time to first VSEF, we can

begin spreading an antibody. Initial time is the time it takes to generate both VSEFs and isolate the exploit’s input;

total time includes the slicing step.

the VSEF checks for a heap buffer overflow at 0x4f0f0907 (in
strcat), and then only when strcat is called by 0x804ee82
(in ftpBuild-TitleUrl). This results in a .93% drop in
throughput (91.6 Mbps vs. 92.5Mbps). Much of the over-
head comes from monitoring calls to malloc and free to get
the exact ranges of live buffers; if a second heap buffer over-
flow was identified, the combined overhead would increase
less. In the worst case, overhead is linear with the num-
ber of vulnerabilities; systems running software with many
unpatched vulnerabilities that have wild exploits will expe-
rience higher overheads. Users who wish to avoid such over-
head can do so by applying patches as they become available.
Again, the overheads are clearly suitable for production run
deployment.

Analysis Times Sweeper can generate VSEFs very quickly:
60 ms for Apache and 40 ms for Squid. As we show in Sec-
tion 6, fast antibody generation is important for dealing with
the fastest of worms; 60 ms is more than fast enough. Ta-
ble 3 shows the details of our analysis performance. For both
measured applications, the time to get the “best” VSEF was
under 15 seconds; in Squid’s case the initial result was the
best. The time to get the VSEFs and to isolate the input
responsible is under 40 seconds.

Although the complete analysis results are not available
immediately, the intermediate results (i.e., initial VSEFs)

are sufficient to use for antibodies because they do not have
false positives even though they may have a higher false
negatives. Waiting for the full analysis to complete is inad-
visable, because the further delay will allow a fast worm to
spread. Instead, antibodies should be distributed as soon as
they are available (e.g., within 60 ms). The initial VSEF is
more than sufficient to stop the particular exploit being used
(and will catch poly- and meta-morphic variants); because
it is available sooner, it is best for this worm outbreak. The
improved VSEF can be distributed as a follow-on.

Recovery Once VSEFs are applied, we perform recovery.
Figure 5 shows the throughput as a function of time. Ap-
proximately 24 seconds in, the throughput drops due to re-
covery taking place; no requests complete service during this
time, and clients perceive increased latency. Shortly there-
after, service resumes as normal. In contrast, a restart of
Squid takes over 5 seconds, and clients perceive dropped
connections and refused connection attempts.

6. COMMUNITY DEFENSE AGAINST FAST-

SPREADING WORMS
As we have shown, Sweeper protects individual hosts even

from fast-spreading worm that exploits previously unknown
vulnerabilities, i.e., zero-day hit-list worms. The first time
that such a worm tries to infect a Sweeper-protected host,
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Figure 5: Throughput during a single attack against
Squid

the exploit will be detected, analyzed, and one or more an-
tibodies deployed to prevent further attacks against that
vulnerability.

We next show how a Sweeper community can protect even
those who do not deploy Sweeper from new exploit attacks,
including fast-spreading worms. In this community, we call
those who deploy the complete Sweeper system Producers.
When a Producer detects a new attack and generates the
corresponding antibodies, it shares those antibodies with
Consumers, thus preventing them from becoming infected.
Given the low (> 5%) overhead involved in being a producer,
we would expect that the percentage of Producers to be
high; here we present Producer deployment ratios far below
our expectations.

The challenge is to generate antibodies and distribute
them to the Consumers before they are infected. We use
worm modeling techniques to show that most Consumers
can be protected from even the fastest observed worms. Fur-
ther, we show that if Consumers deploy light-weight proac-
tive defense mechanisms, we can protect most Consumers
from even hit-list worms.

6.1 Community Model
Worm propagation can be well described with the classic

Susceptible-Infected (SI) epidemic model [23]. Let β be the
average contact rate at which a compromised host contacts
vulnerable hosts to try to infect them, t be time, N the total
number of vulnerable hosts. Let I(t) represent the total
number of infected hosts at time t. Let α be the fraction
of vulnerable hosts that are Producers, and the remaining
vulnerable population (1 − α) be Consumers. Let P (t) be
the total number of producers contacted by at least one
infection attempt at time t.

