JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

187

SplitScreen: Enabling Efficient, Distributed Malware
Detection

Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G. Andersen

(Invited Paper)

Abstract: 'We present the design and implementation of a novel
anti-malware system called SplitScreen. SplitScreen performs an
additional screening step prior to the signature matching phase
found in existing approaches. The screening step filters out most
non-infected files (90 %) and also identifies malware signatures that
are not of interest (99 %). The screening step significantly improves
end-to-end performance because safe files are quickly identified
and are not processed further, and malware files can subsequently
be scanned using only the signatures that are necessary. Our ap-
proach naturally leads to a network-based anti-malware solution
in which clients only receive signatures they needed, not every mal-
ware signature ever created as with current approaches. We have
implemented SplitScreen as an extension to ClamAY, the most pop-
ular open source anti-malware software. For the current number
of signatures, our implementation is 2x faster and requires 2 X
less memory than the original ClamAYV. These gaps widen as the
number of signatures grows.

Index Terms: Anti-malware, bloom filter, signature matching.

I. INTRODUCTION

The amount of malicious software (malware)—viruses, wo-
rms, Trojan horses, and the like—is exploding. As the amount
of malware grows, so does the number of signatures used by
anti-malware products (also called anti-viruses) to detect known
malware. In 2008, Symantec created over 1.6 million new sig-
natures, versus a still-boggling six hundred thousand new signa-
tures in 2007 [1]. The ClamAV open-source anti-malware sys-
tem similarly shows exponential growth in signatures, as shown
in Fig. 1. Unfortunately, this growth, fueled by easy-to-use mal-
ware toolkits that automatically create hundreds of unique vari-
ants [2], [3], is creating difficult system and network scaling
problems for current signature-based malware defenses.

There are three scaling challenges. First, the sheer number
of malware signatures that must be distributed to end-hosts is
huge. For example, the ClamAV open-source product currently

Manuscript received January 17, 2011; approved for publication by Heejo
Lee, JCN Editor, March 08, 2011.

This work was supported in part by gifts from Network Appliance, Google,
and Intel Corporation, by grants CNS-0619525 and CNS-0716287 from the
National Science Foundation, and by CyLab at Carnegie Mellon under grant
DAADI19-02-1-0389 from the Army Research Office. The views expressed
herein are those of the authors and do not necessarily represent the views of
our sponsors.

S. K. Cha and J. Jang are with the Electrical and Computer Engineering de-
partment, Carnegie Mellon University, Pittsburgh, USA, email: {sangkilc, jiy-
ongj} @cmu.edu.

1. Moraru, J. Truelove, D. Brumley, and D. G. Andersen are with the the Com-
puter Science Department, Carnegie Mellon University, Pittsburgh, USA, email:
{imoraru, dbrumley, dga} @cs.cmu.edu.

serves more than 120 TB of signatures per day [4]. Second, cur-
rent anti-malware systems keep all signatures pinned in main
memory. Reducing the size of the pinned-in-memory compo-
nent is important to ensure operation on older systems and re-
source constrained devices such as netbooks, PDAs or smart-
phones, and also to reduce the impact that malware scanning
has on other applications running concurrently on the same sys-
tem. Third, the matching algorithms typically employed have
poor cache utilization, resulting in a substantial slowdown when
the signature database outgrows the L2 and L3 caches.

We propose SplitScreen, an anti-malware architecture de-
signed to address the above challenges. Our design is inspired
by two studies we performed. First, we found that the distri-
bution of malware in the wild is extremely biased. For exam-
ple, only 0.34% of all signatures in ClamAV were needed to
detect all malware that passed through our University’s email
gateways over a 4 month period (subsection V-B). Of course,
for safety, we cannot simply remove the unmatched signatures
since a client must be able to match anything in the signature
database. Second, the performance of current approaches is bot-
tlenecked by matching regular expression signatures in general,
and by cache-misses due to that scanning in particular. Since,
in existing schemes, the number of cache-misses grows rapidly
with the total number of signatures, the efficiency of existing ap-
proaches will significantly degrade as the number of signatures
continues to grow. Others have made similar observations [5].

At a high level, SplitScreen divides scanning into two steps.
First, all files are scanned using a small, cache-optimized data
structure we call a feed-forward Bloom filter (FFBF) [6]. The
FFBF implements an approximate pattern-matching algorithm
that has one-sided error: It will properly identify all malicious
files, but may also identify some safe files as malicious. The
FFBF outputs: (1) A set of suspect matched files, and (2) a sub-
set of signatures from the signature database needed to confirm
that suspect files are indeed malicious. SplitScreen then rescans
the suspect matched files using the subset of signatures using an
exact pattern matching algorithm.

The SplitScreen architecture naturally leads to a demand-
driven, network-based architecture where clients download the
larger exact signatures only when needed in step 2 (SplitScreen
still accelerates traditional single-host scanning when running
the client and the server on the same host). For example,
SplitScreen requires 55.4 MB of memory to hold the current
~ 533,000 ClamAV signatures. ClamAYV, for the same signa-
tures, requires 116 MB of main memory. At 3 million signatures,
SplitScreen can use the same amount of memory (55.4 MB),
but ClamAV requires 534 MB. Given the 0.34% hit rate in our

1229-2370/11/$10.00 © 2011 KICS

188

study, SplitScreen would download only 10,200 signatures for
step 2 (vs. 3 million). Our end-to-end analysis shows that, over-
all, SplitScreen requires less than 10% of the storage space
of existing schemes, with only 10% of the network volume
(Section V). We believe these improvements to be important for
two reasons: (1) SplitScreen can be used to implement mal-
ware detection on devices with limited storage (e.g., residential
gateways, mobile and embedded devices) and (2) it allows for
fast signature updates, which is important when counteracting
new and fast spreading malware. In addition, our architecture
preserves clients’ privacy better than prior network-based ap-
proaches [7].

SplitScreen addresses the memory scaling challenge because
its data structures grow much more slowly than in existing
approaches (with approximately 11 bytes per signature for
SplitScreen compared to more than 170 bytes per signature for
ClamAV). Combined with a cache-efficient algorithm [6], this
leads to better throughput as the number of signatures grows,
and represents the major advantage of our approach when com-
pared to previous work that employed simple Bloom filters to
speed-up malware detection (subsection V-I presents a detailed
comparison with HashAV [5]). SplitScreen addresses the sig-
nature distribution challenges because users only download the
(small) subset of signatures needed for step 2. SplitScreen ad-
dresses constrained computational devices because the entire
signature database need not fit in memory as with existing ap-
proaches, as well as having better throughput on lower-end pro-
Cessors.

Our evaluation shows that SplitScreen is an effective anti-
malware architecture. In particular, we show:

o Malware scanning at twice the speed with half the
memory: By adding a cache-efficient pre-screening phase,
SplitScreen improves throughput by more than 2x while
simultaneously requiring less than half the total memory.
These numbers will improve as the number of signatures
increases.

o Scalability: SplitScreen can handle a very large increase in
the number of malware signatures with only small decreases
in performance (35% decrease in speed for 6 x more signa-
tures subsection V-D).

o Distributed anti-malware: We developed a novel distri-
buted anti-malware system that allows clients to perform
fast and memory-inexpensive scans, while keeping the net-
work traffic very low during both normal operation and sig-
nature updates (see subsection III-D). Furthermore, clients
maintain their privacy by sending only information about
malware possibly present on their systems.

¢ Resource-constrained devices: SplitScreen can be applied
to mobile devices (e.g., smartphonesl), older computers,
netbooks, and similar devices. We evaluated SplitScreen on
a low-power device similar to an iPhone 3GS. In our ex-
periments, SplitScreen worked properly even with 3 million
signatures, while ClamAV crashed due to lack of resources
at 2 million signatures.

LSmartphones have many connectivity options, and are able to run an increas-
ingly wide range of applications (sometimes on open platforms). We therefore
expect that they will be subjected to the same threats as traditional computers,
and they will require the same security mechanisms.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

RegExp B8 Cache miss —

600000 MD5 &3

11 1.2e+07
500000 |

1 1et+07
400000
8e+06

6e+06

Cache misses

200000 46406

Number of signatures
(98]
S
(=
(=
S
S

100000 2e+06

Fig. 1. Number of signatures and cache misses in ClamAV from April
2005 to March 2009.

¢ Real-World Implementation: We have implemented our
approach in ClamAV, an open-source anti-malware de-
fense system. Our implementation is available at http:
//security.ece.cmu.edu. We will make the malware data
sets used in this paper available to other researchers upon
request.

II. BACKGROUND
A. Signature-Based Virus Scanning

Signature-based anti-malware defenses are currently the most
widely used solutions. While not the only approach (e.g., re-
cent proposals for behavior-based detection such as [8]), there
are three important reasons to continue improving signature-
based methods. First, they remain technically viable today, and
form the bedrock of the two billion dollar anti-malware industry.
More fundamentally, signature-based techniques are likely to re-
main an important component of anti-malware defenses, even
as those defenses incorporate additional mechanisms. Further-
more, we can improve the scanning performance without dis-
carding the sheer number of existing malware signatures.

In the remainder of this section we describe signature-based
malware scanning, using ClamAV [9] as a specific example.
ClamAV is the most popular open-source anti-malware solu-
tion, and already incorporates significant optimizations to speed
up matching and decrease memory consumption. We believe
ClamAV to be representative of current malware scanning al-
gorithms, and use it as a baseline from which to measure im-
provements due to our techniques.

During initialization, ClamAV reads a signed signature data-
base from disk. The database contains two types of signatures:
Whole file or segment message-digest algorithm 5 (MDS5) sig-
natures and byte-pattern signatures written in a custom language
with regular expression-like syntax (although they need not have
wildcards) which we refer to as regular expression signatures
(regexs). Fig. 1 shows the distribution of MDS5 and regular ex-
pression signatures in ClamAV over time. Currently 84% of all
signatures are MD5 signatures, and 16% are regular expressions.

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 189

In our experiments, however, 95% of the total scanning time is
spent matching the regex signatures.

When scanning, ClamAV first performs several pre-process-
ing steps (e.g., attempting to unpack and uncompress files), and
then checks each input file sequentially against the signature
database. It compares the MD5 of the file with MD5s in the
signature database, and checks whether the file contents match
any of the regular expressions in the signature database. If ei-
ther check matches a known signature, the file is deemed to be
malware.

ClamAV'’s regular expression matching engine has been sig-
nificantly optimized over its lifetime. ClamAV now uses two
matching algorithms [10]: Aho-Corasick [11] (AC) and Wu-
Manber [12] (WM).? The slower AC is used for regular expres-
sion signatures that contain wildcard characters, while the faster
WM handles fixed string signatures.

The AC algorithm builds a trie-like structure from the set of
regular expression signatures. Matching a file with the regular
expression signatures corresponds to walking nodes in the trie,
where transitions between nodes are determined by details of
the AC algorithm not relevant here. Successfully walking the
trie from the root to a leaf node corresponds to successfully
matching a signature, while an unsuccessful walk corresponds
to not matching any signature. A central problem is that a trie
constructed from a large number of signatures (as in our prob-
lem setting) will not fit in cache. Walks of such tries will typi-
cally visit nodes in a semi-random fashion, causing many cache
misses.

The WM [12] algorithm for multiple fixed patterns is a
generalization of the single-pattern Boyer-Moore [13] algo-
rithm. Matching using WM entails hash table lookups, where
a failed lookup means the input does not match a signature. In
our setting, ClamAV uses a sliding window over the input file,
where the bytes in window are matched against signatures by
using a hash table lookup. Again, if the hash table does not fit
in cache, each lookup can cause a cache miss. Thus, there is a
higher probability of cache misses as the size of the signature
database grows.

B. Bloom Filters

The techniques we present in this paper make extensive use
of Bloom filters [14]. Consider a set S. A Bloom filter is a data
structure used to implement set membership tests of S quickly.
Bloom filters membership tests may have one-sided errors. A
false positive occurs when the outcome of the test is z € S
when z is not really a member of S. Bloom filters will never
incorrectly report ¢ S when x really is in S, i.e., there is no
false negative.

Initialization. Bloom filter initialization takes the set S as in-
put. A Bloom filter uses a bit array with m bits, and k£ hash
functions to be applied to the items in S. The hashes produce
integers with values between 1 and m, that are used as indices
in the bit array: The k hash functions are applied to each ele-
ment in .S, and the bits indexed by the resulting values are set
to 1 (thus, for each element in .S, there will be a maximum of
k bits set in the bit array—fewer if there are collisions between

2ClamAV developers refer to this algorithm as extended Boyer-Moore.

the hashes).

Membership test. When doing a set membership test, the
tested element x is hashed using the same & functions. If the
filter bits indexed by the resulting values are all set, i.e., all cor-
responding bits are 1, the element x is considered a member of
the set S (Bloom filter hit). If at least one bit is 0, the element is
definitely not part of the set (Bloom filter miss).

Important parameters. The number of hash functions used
and the size of the bit array determine the false positive rate of
the Bloom filter. If S has |.S| elements, the asymptotic false pos-
itive probability of a test is (1 - e’k‘s‘/m)k [15]. For a fixed
m, k = In 2 x |S|/m minimizes this probability. In practice,
however, k is often chosen smaller than optimum for speed con-
siderations: A smaller £ means computing a smaller number of
hash functions and doing fewer accesses to the bit array. In ad-
dition, the hashing functions used affect performance, and when
non-uniform, can also increase the false positive rate.

Scanning text. Text can be efficiently scanned for multiple
patterns using Bloom filters in the Rabin-Karp [16] algorithm.
The patterns, all of which must be of the same length w, repre-
sent the set used to initialize the Bloom filter. The text is scanned
by sliding a window of fixed length w and checking rolling
hashes of its content, at every position, against the Bloom fil-
ter. Exact matching requires every Bloom filter hit to be con-
firmed by running a verification step to weed out Bloom filter
false positives (e.g., using a subsequent exact pattern matching
algorithm).

III. DESIGN

SplitScreen is inspired by several observations. First, the
number of malware programs is likely to continue to grow, and
thus the scalability of an anti-malware system is a primary con-
cern. Second, malware is not confined to high-end systems; we
need solutions that protect slower systems such as smartphones,
old computers, netbooks, and similar systems. Third, signature-
based approaches are by far the most widely-used in practice,
so improvements to signature-based algorithms are likely to be
widely applicable. Finally, in current signature-based systems
all users receive all signatures whether they (ultimately) need
them or not, which is inefficient.?

A. Design Overview

At a high level, an anti-malware defense has a set of signa-
tures X and a set of files F. For concreteness, in this section
we focus on regular expression signatures commonly found in
anti-malware systems—so we use % to denote a set of regu-
lar expressions. We extend our approach to MDS5 signatures in
subsection III-E.1. The goal of the system is to determine the
(possibly empty) subset Fiaiware © F' of files that match at
least one signature o € 3.

SplitScreen is an anti-malware system, but its approach dif-
fers from existing systems because it does not perform exact

3To put things in perspective, suppose there is a new Windows virus, and
that the 1 billion computers with Microsoft Windows [17] are all running anti-
malware software. A typical signature is at least 16 Bytes (e.g., the size of an
MDS). If each computer receives a copy of the signature, then that one virus has
cost 15,258 MB of disk space world-wide to store the signature.

Suspect
files

F. suspect
Exact pattern

matching
(FFBF-VERIFY)

Fotlmd

\
=)/

Signatures Su;pect
é sigs.

e Malwar ™
e Fmalware ||

Fig. 2. The SplitScreen scanning architecture.

Bloom filter
(FFBF-SCAN)

F
Feed-forward

pattern matching on every file in F'. Instead SplitScreen em-
ploys a cache-efficient data structure called a FFBF [6] that
we created for doing approximate pattern matching. We use
it in conjunction with the Rabin-Karp text search algorithm
(see subsection II-B). The crux of the system is that the cache-
efficient first pass has extremely high throughput. The cache-
efficient algorithm is approximate in the sense that the FFBF
scan returns a set of suspect files Fyuspect that is a superset of
malware identified by exact pattern matching, i.e., Fihalware C
Fiuspect € F. In the second step we perform exact pattern
matching on Fyspect and return exactly the set Fiyaiware. Fig. 2
illustrates this strategy. The files in Fyyspect \ Fmalware represent
the false positives that we refer to in various sections of this pa-
per, and they are caused by 1) Bloom filter false positives (recall
that Bloom filters have one-sided error) and 2) the fact that we
can only look for fixed-size fragments of signatures and not en-
tire signatures in the first step (the FFBF scan), as a consequence
of how Rabin-Karp operates.

B. High-Level Algorithm

The scanning algorithm used by SplitScreen consists of four
processing steps called FFBF-INIT, FFBF-ScAN, FFBF-HIT,
and FFBF-VERIFY, which behave as follows:

o FFBF-INIT(X) — ¢ takes as input the set of signatures
and outputs a bit-vector ¢ which we call the all-patterns bit
vector. FFBF-SCAN will use this bit-vector to construct an
FFBF to scan files.

e FFBF-SCAN(¢, F) — (¢', Fsuspect) constructs an FFBF
from ¢ and then scans each file f € F' using the FFBE.
The algorithm outputs the tuple (¢, Fyuspect) Where
Fiuspect € F'is the list of files that were matched by ¢,
and ¢’ is a bit vector that identifies the signatures actually
matched by Fyyspect- We call ¢’ the matched-patterns bit
vector.

e FFBF-HIT(¢',X) — ¥’ takes in the matched-patterns bit
vector ¢ and outputs the set of regular expression (regexp)
signatures 2’ C 3 that were matched during FFBF-SCAN.

e FFBF-VERIFY (Y, Fyyspect) — Fnalware takesina set of
regular expression signatures ¥’ a set of files Fyyspect, and
outputs the set of files Fialware C Fsuspect matching 3.