From the SI model, we have:

dI(t)

dt
= βI(t)(1 − α − I(t)/N) (1)

dP (t)

dt
= αβI(t)(1− P (t)/(αN)) (2)

We call the time at which at least one Producer has re-
ceived an infection attempt, and hence can begin gener-
ating and distributing antibodies, T0. By this definition,
P (T0) = 1. We can solve the above equation to find T0.

Once a Producer is contacted with an infection attempt,
it takes time γ1 until the producer creates an antibody us-
ing exploit analysis, and then it takes time γ2 until the an-
tibody can be disseminated to Consumers (and if needed,
verified). Let γ = γ1 + γ2, and we call γ the response time
of the Sweeper community. Thus, after time T0 + γ, all the
vulnerable hosts have received and installed the antibody
and become immune to the worm outbreak. Thus, the total
number of infected hosts throughout the worm outbreak is
I(T0 + γ), and I(T0 + γ)/N is the infection ratio.
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Figure 6: Sweeper defense against Slammer (β = 0.1)

6.2 Protection Against Slammer
The fastest-spreading worm to date is Slammer. In the

Slammer worm outbreak, the contact rate β was 0.1, and
the number of vulnerable hosts N was approximately 100000
[10].

Figure 6 shows that a Sweeper community could have
prevented the Slammer worm from infecting most vulner-
able hosts, for a variety of producer ratios α and response
times γ. For example, given a very low deployment ratio
α = 0.0001, and a reasonable response time γ = 5 seconds,
the overall infection ratio is only 15%. For a slightly higher
producer ratio α = 0.001, the Sweeper community is even
more effective, protecting all but 5% of the vulnerable hosts
even for a relatively slow response time of γ = 20 seconds.

6.3 Protection Against Hit-List Worms
A well designed worm could propagate much more quickly

than Slammer. In particular, a hit-list worm contains a hit-
list of vulnerable machines. Hit-list worms can spread up
to orders of magnitude more quickly because they need not
scan to find vulnerable hosts [47, 48].

If Slammer had been designed as a hit-list worm, it may
have achieved a contact rate of β = 1000, or even β = 4000;
this is ten-thousand to forty-thousand times faster than ob-
served. In our model, this would result in 100% of vulnera-
ble hosts becoming infected in mere hundredths of a second.
Even if the very first infection attempt was against a Pro-
ducer (i.e., T0 = 0), this does not provide enough time to
produce, distribute, and verify antibodies.
Proactive protection We can protect against even hit-
list worms if we combine our reactive strategy of producing
and distributing antibodies with a proactive strategy to slow
down the spread of the worm [6].
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For example, for a large class of attacks, address space ran-
domization can provide probabilistic proactive protection.
The attack, with high probability, will crash the vulnera-
ble program instead of successfully compromising it. How-
ever, because the protection is only probabilistic, repeated
or brute-force attacks will succeed; the attacker will eventu-
ally “guess” the address space layout and successfully infect
the host.

Let ρ be the probability that a particular infection at-
tempt successfully exploits a host with probabilistic protec-
tion. We model the spread of a hit-list worm where vulner-
able hosts use proactive protection with:

dI(t)

dt
= βρI(t)(1− α − I(t)/N) (3)

dP (t)

dt
= αβI(t)(1− P (t)/(αN)) (4)
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Figure 7: Sweeper with proactive protection against
hit-list (β = 1000). Note that γ = 50 is much worse
than γ = 30.
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Figure 8: Sweeper with proactive protection against
hit-list (β = 4000). Note that γ = 20 is much worse
than γ = 10.