The crux of the SplitScreen algorithm can be expressed as

SCAN(Z, F) = (¢Ia Fsuspect)
= FFBF-SCAN(FFBF-INIT(X), F)
in FFBF-VERIFY (FFBF-HIT(¢', ¥), Fiuspect)-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

Let R denote the existing regular expression pattern matching
algorithm, e.g., R is ClamAV. SplitScreen achieves the follow-
ing properties:

o Correctness. SCAN will return the same set of files as iden-
tified by R, i.e., SCAN(X, F) = R(%, F).

o Higher throughput. SCAN runs faster than R. In particu-
lar, we want the time for FFBF-SCAN plus FFBF-VERIFY
plus FFBF-HIT to be less than the time to execute R. (Since
FFBF-INIT is an initialization step performed only once per
set of signatures, we do not consider it for throughput. We
similarly discount in R the time to initialize any data struc-
tures in its algorithm.)

o Less memory. The amount of memory needed by SCAN is
less than R. In particular, we want max(|¢| + |¢'], |¥'|) <
|2 (the bit vectors are not required to be in memory during
FFBF-VERIFY). We expect that the common case is that
most signatures are never matched, e.g., the average user
does not have hundreds of thousands or millions of unique
malware programs on their computer. Thus |¥'| < |X], so
the total memory overhead will be significantly smaller. In
the worst case, where every signature is matched, ¥/ = X
and SplitScreen’s memory overhead is the same as existing
systems’s.

o Scales to more signatures. Since the all-patterns bit vector
¢ takes a fraction of the space needed by typical exact pat-
tern matching data structures, the system scales to a larger
number of signatures.

o Network-based system. Our approach naturally leads to a
distributed implementation where we keep the full set of
signatures Y on a server, and distribute ¢ to clients. Clients
use ¢ to construct an FFBF and scan their files locally. Af-
ter FFBF-SCAN returns, the client sends ¢’ to a server to
perform FFBF-HIT, gets back the set of signatures ¥/ actu-
ally needed to confirm malware is present. The client runs
FFBF-VERIFY locally using the reduced set of signatures
3. The distributed technique is well suited for mobile sce-
narios where each host is constrained by limited memory
footprints and low computational power (subsection III-D).

o Privacy. In previous network-based approaches such as
CloudAV [7], a client sends every file to a server (the cloud)
for scanning. Thus, the server can see all of the client’s files.
In our setting, the client never sends a file across the net-
work. Instead, the client sends ¢, which can be thought of
as a list of possible viruses on their system. We believe this
is a better privacy tradeoff. Furthermore, clients can attain
deniability as explained in subsection III-D. Note our ar-
chitecture can be used to realize the existing anti-malware
paradigm where the client simply asks for all signatures.
Such a client would still retain the improved throughput dur-
ing scanning by using our FFBF-based algorithms.

C. Bloom-Based Building Blocks

Bloom filters can have false positives, so a hit must be con-
firmed by an exact pattern matching algorithm (hence the need
for FFBF-VERIFY). Our first Bloom filter enhancement reduces
the number of signatures needed for verification, while the sec-
ond accelerates the Bloom filter scan itself.

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 191

Target file {m}
(Bloom filter hit)

Target file {n}
(Bloom filter miss)

SN

N
/

/

¥ ¥
[o]1]1]ofo[1]of1]o]1]ofofof1]o]0]

All-patterns
bit vector ¢

Matched-patterns

[o]1]oJofoJofof1]ofofofofof1]ofo] ™5 ceior &

Suspect signature {c}
corresponding to file {m}

Fig. 3. Building the matched-patterns bit vector as part of the FFBF algo-
rithm.

C.1 Feed-Forward Bloom Filters

An FFBF consists of two bit vectors. The all-patterns bit
vector is a standard Bloom filter initialized as described in
subsection III-E.1. In our setting, the set of items is X. The
matched-patterns bit vector is initialized to 0.

As with an ordinary Bloom filter, a candidate item is hashed
and the corresponding bits are tested against the all-patterns bit
vector. If all the hashed bits are set in the all-patterns bit vector,
the item is output as a FFBF match. When a match occurs, the
FFBF will additionally set each bit used to check the all-patterns
bit vector to 1 in the matched-patterns bit vector. In essence, the
matched-patterns bit vector records which entries were found in
the Bloom filter. This process is shown in Fig. 3.

After all input items have been scanned through the FFBF,
the matched-patterns bit vector is a Bloom filter representing the
patterns that were matched. The user of an FFBF can generate a
list of potentially matching patterns by running the input pattern
set against the matched-patterns Bloom filter to identify which
items were actually tested. Like any other Bloom filter output,
the output pattern subset may contain false positives.

In SplitScreen, ¢ is the all-patterns bit vector, and ¢’ is the
matched-patterns bit vector created by FFBF-SCAN. Thus, ¢’
identifies (a superset of) signatures that would have matched us-
ing exact pattern matching. FFBF-HIT uses ¢’ to determine the
set of signatures needed for FFBF-VERIFY.

C.2 Cache-Partitioned Bloom Filters

While a Bloom filter alone is more compact than other data
structures traditionally used in pattern matching algorithms like
AC or WM, it is not otherwise more cache-friendly: It performs
random access within a large vector (recall that hash function’s
output needs to be uniform distribution between 1 and m to min-
imize the hash collision). If this vector does not fit entirely in
cache, the accesses will cause cache misses which will degrade
performance substantially.

SplitScreen uses our cache-friendly partitioned bloom filter
design [6], which splits the input bit vector into two parts. The
first is sized to be entirely cache-resident, and the first s hash
functions map only into this section of the vector. The second is
created using virtual memory super-pages (when available) and

is sized to be as large as possible without causing TLB misses.
The FFBF prevents cache pollution by using non-cached reads
into the second bloom filter. The mechanisms for automatically
determining the size of these partitions and the number of hash
functions are described in [6].

The key to this design is that it is optimized for bloom-filter
misses. Recall that a Bloom filter hit requires matching each
hash function against a “1” in the bit vector. As a result, most
misses will be detected after the first or second test, with an ex-
ponentially decreasing chance of requiring more and more tests.

The combination of a Bloom filter representation and a cache-
friendly implementation provide a substantial speedup on mod-
ern architectures, as we show in Section V.

D. SplitScreen Distributed Anti-Malware

SplitScreen enables a distributed malware scanning scheme,
which splits a single-host signature-based scanning into a
server-client model. Since distributed SplitScreen is a natural
extension of the single-host scheme, it maintains the efficiency
of SplitScreen while keeping the network cost low. There are
three main advantages of using SplitScreen distributed anti-
malware system. First, SplitScreen reduces the cost of signature
distribution more than 10X over the traditional signature-based
technique. Second, SplitScreen eliminates the need for storing
the entire signature database in each client, while keeping the
privacy of clients. Third, the SplitScreen distributed scheme can
be easily adapted to malware scanning on resource constrained
mobile devices.

D.1 Distributed Malware Scanning

In the SplitScreen distributed model, illustrated in Fig. 4, the
input files are located on the clients’ file system, while the sig-
natures are located on a server. The overall system works as fol-
lows:

1. The server generates the all-patterns bit vector ¢ for the

most recent malware signatures and transmits it to the client.
It will be periodically updated to contain the latest malware
bit patterns, just as existing anti-malware approaches must
be updated (FFBF-INIT).

2. The client performs the pre-screening phase (FFBF-SCAN)
using the feed-forward Bloom filter, generates the matched-
patterns bit vector ¢’, compresses it and transmits it to the
server. Besides the matched-patterns bit vector, the client
filters suspect files.

3. The server uses the matched-patterns bit vector to filter the
signatures database and sends the full definitions ¥’ (1% of
the total signatures) to the client (FFBF-HIT).

4. The client performs exact pattern matching with the suspect
files from the pre-screening phase and the suspect signatures
received from the server (FFBF-VERIFY).

D.2 On-Demand Signature Distribution

In the distributed system, SplitScreen clients maintain only
the all-patterns bit vectors ¢ (there are two bit vectors cor-
responding to two FFBFs, one for regexp signatures and one
for MDS5 signatures). Instead of replicating the large signature
database at each host, the database is stored only at the server
and clients only get the signatures they are likely to need. The

192

signature request is on-demand, and the requested signature set
is directly computed from the client’s input ¢’ at the server (see
Fig. 4). As in the single-host scenario, the resulting set of sus-
pect signatures X’ may have unnecessary signatures due to the
false positive of Bloom filter, but does not produce any false
negative.

The on-demand signature distribution technique reduces the
network cost during updates by sending the all-patterns bit vec-
tor instead of sending a signature database: The server updates
its local signature database and then sends a differential all-
patterns bit vector update to the clients. An all-patterns bit vec-
tor update is a sparse—so highly compressible—bit vector that
is overlaid on top of the old bit vector. For instance, our eval-
uation shows that the signature distribution cost of ClamAV for
the 2007 signature dataset was 9.9 MB at initial distribution,
whereas SplitScreen’s was only 0.77 MB (subsection V-F). Fur-
thermore, since the clients do not have to use the entire set of
signatures for scanning, they also require less in-core memory
(important for multi-task systems), and have smaller load times.