We show that Sweeper combined with proactive protec-
tion can protect against even hit-list worms with contact
rate β = 1000 in Figure 7, and with contact rate β = 4000
in Figure 8. Here, we set the probability that an infection
attempt succeeds to ρ = 2−12, which many address random-
izations achieve [42]. We again use N = 100000 vulnerable

hosts. For example, the figures indicate that given deploy-
ment rate α = 0.0001 and reaction time γ = 10 seconds, the
overall infection ratio is only 5% for β = 1000 and 40% for
β = 4000. For α = 0.0001 and γ = 5 seconds, the overall
infection ratio is negligible (less than 1%) for both cases.
Note the large differences in infection ratio as γ increases:
for γ = 50 in the β = 1000 case and γ = 20 in the β = 4000
case the worm would still infect large fractions of all vulner-
able hosts. Hence, even with the proactive protection, we
do still require an automated defense such as Sweeper.

Our models show that a total end-to-end time (including
time for detection, analysis, and antibody dissemination/
deployment) of about 5 seconds will stop a hit-list worm.
Note that our experiments (Section 5.1) show that detection
and analysis are almost instantaneous, and the total time it
takes to create an effective VSEF is well under 2 seconds.
Vigilante shows that the initial dissemination of an alert
could take less than 3 seconds [14]. Thus our system achieves
an γ = 2 + 3 = 5. By impeding the spread of the worm,
our system can effectively defend against effectively defend
against even hit-list worms that are thousands of times faster
than the fastest observed worm, even for low values of α.

7. RELATED WORK

7.1 Checkpoint and Rollback
While Sweeper leverages a lightweight checkpoint and re-

execution support similar to FlashBack or Rx [40, 46], it
could use other checkpoint systems like the Time-traveling
Virtual Machines [25], or ReVirt [18]. ReVirt also deals in
a security setting: specifically, postmortem analysis. How-
ever, ReVirt is intended as an offline forensic tool, and does
not target on-line systems.

7.2 Bug detection and analysis
Sweeper makes use of various bug detection techniques

both to detect the initial exploit attempt and to analyze the
exploit attempt after rollback. In general, the more useful
the analysis results, the more expensive the tool is to run,
and therefore less suitable for use as a lightweight detector.

Sweeper’s baseline bug detection method, address space
randomization [20], provides an almost free detection mech-
anism, however, it can be probabilistically bypassed [42].
This is only a minor concern in Sweeper, since for hosts
deploying the full system, capturing an attack once is suf-
ficient. Slightly less lightweight monitors like SafeMem [39]
may also be used widely. Other monitors, such as Stack-
Guard [15], CCured [13, 31], Purify [22], or Valgrind [32]
are options, trading runtime overhead for greater protec-
tion. A recent work in dynamic binary instrumentation,
LIFT [38], reduces the overhead for information flow track-
ing to potentially manageable levels (2-4x overhead); this
may be deployable for a decent fraction of hosts.

Bug detectors are also used for analysis in Sweeper. The
favored techniques are dynamic backward slicing [53, 57] and
dynamic taint analysis [36]. Both track the influence of one
instruction on another; backward slicing works back from
the point of exploit, while taint analysis works forward from
inputs. Another technique is memory bug detection, such as
found in CCured [13], Purify [22], or Valgrind [32]. In gen-
eral, such techniques impose higher overheads than address
space randomization, but give more precise results. Other
possible techniques are similar to those used in DIRA [45],
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STEM [43], or DACODA [16]. STEM emulates execution;
this allows recovery by rolling back and abandoning changes
(effectively cutting off the vulnerable functionality). DIRA
logs memory state changes for similar ends. DACODA uses
symbolic execution to determine the entire set of inputs ca-
pable of triggering an exploit. None of these are feasible
for stand-alone use due to high overhead. However, with
the ability to apply analysis after an exploit attempt is de-
tected, Sweeper could potentially use them.