SplitScreen reduces concerns about exposing the private data
of each client, because the contents of clients’ files are never sent
over the network. Instead clients only send compact representa-
tions (bit vectors) of short hashes (under 32 bits) of small (usu-
ally under 20 bytes long) parts of undisclosed files and hashes
of MDS5 signatures of files. Clients concerned about deniability
could set additional (randomly chosen) bits in their matched-
patterns bit vectors in exchange for increased network traffic.
Additionally, SplitScreen can speed up the performance of ex-
isting distributed anti-malware systems such as Cloud-AV [7],
by reducing the exact pattern matching time on the servers in
the cloud.

D.3 Malware Scanning on Mobile Devices

The amount of malware targeting smartphones in 2010 in-
creased by 33%, compared to the previous year [18]. This large
increase in mobile malware shows that mobile platforms are get-
ting more attention from malware authors [19], [20]. If the num-
ber of mobile malware signatures grow at the same rate as that
of PC malware (shown in Fig. 1), mobile anti-malware will soon
face similar scalability problems.

The scalability problem for mobile anti-malware is more chal-
lenging than that of personal desktop computers due to resource
constraints. For example, the iPhone 3G has only 16 GB stor-
age and 128 MB RAM. Though the iPhone 3GS doubles its
memory to 256 MB RAM and the latest iPhone 4 is armed
with 512 MB RAM, neither are sufficient to run current anti-
malware applications, because current signature databases re-
quire at least 534 MB of memory (subsection V-E). In addi-
tion to the hard limitations imposed by total available mem-
ory, the quantity of malware signatures that can be supported by
resource-constrained devices is also limited by efficiency con-
siderations, given the smaller typical cache sizes and slower
CPUs.

Distributed SplitScreen resolves potential memory problems
on resource-constrained mobile devices by allowing a client to
efficiently handle a large-scale signature database using much
smaller memory. Specifically, on-demand signature distribu-
tion allows effective malware scanning without storing the en-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

Server
Signature
DB X
MD5 Rolling
computation hashes
\ \
MD5 RegExp
FFBF-SCAN FFBF-SCAN
MD5 MD5 RegExp RegExp
suspect matched suspect matched P
files bit vector files bit vector T FFBF-HIT
Fsuspect ¢ Fsuspect ! ‘ .

-

FFBF-VERIFY

Suspect

signatures
5/

Fig. 4. Data flow for distributed SplitScreen.

tire malware signature database on each mobile device. In-
stead, mobile devices contain only the all-patterns bit vector ¢,
which is an order-of-magnitude smaller than the entire signature
database.

Furthermore, SplitScreen allows the traditional anti-malware
algorithm to run on mobile devices that have much less
RAM than PC’s. Subsection V-E discusses in detail how the
SplitScreen distributed technique is well suited for a mobile en-
vironment, where each host has limited resources and a persis-
tent network connection. For example, we evaluated SplitScreen
on wimpy nodes [30], which have similarly low memory and
low-powered CPUs as smartphones.

Aside from the scalability issue, mobile anti-malware systems
must be developed with consideration of the client’s privacy.
Today’s mobile devices contain private data such as personal
emails, credit card numbers, and lists of contacts. Existing ap-
proaches which sends such sensitive information across the net-
work in order to scan for malware introduce a huge privacy prob-
lem [7]. However, SplitScreen eliminates this privacy concern
by sending only the matched pattern bit vector ¢’ to the server.
Thus, the organization hosting the SplitScreen server needs to
see only limited information about a client.

E. Design Details

E.1 Files and Signatures Screening

As explained in subsection II-A, ClamAV uses two types of
signatures: RegExp signatures and MDS5 signatures. We handle
each with its own FFBE.

E.l.a Pattern signatures

The SplitScreen server extracts a fragment of length w
from every signature (the way w is chosen is discussed
in subsection V-H, while handling signatures smaller than w
bytes and signatures containing wildcards is presented in

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 193

subsection III-E.3 and subsection III-E.2). These fragments will
be hashed and inserted into the FFBF. When performing FFBF
scanning, a window of the same size (w) is slid through the ex-
amined files, and its content at every position is tested against
the filter. The hash functions we use in our FFBF implementa-
tion are based on hashing by cyclic polynomials [21] which we
found to be effective and relatively inexpensive. To reduce com-
putation further, we use the idea of Kirsch and Mitzenmacher
[22] and compute only two independent hash functions, deriv-
ing all the others as linear combinations of the first two.

E.1.b MDS5 signatures

ClamAV computes the MD5 hash of each scanned file (or its
sections) and searches for it in a hash table of malware MD5
signatures. SplitScreen replaces the hash table with an FFBF
to save memory. The elements inserted into the filter are the
MDS5 signatures themselves, while the candidate elements tested
against the filter are the MDS5 hashes computed for the scanned
files. Since the MDS5 signatures are uniform hash values, the
hash functions used for the FFBF are straightforward: Given a
16-byte MDS5 signature b1bs- - -b1g, we compute the 4-byte hash
values as linear combinations of hy = by---by @ bs- - -bg and
ha = bg- - -b12 ® bi3- - -b1s.

E.2 Signatures with Wildcards

A small fraction (1.5% in ClamAV) of regular expression sig-
natures contain wildcards, but SplitScreen’s Rabin-Karp-based
FFBF algorithm operates with fixed strings. Simply expanding
the regular expressions does not work. For example, the expres-
sion

3¢666 f726d3e{1 — 200}3c¢696e707574

(where “{1 — 200} matches any sequence no longer than 200
bytes) generates 2562%0 different byte sequences. It is impracti-
cal to put all of them into the Bloom filter.

Instead, SplitScreen extracts the invariant fragments (fixed
byte subsequences) of a wildcard-containing signature and
selects one of these fragments to put in the FFBF (see
subsection III-E.4 for more details about fragment selection).

E.3 Short Signatures

If a regular expression signature does not contain a fixed frag-
ment at least as long as the window size, the signature cannot be
added to the feed-forward Bloom filter. Decreasing the window
size to the length of the shortest signature in the database would
raise the Bloom filter scan false positive rate to an unacceptable
level, because the probability of a random sequence of bytes
being found in any given file increases exponentially as the se-
quence shortens.

SplitScreen therefore performs a separate, exact pattern
matching step for short signatures concurrently with the FFBF
scanning. Short signatures are infrequent (they represent less
than 0.4% of ClamAV’s signature set for our default choice for
the window size—12 bytes), so this extra step does not sig-
nificantly reduce performance. The SplitScreen server builds
the short signature set when constructing the Bloom filters.
Whenever a SplitScreen client requires Bloom filter updates, the
SplitScreen server sends it this short signature set too.

>.; = set of signatures

o = input signature (o € X)

w = fixed window size

~v = length w fixed byte sequence (w-gram) in o
DF(v) = the document frequency of w-gram -y
outputs
¢; = FFBF signatures

Yshort = set of short signatures

for all 0 € X\ps, put o into dMps
for all o in Ygeq U Xwild

if |o| > w
for all fixed byte w-grams v in o
if DF(v)=0

put 7y into ¢RregExp; GOTO next o
/feither shorter than w or no zero DF
put o into Mgport

Fig. 5. Final FFBF-INIT algorithm.

E.4 Selecting Fragments Using Document Frequency

While malware signatures are highly specific, the fixed-length
substrings that SplitScreen uses may not be. For example, sup-
pose that the window size is 16 bytes. Almost every binary file
contains 16 consecutive “0x00” bytes. Since we want to keep as
few suspect files as possible for the subsequent exact-matching
phase, we should be careful not to include such common pat-
terns into the Bloom filter.

We use the document frequency (DF) of signature fragments
in clean binary files to determine if a chosen signature fragment
is likely to match safe files. The DF of a signature fragment rep-
resents the number of documents (or files) containing the frag-
ment. A high DF indicates that the corresponding signature frag-
ment is common and more non-infected files may be classified
as suspect files, i.e., many false positives.

We compute the DF value for each window-sized signature
fragment in clean binary samples. For each signature, we insert
into the Bloom filter the first fragment with a DF value of zero
(i.e., the fragment did not occur in any of the clean binary files).
The intuition of choosing zero DF fragments is that we can mini-
mize the chance of finding the fragments in safe files while max-
imizing the probability of detecting the fragments in infected
files. The less suspect files we have, the faster SplitScreen per-
forms the subsequent FFBF-VERIFY. The signatures that have
no zero DF fragments are added to the short signature set.

We summarize our signature processing algorithm in Fig. 5.
The SplitScreen server runs this algorithm for every signature,
and creates two Bloom filters—one for MD35 signatures, and one
for the regular expression signatures—as well as the set of short
signatures.

E.5 Important Parameters

We summarize in this section the important parameters that
affect the performance of our system, focusing on the tradeoffs
involved in choosing those parameters.

Bit vector size. The size of the bit vectors trades scan speed
for memory use. Larger bit vectors (specifically, larger non-
cache-resident parts) result in fewer Bloom filter false positives,

194

improving performance up to the point where TLB misses be-
come a problem (see subsection I1I-C.2).

Sliding window size. The wider the sliding window used to
scan files during FFBF-SCAN, the less chance there is of a
false positive (see subsection V-H). This makes FFBF-VERIFY
run faster (because there will be fewer files to check). However,
the wider the sliding window, the more signatures that must be
added to the short signature set. Since we look for short signa-
tures in every input file, a large number of short signatures will
reduce performance.

Number of Bloom filter hash functions. The number of
hash functions used in the FFBF algorithm (the k& parameter in
subsection II-B) is a parameter for which an optimum value can
be computed when taking into account the characteristics of the
targeted hardware (e.g., the size of the caches, the latencies in
accessing different levels of the memory hierarchy) as described
in [6]. Empirically, we found that two hash functions each for
the cache-resident part and the non-cache-resident part of the
FFBF works well for a wide range of hardware systems.

IV. IMPLEMENTATION

We have implemented SplitScreen as an extension of the
ClamAV open source anti-malware platform, version 0.94.2.
Our code is available at http://security.ece.cmu.edu. The
changes comprised approximately 8,000 lines of C code. The
server application used in our distributed anti-malware system
required 5,000 lines of code. SplitScreen servers and SplitScreen
clients communicate with each other via TCP network sockets.

The SplitScreen client works like a typical anti-malware
scanner; it takes in a set of files, a signature database (¢ in
SplitScreen), and outputs which files are malware along with
any additional metadata such as the malware name. We modified
the existing 1ibclamav library to have a two-phase scanning
process using FFBFs. For easier experiment, we add an option
to turn on/off SplitScreen’s feature. Finally, white-list signatures
of ClamAV are not handled with FFBF right now.

Recently, ClamAV added a new type of signature, called the
logical signature, that enables to have more complex representa-
tion. Although our current implementation does not handle this
signature, adding a support for this type of signatures is straight-
forward.

The SplitScreen server generates ¢ from the default Cla-
mAYV signatures using the algorithm shown in Fig. 5. Note that
SplitScreen can implement traditional single-host anti-malware
by simply running the client and server on the same host. Thus,
we did not implement separate programs for distributed and
single scenarios. All the single-host SplitScreen experiments in
Section V is done by running both server and client on the same
machine. Also, we use run-length encoding to compress the bit
vectors and signatures sent between client and server in order to
reduce the network cost.

V. EVALUATION

In this section we first detail our experimental setup, and then
briefly summarize the malware measurements that confirm our
hypothesis that most of the volume of malware can be detected

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

using a few signatures. We then present an overall performance
comparison of SplitScreen and ClamAYV, followed by detailed
measurements to understand why SplitScreen performs well,
how it scales with increasing numbers of regexp and MDS5 signa-
tures, and how its memory use compares with ClamAV. We then
evaluate SplitScreen’s performance on resource constrained de-
vices and its performance in a network-based use model.

A. Evaluation Setup

Unless otherwise specified, our experiments were conducted
on an Intel 2.4 GHz Core 2 Quad with 4 GB of RAM and a 8§ MB
split L2 cache using a 12 byte window size (see Section III).
When comparing SplitScreen against ClamAYV, we exclude data
structure initialization time in ClamAYV, but count the time for
FFBF_INIT? in SplitScreen. Thus, our measurements are con-
servative because they reflect the best possible setting for Cla-
mAYV, and the worst possible setting for SplitScreen. Unless oth-
erwise specified, we report the average over 10 runs.

Scanned files. Unless otherwise specified, all measurements
reflect scanning 344 MB of 100% clean files. We use clean
files because they are the common case, and exercise most
code branches (subsection V-G shows performance for varying
amounts of malware). The clean files come from a fresh install
of Microsoft Windows XP plus typical utilities such as MS Of-
fice 2007 and MS Visual Studio 2007.

Signature sets. We use two sets of signatures for the evalua-
tion. If unspecified, we focus on the current ClamAV signature
set (main v.50 and daily v.9154 from March 2009), which con-
tained 530 k signatures. We use four additional historical snap-
shots from the ClamAYV source code repository. To measure how
SplitScreen will improve as the number of signatures contin-
ues to grow, we generated additional regex and MDS5 signatures
(“projected” in our graphs) in the same relative proportion as
the March signature set. The synthetic regexs were generated by
randomly permuting fixed strings in the March snapshot, while
the synthetic MD35s are random 16 byte strings.

B. Malware Measurements

Given a set of signatures Y, we are interested in knowing how
many individual signatures ¥’ are matched in typical scenarios,
i.e., |X'| vs. |3]. We hypothesized that most signatures are rarely
matched (|X'| < [X]), e.g., most signatures correspond to mal-
ware variants that are never widely distribution.

One typical use of anti-malware products is to filter out
malware from email. We scanned Carnegie Mellon Universi-
ty’s email service from May lIst to August 29th of 2009
with ClamAV. 1,392,786 malware instances were detected out
of 19,443,381 total emails, thus about 7% of all email con-
tained malware by volume. The total number of unique sig-
natures matched was 1,825, which is about 0.34% of the total
signatures—see Fig. 6.

Another typical use of anti-malware products is to scan files
on disk. We acquired 393 GB of malware from various sites,
removed duplicate files based upon MDS5, and removed files not
recognized by ClamAV using the v.9661 daily and v.51 main

4SplitScreen has a significant advantage here—ClamAV requires a substantial
amount of time to create its data structures—but we believe ClamAV’s startup
time could be optimized without significant research effort.

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 195

100

80

60

40

% of hits covered

20 f ————— .

Number of signatures (in log-scale)

Fig. 6. The overall amount of malware detected (y axis) vs. the total
number of malware signatures needed (x axis). For example, about
1000 signatures are needed to detect virtually all malware.

signature database. The total number of signatures in ClamAV
was 607,988, and the total number of unique malware files was
960,766 (about 221 GB). ClamAV reported out of the 960,766
unique files that there were 128,992 unique malware variants.
Thus, about 21.2% of signatures were matched.

We conclude that indeed most signatures correspond to rare
malware, while only a few signatures are typically needed to
match malware found in day-to-day operations.

C. SplitScreen Throughput

We ran SplitScreen using both historical and projected sig-
nature sets from ClamAV, and compared its performance to
ClamAYV on the same signature set. Fig. 7 shows our results.
SplitScreen consistently improves throughput by at least 2x on
previous and existing signatures, and the throughput improve-
ment factor increases with the number of signatures.

C.1 Understanding Throughput: Cache Misses

We hypothesized that a primary bottleneck in ClamAV was
L2 cache misses in regular expression matching. Fig. 8 shows
ClamAV’s throughput and memory use as the number of regular
expression signatures grows from zero to roughly 125,000 with
no MDS5 signatures. In contrast, increasing the number of MD5
signatures linearly increases the total memory required by Cla-
mAYV, but has almost no effect on its throughput. With no regexp
signatures, ClamAV scanned nearly 50 MB/sec, regardless of
the number of MDS5 signatures.

Fig. 9 compares the absolute number of L2 cache misses for
ClamAV and SplitScreen as the (total) number of signatures
increases. The dramatic increase in L2 cache misses for Cla-
mAV suggest that this is, indeed, a major source of its per-
formance degradation. In contrast, the number of cache misses
for SplitScreen is much lower, helping to explain its improved
scanning performance. These results indicate that increasing
the number of regex signatures increases the number of cache
misses, decreases throughput, and thus is the primary through-
put bottleneck in ClamAV.

20 ClamAVIC—J
SplitScreen E—
@
@ 15
2
B
< 10
on
=
S
-
=
E o5t
0
&S X 2
RN o IRy 8 SIS R
YT EY
Number of signatures
Fig. 7. Performance of SplitScreen and ClamAV using historical and

projected ClamAV signature sets.

45 40
&ﬁ Throughput —&—
40 u\ Memory use —>—
~ 35 i} 135 -
= m
2 30 5 s
< 55 130 o
E & /></ =
= 20 2
gﬁ {25 g
- < 2
S0 e o {20
5 B
0 15
0 25000 50000 75000 100000 125000

Number of RegExp signatures

Fig. 8. ClamAV scanning throughput and memory consumption as the
number of regular expression signatures increases.

D. SplitScreen Scalability and Performance Breakdown

How well does SplitScreen scale? We measured three scal-
ing dimensions: 1) How throughput is affected as the number of
regular expression signatures grows, 2) how FFBF size affects
performance and memory use, and 3) where SplitScreen spends
time as the number of signatures increases.

Throughput. Fig. 10 shows SplitScreen’s throughput as the
number of signatures grows from 500,000 (approximately what
is in ClamAV now) to 3 M. At 500,000 signatures, SplitScreen
performs about 2.25 x better than ClamAV. At 3 M signatures,
SplitScreen performs 4.5x better. The 4.5 throughput in-
crease is given with a 32 MB FFBF. These measurements are
all an average over 10 runs. The worst of these runs is the first
when the file system cache is cold, when SplitScreen was only
3x faster than ClamAV (graph omitted due to space).