7.3 Attack Response
A considerable amount of research effort [14, 24, 26, 36,

35, 44] has been devoted to automatically generating at-
tack signatures. Earlybird [44], Honeycomb [26] and Auto-
graph [24], share a common limitation: the signatures gen-
erated are single, contiguous strings. Real life attacks can
often evade such filters. To tackle such polymorphic worms,
techniques like Polygraph [35] generate signatures that con-
sist of multiple disjoint content substrings. However, recent
work [34, 37] shows that such polymorphic signature gener-
ators can be mislead into generating bad signatures; specifi-
cally higher false negative rates. Sweeper does not rely only
on input signatures for protection; while signatures provide
a guarantee of correctness (since exploit attempts caught
by the signatures never touch the application), a safety net
of VSEFs allows false negatives to be tolerated. Further-
more, the availability of a highly selective mechanism (i.e.
low false positives and low false negatives) allows the input
signatures to be “tuned” toward lower false positives at the
expense of false negatives.

7.4 Automated Worm Defense
Vigilante [14] is a nice automatic worm defense similar

to Sweeper. A subset of nodes monitor their execution
with full dynamic taint analysis (or, nodes may sample re-
quests). When an exploit is detected, Vigilante creates a
self-verifying signature to distribute to all nodes. There are
several important technical differences between Sweeper and
Vigilante. First, Sweeper provides a recovery mechanism
through rollback and modified re-execution. Second, Vigi-
lante provides no means to combine light-weight and heavy-
weight detectors. Therefore, Vigilante either must sample
requests or be deployed only on a subset of honey-pot hosts.
Hosts that are sampling only have a small chance to analyze
an exploit attempt, while honey-pot nodes are vulnerable to
being avoided. In combining light- and heavy-weight detec-
tors, Sweeper provides more flexibility, can be more widely
deployed, and increases the number of exploit attempts that
will be monitored. Third, the two systems generate and
distributed different sorts of antibodies. Finally, reactive
antibody systems, like Vigilante, can not distribute their
antibodies fast enough to deal with a hit-list worm. The
additional layer of defense that Sweeper provides with its
lightweight monitors provides sufficient robustness to react
against extremely fast hit-list worms.

Liang and Sekar [28] and Xu et al. [56] independently pro-
pose different approaches to use address space randomiza-
tion as a protection mechanism and automatically generate
a signature by analyzing the corrupted memory state af-
ter a crash. However, their analysis and applicability are
limited. Liang and Sekar’s approach does not work for pro-
grams where static binary analysis is difficult, and their sig-
nature generation does not work in many cases (for exam-

ple, if the inputs are processed or decoded prior to causing a
buffer overflow). The analysis in Xu et.al.’s approach is also
limited, and their signatures suffer from similar problems as
described in [16]. Additionally, these approaches rely only
on address space randomization, which can be bypassed;
our approach has the flexibility to allow various light- and
heavy-weight detectors to be plugged in, as per an individual
host’s requirements.

8. CONCLUSIONS
We presented an innovative approach for defending against

exploits. By leveraging checkpointing and replay, we al-
low continuous lightweight monitoring to be combined with
heavy-weight analysis. The resulting system has low over-
head (1%) during normal execution, which allows more wide-
spread deployment than similar systems. Further, the anal-
ysis is used to generate multiple forms of antibodies, which
are available starting at 60 ms from the signs of attack.

We demonstrated an implementation of our approach in
Sweeper. Against 4 real exploits in 3 different server ap-
plications, Sweeper generates effective antibodies quickly
(no slower than 60 ms). We also provide analytical results
demonstrating how effective Sweeper would be against a fast
worm outbreak.

In Sweeper we have realized an architecture that pro-
tects applications with lightweight techniques while enabling
more sophisticated techniques to perform accurate post-analysis.
Sweeper also provides recovery against such attacks without
access to source code. Finally, ours implementation is capa-
ble of generating sophisticated vulnerability-specific execu-
tion filters while maintaining performance at levels feasible
for widespread deployment.
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