FFBF size. We also experimented with smaller FFBF’s of
size 8, 12, 20, and 36 MB, as shown in Fig. 10. The larger
the FFBF, the smaller the false positive ratio, thus the greater
the performance. We saw no additional performance gain by in-

196

,
1610 ClamAV —&— =
SplitScreen -~
1.2x10
8
£ g.0x10° e
=
ég /ET/Z/
4.0x10° ﬁf
SOOCK - Ko HermHoree oo e S
0.0x1¢° X

0 100000 200000 300000 400000 500000 600000

Number of signatures

Fig. 9. Cache misses.

Table 1. Time spent per step by SplitScreen to scan 1.55 GB of files (in
seconds and by percentage).

#f FFBF—S'CAN FFBF-HIT FFBF-VERIEY
sigs. + short sigs. + traffic

500k 27.2(94.7%) 0.7 (2.6%) 0.8 (2.7%)

IM 2740924%) 0.9 (3.0%) 1.4 (4.6%)
2M 26.5(76.0%) 1.3 (3.7%) 7.1 (20.3%)
3IM 242(583%) 1.7(4.1%) 15.6 (37.6%)

creasing the FFBF beyond 36 MB.

Per-step breakdown. Table V-D shows the breakdown of time
spent per phase. We do not show FFBF-INIT which was always
< 0.01% of total time. As noted earlier, we omit ClamAV ini-
tialization time in order to provide conservative comparisons.

We draw several conclusions from our experiments. First,
SplitScreen’s performance advantage continues to grow as the
number of regexp signatures increases. Second, the time re-
quired by the first phase of scanning in SplitScreen holds steady,
but the exact matching phase begins to take more and more
time. This occurs because we held the size of the FFBF con-
stant. When we pack more signatures into the same size FFBF,
the bit vector becomes more densely populated, thus increasing
the probability of a false positive due to hash collisions. Such
false positives result in more signatures to check during FFBF-
VERIFY. Thus, while the overall scan time is relatively small,
increasing the SplitScreen FFBF size will help in the future, i.e.,
we can take advantage of the larger caches the future may bring.
Note that the size increases to the FFBF need be nowhere near
as large as with ClamAV, e.g., a few megabytes for SplitScreen
vs. a few hundred megabytes for ClamAV.

E. SplitScreen on Constrained Devices

Fig. 11 compares the memory required by SplitScreen and
ClamAV for performing FFBF-SCAN. 533,183 signatures in
ClamAV consumed about 116 MB of memory. SplitScreen re-
quires only 55.4 MB, of which 40 MB are dedicated to FF-
BFs. Our FFBF was designed to minimize false positives due
to hash collisions but not adversely affect performance due
to TLB misses (subsection III-C.2). At 3 M signatures, Cla-
mAV consumed over 500 MB of memory, while SplitScreen
still performed well with a 40 MB FFBF. The memory use of
SplitScreen directly depends on the size of FFBFs.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

o — 172
210
m
S 8
g
26
en
=)
2 4
=
=
2
0 I I
500 k 1M oM 3M

Number of signatures

Fig. 10. Performance for different size feed-forward Bloom filters, keep-
ing the cache-resident portion constant.

We then tested SplitScreen’s performance with four increas-
ingly more limited systems. We compare SplitScreen and Cla-
mAYV using the current signature set on: A 2009 desktop com-
puter (Intel 2.4 GHz Core 2 Quad, 4 GB RAM, 8 MB L2 cache);
a 2008 Apple laptop (Intel 2.4 GHz Core 2 Duo, 2 GB RAM,
3 MB L2 cache); a 2005 desktop (Intel Pentium D 2.8 GHz,
4 GB RAM, 2 MB L2 Cache); and a Alix3c2 (AMD Geode
500 Mhz, 256 MB RAM, 128 kB L2 Cache) that we use as a
proxy for mobile/handheld devices.

Fig. 12 shows these results. On the desktop systems and lap-
top, SplitScreen performs roughly 2x better than ClamAV. On
the embedded system, SplitScreen performs 30% better than the
baseline ClamAV. The modest performance gain was a result of
the very small L2 cache on the embedded system.

However, our experiments indicate a more fundamental lim-
itation with ClamAV on the memory-constrained AMD Geode.
When we ran using the 2 M signature dataset, ClamAV ex-
hausted the available system memory and crashed. In contrast,
SplitScreen successfully operated using even the 3 M signature
dataset. These results suggest that SplitScreen is a more effec-
tive architecture for memory-constrained devices.

F. SplitScreen Network Performance

In the network-based setting (subsection III-D.1), there are
three data transfers between server and client: 1) The initial
bit vector ¢ (the all-patterns bit vector) generated by FFBF-
INIT sent from the server to the client; 2) the bit vector ¢’ (the
matched-patterns bit vector) for signatures matched by FFBF-
SCAN sent by the client to the server; and 3) the set of signatures
3’ needed for FFBF-VERIFY sent by the server to the client.

Network latency is the primary difference in performance be-
tween distributed and standalone configurations of SplitScreen,
because the client and server applications do not use the CPU at
the same time, and there is not a large difference in cache misses.
We compared two scenarios: A server on the local machine, and
over a wide area network with a 10-hop distance. Our experi-
mental results show that there was only a 0.5 second difference
between two cases, which is the network delay.

Recall that SplitScreen compresses the (likely-sparse) bit vec-

5The AMD Geode has hardware capabilities similar to the iPhone 3GS, which
has a 600 MHz ARM processor with 128 MB of RAM.

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 197

500 } ClamAV -
SplitScreen —%—
o 400§
2
2 300
=
g
£ 200 |
()
=
100
i VI L
0

1.0x10° 1.0x10°
Number of signatures (in log scale)

Fig. 11. Memory use of SplitScreen and ClamAV.

ClamAV 3
SplitScreen —)

.|
. | | HI |

Core 2 Quad Core 2 Duo Pentium D AMD 500 Mhz
8MBL2 3MBL2 2MBL2 128kBL2

Throughput (MB/s)

Fig. 12. Performance for four different systems (differing CPU, cache,
and memory size).

Table 2. Network traffic for SplitScreen using 530 k signatures.

gty S0 NI oy 3y e o
Randomly generated 200 MB 1,000 80 405 485 0.50%
Randomly generated 2 GB 10,000 224 223 447 0.14%

Clean PE files 340 MB 1,957 1,829 15,082 16,911 4.19%

Clean ELF files 157 MB 1,319 180 11,766 13,338 9.26%

100% malware 170 MB 534 17,100 160,828 177,928 N/A

100% malware 1.1GB 5277 61,748 648,962 710,710 N/A

tors before transmission. The compressed size of ¢’ depends
upon the signatures matched and the FFBF false positive rate.
Table 2 shows the network traffic and false-positive rates in dif-
ferent cases. The size of both ¢’ and ¥’ remains small for these
files, requiring significantly less network traffic than transferring
the entire signature set.

Table 3 shows the size of the all-patterns bit vector ¢, which
must be transmitted periodically to clients, for increasing Cla-
mAV database sizes. The numbers in the table are the size of
gzipped databases. Note that SplitScreen requires only about
10% the network bandwidth to distribute the initial signatures
to clients. Note that the update efficiency is applied for regular
updates as well as initial time. Whenever we send a new signa-
ture data set, SplitScreen simply create a difference of two bit
vectors (old and updated bit vectors), and send only the differ-
ence bits.

Overall, the volume of network traffic for SplitScreen (|¢| +
|¢'| + |X']) is between 10%-13% of that used by ClamAV on
a fresh scan. On subsequent scans SplitScreen will go out and
fetch new ¢’ and ¥/ if new signatures are matched (e.g., the ¢’ of
a new scan has different bits set than previous scans). However,
since |Y'| < |X|, the total lifetime traffic is still expected to be
very small.

G. Malware Scanning

How does the amount of malware affect scan throughput?
We created a 100 MB corpus using different ratios of mal-
ware and clean PE files. Fig. 13 shows that SplitScreen’s perfor-
mance advantage slowly decreases as the percentage of malware
increases, because it must re-scan a larger amount of the input
files using the exact signatures. Even with 100% malware files,

Table 3. Signature size initially sent to clients.

signatures ClamAV EFBF + Short
CVD (MB) sigs. (MB)
130 k 9.9 0.77
245k 13.5 1.2
530k 20.8 2.0

Table 4. False positive rates for different window sizes. The average
and maximum FP rates are from the 10-fold cross validation of DF on
1.55 GB of clean binaries.

Window size Avg. F-P Max. F-P # Short sigs.

8 bytes 17.3 18.9 1169
10 bytes 11.6 14.3 1350
12 bytes 8.56 9.36 1624
14 bytes 6.70 7.77 2004
16 bytes 5.23 6.31 3203

SplitScreen still performed scanning 34% faster than ClamAV
in that SplitScreen scanned files against a smaller subset of sig-
natures X/ (< X)) during FFBF-VERIFY. Note that this result
is due to the biased distribution of malware, which makes the
2nd phase exact matching to be efficient enough even with full
of matched signatures (see subsection V-B).

H. Additional SplitScreen Parameters

In addition to the FFBF size (subsection V-D), we measured
the effect of different hash window sizes and the effectiveness
of using document frequency to select good tokens for regular
expression signatures.

ClamAV
10 | SplitScreen
=)
=S
B
St
=
2
<
=
0
0O 1 2 4 & 10 20 40 60 80 100
Percentage of malware in scanned files (%)
Fig. 13. Throughput as % of malware increases (using total scan time

including verification).

H.1 Fixed string selection and document frequency

The better the fixed string selection, the lower the false pos-
itive rate will be, and thus the better SplitScreen performs. We
use the document frequency (DF) of known good programs to
eliminate fixed strings that would cause false positives. Our ex-
periments were conducted using the known clean binaries as de-
scribed in subsection V-A. We found the performance increase
in Fig. 13 was in part due to DF removing substrings that match
clean files. We did a subsequent test with 344 MB of PE files
from our data set. Without document frequency, we had a 22%
false positive rate and a throughput of 10 MB/s. With docu-
ment frequency, we had a 0.9% false positive rate and 12 MB/s
throughput. We also performed 10-fold cross validation to con-
firm that document frequency is beneficial, with the average and
max false positive rate per window size shown in Table 4.

H.2 Window size

A shorter hash window results in fewer short regexp signa-
tures, but increases the false positive rate. The window repre-
sents the number of bytes from each signature used for FFBF
scanning. For example, a window of 1 byte would mean a file
would only have to match 1 byte of a signature during FFBF-
SCAN. (The system ensures correctness via FFBF-VERIFY.)

Using an eight-byte window, hash collisions caused a 3.98%
of files to be mis-identified as malware in FFBF-SCAN that
later had to be weeded out during FFBF-VERIFY. With a
sixteen-byte window, the false positive rate was only 0.46%. The
throughput for an 8 and 16 byte window was 9.44 MB/s and
8.67 MB/s, respectively. Our results indicate a window size of
12 seems optimal as a balance between the short signature set
size, the false positive rate, and the scan rate.

1. Comparison with HashAV

The work most closely related to ours is HashAV [5]. HashAV
uses Bloom filters as a first pass to reduce the number of
files scanned by the regular expression algorithms. Although
there are many significant differences between SplitScreen and
HashAV (see Section VII), HashAV serves as a good reference
for the difference between a typical Bloom scan and our FFBF-
based techniques.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

ClamAV O
HaseAV @

SplitScreen

Throughput (MB/s)
— N W W oA b
n S G S A S K

—_
()
T

(Hﬂmﬁ

30k 50k 70k 88k 100k
Number of signatures

S D
T

Fig. 14. HashAV and SplitScreen scan throughput.

To enable a direct comparison, we made several modifications
to each system. We modified SplitScreen to ignore file types and
perform only the raw scanning supported by HashAV. We dis-
abled MD5 signature computation and scanning in SplitScreen
to match HashAV’s behavior. We updated HashAV to scan mul-
tiple files instead of only one. Finally, we changed the evalu-
ation to include only the file types that HashAV supported. [t
is important to note that the numbers in this section are not di-
rectly comparable to those in previous sections. HashAV did not
support the complex regexp patterns that most frequently show
up in SplitScreen’s small signatures set, so the performance im-
provement of SplitScreen over ClamAV appears larger in this
evaluation that it does in previous sections.

Fig. 14 shows that with 100 k signatures, SplitScreen perfo-
rms about 9x better than HashAV, which in turn outperforms
ClamAV by a factor of two. SplitScreen’s performance does
not degrade with an increasing number of signatures, while
HashAV’s performance does. One reason is SplitScreen is more
cache friendly; with large signature sets HashAV’s default
Bloom filter does not fit in cache, and the resulting cache misses
significantly degrade performance. If HashAV decreased the
size of their filter, then there would be many false positives due
to hash collisions. Further, HashAV does not perform verifica-
tion using the small signature set as done by SplitScreen. As
a result, the data structure for exact pattern matching during
HashAV verification will be much larger than during verifica-
tion with SplitScreen.

VI. DISCUSSION

We see the SplitScreen distributed model providing benefits
in several scenarios, beyond the basic speedup provided by our
approach. As shown in subsection V-F, a SplitScreen client re-
quires 10x less data than a ClamAV client before it can start
detecting malware. Furthermore, sending a new signature takes
8 bytes for SplitScreen (remember from subsection III-E.1 that
all the FFBF bits corresponding to a signature are generated
from just two independent 32 bit hashes) and 20 to 350 bytes

CHA et al.: SPLITSCREEN: ENABLING EFFICIENT, DISTRIBUTED MALWARE DETECTION 199

on ClamAV. These factors make SplitScreen more effective in
responding to new malware because there is less pressure on
update servers, and clients get updates faster. The other advan-
tage to dynamically downloading signatures is that SplitScreen
can be installed on devices with limited storage space, like resi-
dential gateways or mobile devices.

In the SplitScreen distributed anti-malware model, the server
plays an active role in the scanning process: It extracts relevant
signatures from the signature database for every scan that gener-
ates suspect files on a client. Running on an Intel 2.4 GHz Core
2 Quad machine, the unoptimized server can sustain up to 14
requests per second (note that every request corresponded to a
scan of 1.5 GB of binary files, so the numbers of suspect files
and signatures were relatively high). As such, a single server
can handle the virus scanning load of a set of clients scanning
21 GB/sec of data. While this suffices for a proof-of-concept,
we believe there is substantial room to optimize the server’s per-
formance in future work: (1) Clients can cache signatures from
the server by adding them to their short signatures set; (2) the
server can use an indexing mechanism to more rapidly retrieve
the necessary signatures based upon the bits set in the matched-
patterns bit vector; (3) conventional or, perhaps, peer-to-peer
replication techniques can be easily used to replicate the server,
whose current implementation is CPU intensive but does not re-
quire particularly large amounts of disk or memory. These im-
provements are complementary to our core problem of efficient
malware scanning, and we leave them as future work.

Finally, there are many quality closed-source anti-malware
programs such as Symantec’s Norton suite and Trend Micro’s
Internet Security suite. The algorithms used in such programs
are proprietary and likely trade secrets. Thus, we cannot know
what (if any) features are shared with SplitScreen.

VII. RELATED WORK

CloudAV [7] applies cloud computing to anti-virus scanning.
It exploits ‘N-version protection’ to detect malware in the cloud
network with higher accuracy. Its scope is limited, however,
to controlled environments such as enterprises and schools to
avoid dealing with privacy. Each client in CloudAV sends files
to a central server for analysis, while in SplitScreen, clients send
only their matched-patterns bit vector.

Pattern matching, including using Bloom filters, has been ex-
tensively studied in and outside of the malware detection con-
text. Several efforts have targeted network intrusion detection
systems such as Snort, which must operate at extremely high
speed, but that have a smaller and simpler signature set [23].
Bloom filters are a commonly-proposed technique for hardware
accelerated deep packet inspection [24].

HashAV proposed using Bloom filters to speed up the Wu-
Manber implementation used in ClamAV [5]. They show the
importance of taking into account the CPU caches when design-
ing exact pattern matching algorithms. However, their system
does not address all aspects of an anti-malware solution, includ-
ing MDS signatures, signatures shorter than the window size,
cache-friendly Bloom filters when the data size exceeds cache
size, and reducing the number of signatures in the subsequent
verification step. Furthermore, the SplitScreen FFBF-based ap-

proach scales much better for increases in the number of signa-
tures.

A solution for signature-based malware detection in resource
constrained mobile devices had previously been presented in
[25]. Similarly to SplitScreen, it used signature fragment selec-
tion to accelerate the scanning, but could only handle fixed byte
signatures, and was less memory efficient than SplitScreen.

Bose et al. [26] presented a malware classification technique
for mobile devices based upon behavioral analysis. They moni-
tored lower-level API calls and system events to build behavior
signatures. However, their approach causes an additional over-
head for logging API call events at runtime, and the accuracy of
their system depends on the training malware dataset.

Liu et al. [27] monitored the power consumption of a mobile
device and detected malware if abnormal power consumption
was observed. Similarly, a power-aware malware detection pro-
posed by Kim et al. [28] analyzed power consumption patterns.
SplitScreen, however, can be used for more general malware
scenarios including power consuming malware and information-
disclosure malware.

The “Oyster” ClamAV extensions [29] replaced ClamAV’s
Aho-Corasick trie with a multi-level trie to improve its scala-
bility, improving throughput, but did not change its fundamental
cache performance or reduce the number of signatures that files
must be scanned against.

VIII. CONCLUSION

SplitScreen’s two-phase scanning enables fast and memory-
efficient malware detection that can be decomposed into a clien-
t/server process that reduces the amount of storage on, and
communication to, clients by an order of magnitude. The key
aspects that make this design work are the observation that
most malware signatures are never matched—but must still be
detectable—combined with the feed-forward Bloom filter that
reduces the problem of malware detection to scanning a much
smaller set of files against a much smaller set of signatures. Our
evaluation of SplitScreen, implemented as an extension of Cla-
mAYV, shows that it improves scanning throughput using today’s
signature sets by over 2 x, using half the memory. The speedup
and memory savings of SplitScreen improve further as the num-
ber of signatures increases. Finally, the efficient distributed ex-
ecution made possible using SplitScreen holds the potential to
enable scalable malware detection on a wide range of low-end
consumer and handheld devices.

ACKNOWLEDGMENT

We would like to thank Pei Cao and Ozgun Erdogan for help-
ful discussions and feedback, as well as for making the source
code to HashAV available. We would also like to thank Carngie
Mellon University’s email team for their help in this work, and
Siddarth Adukia, the anonymous reviews and our shepherd for
their helpful comments.

REFERENCES

[1] Symantec global internet security threat report. [Online]. Avail-
able: http://www.symantec.com/about/news/release/article.jsp?prid=2009

200

[2]

[3]

[4]
(5]
(6]
[71
(8]
(91
[10]
(1]
[12]
[13]
[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

0413.01

F-secure: Silent growth of malware accelerates. [Online]. Available:
http://www.f-secure.com/en_.EMEA/security/security-lab/latest-threats/se
curity-threat-summaries/2008-2.html

G. Ollmann, “The evolution of commercial malware development kits and
colour-by-numbers custom malware,” Computer Fraud & Security, vol. 9,
2008.

T. Kojm. (2008). Introduction to ClamAV. [Online]. Available: http://
www.clamav.net/doc/webinars/Webinar-TK-2008-06-11.pdf

O. Erdogan and P. Cao, “Hash-AV: Fast virus signature scanning by cache-
resident filters,” Int. J. Security Netw., vol. 50, no. 2, 2007.

I. Moraru and D. G. Andersen, “Exact pattern matching with feed-forward
bloom filters,” in Proc. ALENEX, 2011.

J. Oberheide, E. Cooke, and F. Jahanian. “CloudAV: N-version antivirus
in the network cloud,” in Proc. USENIX, 2008.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,” in
Proc. USENIX, 2009.

T. Kojm. Clamav. [Online]. Available: http://www.clamav.net

P-C. Lin, Z.-X. Li, Y.-D. Lin, Y.-C. Lai, and F. Lin, “Profiling and ac-
celerating string matching algorithms in three network content security
applications,” IEEE Commun. Surveys Tuts., vol. 8, pp. 24-37, Apr. 2006.
A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibli-
ographic search,” Commun. of the ACM, vol. 18, pp. 333-340, 1975.

S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Technical Report TR-94-17, University of Arizona, 1994.

R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun.
of the ACM, vol. 20, pp. 762-772, 1977.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. of the ACM, vol. 13, pp. 422-426, 1970.

A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, pp. 636-646, 2002.

R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching al-
gorithms,” IBM J. Research and Development, vol. 31, no. 2, pp. 249-260,
1987.

S. Ballmer. (2007). [Online]. Available: http://www.microsoft.com/msft/
speech/FY07/BallmerFAM2007.mspx

AdaptiveMobile. Cyber Criminals Target Smartphones as Malware In-
creases by a Third in 2010. [Online]. Available: http://www.adaptivemob
ile.com/press-centre/press-releases

R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundminer: A stealthy and context-aware sound trojan for smartph-
ones,” in Proc. 18th Ann. Netw. Distributed Syst. Security Symp., 2011.

P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and
T. La Porta, “On cellular botnets: Measuring the impact of malicious de-
vices on a cellular network core,” in Proc. 16th ACM Conf. Comput. Com-
mun. Security, 2009, pp 223-234.

J. D. Cohen, “Recursive hashing functions for n-grams,” ACM Trans. Inf.
Syst., vol. 15, no. 3, pp. 291-320, 1997.

A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” Random Structures & Algorithms, vol. 33,
no. 2, pp. 187-218, 2008.

H. Song, T. Sproull, M. Attig, and J. Lockwood, “Snort offloader: A re-
configurable hardware NIDS filter,” Int. Conf. Field Programmable Logic
and Applications, 2005., pp. 493-498, 2005.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
packet inspection using parallel Bloom filters,” IEEE Micro, vol. 24, pp.
52-61, Jan. 2004.

D. Venugopal and G. Hu, “Efficient signature based malware detection on
mobile devices,” Mobile Inf. Syst., vol. 4, no. 1, pp. 33-49, 2008.

A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of malware
on mobile handsets,” in Proc. 6th Int. Conf. Mobile Syst., Appl., Services,
2008, pp. 225-238.

L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Preventing your cell-
phone from spies,” in Recent Advances in Intrusion Detection, vol. 5758
of Lecture Notes in Computer Science, pp. 244-264. Springer Berlin/Hei-
delberg, 2009.

H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies
and mobile malware variants,” in Proc. 6th Int. Conf. Mobile Syst., Appl.,
Services, New York, USA, 2008, pp. 239-252.

Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok, “AVFS: An on-access
anti-virus file system,” in Proc. 13th USENIX Security Symp., 2004.

V. Vasudevan, J. Franklin, D. Andersen, A. Phanishayee, L. Tan, M.
Kaminsky, and I. Moraru, “FAWNdamentally power-efficient clusters,” in
Proc. 12th Workshop on Hot Topics in Operating Syst., 2009.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 2, APRIL 2011

Sang Kil Cha is a Ph.D. student in the Electrical &
Computer Engineering department of Carnegie Mel-
lon University (CMU). His current research interests
revolve mainly around software security including bi-
nary analysis and exploit generation. He is also a co-
founder of Plaid Parliament of Pwning, the security
research team at CMU.

Tulian Moraru is a Computer Science Ph.D. student
Carnegie Mellon University. Prior to joining Carnegie
Mellon, he completed a B.E. in Computer Engineer-
ing at Politehnica University of Bucharest, Romania.
His research interests revolve around operating sys-
tems and distributed systems.

Jiyong Jang received the B.S. degree in Computer
Science and Industrial System Engineering and the
M.S. degree in Computer Science from Yonsei Uni-
versity, South Korea in 2005 and in 2007, respectively.
He is currently working toward the Ph.D. degree in
Electrical and Computer Engineering, Carnegie Mel-
lon University, Pittsburgh. His research interests in-
clude systems, software and network security, applied
cryptography, and networking.

John Truelove is a Computer Security Researcher
at the Massachusetts Institute of Technology Lincoln
Laboratory, where his current research focuses on the
development of anomaly-based network intrusion de-
tection systems. He received his M.S. from Carnegie
Mellon University in 2009 and his B.S. from Johns
Hopkins University in 2004.

David Brumley is an Assistant Professor at Carnegie
Mellon University with appointments in the Electrical
and Computer Engineering Department and the Com-
puter Science Department. He is interested in all ar-
eas of computer security, applied cryptography, pro-
gram analysis, compilers, and verification. He grad-
uated from Carnegie Mellon University with a Ph.D.
in Computer Science in 2008, from Stanford with an
M.S. in Computer Science in 2003, and from the Uni-
versity of Northern Colorado with a B.A. in Mathe-
matics in 1998. He served as a Computer Security Of-
ficer for Stdnford University from 1998-2002, and handled many thousand real
life incidents. He has received the USENIX Security best paper awards in 2003
and 2007, selected for the 2010 DARPA CSSP program, and a 2010 NSF CA-
REER award.

David G. Andersen completed his Ph.D. at MIT in
December 2004. Prior to that, he received an M.S. in
Computer Science from MIT in 2001, and B.S. de-
grees in Biology and Computer Science from the Uni-
versity of Utah. In 1995, he co-founded an Internet
Service Provider in Salt Lake City, Utah. His research
interests are in computer systems in the networked
environment. He has a particular interest in resilient
distributed systems that perform well under a variety
of adverse network conditions, and in power-efficient
computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmiR-HM
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Candid
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /Cmex10
 /Cmmi10
 /Cmr10
 /Cmsy10
 /ColonnaMT
 /CombiNumerals
 /CombiNumerals-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoM-HM
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /H2gprM
 /H2gsrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2mjrE
 /H2mjsM
 /H2mkpB
 /H2porL
 /H2porM
 /H2sa1M
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadlineR-HM
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYgprM
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYmjrE
 /HYmprL
 /HYnamB
 /HYnamL
 /HYnamM
 /HYporM
 /HYsanB
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYtbrB
 /HYwulB
 /HYwulM
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /Math1
 /Math1-Bold
 /Math1Mono
 /Math1Mono-Bold
 /Math2
 /Math2-Bold
 /Math2Mono
 /Math2Mono-Bold
 /Math3
 /Math3Bold
 /Math3Mono
 /Math3Mono-Bold
 /Math4
 /Math4-Bold
 /Math4Mono
 /Math4Mono-Bold
 /Math5
 /Math5Bold
 /Math5Mono
 /Math5MonoBold
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Mistral
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MVBoli
 /NanumGothicCoding
 /NanumGothicCoding-Bold
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewYork
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /Raavi
 /RageItalic
 /Ravie
 /ReboBold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symath
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YetR-HM
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

