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Fault Injection
Techniques and Tools

D ependability evaluation involves the study of
failures and errors. The destructive nature of
a crash and long error latency make it difficult

to identify the causes of failures in the operational
environment. It is particularly hard to recreate a
failure scenario for a large, complex system.

To identify and understand potential failures, we
use an experiment-based approach for studying the
dependability of a system. Such an approach is
applied not only during the conception and design
phases, but also during the prototype and opera-
tional phases.1,2

To take an experiment-based approach, we must
first understand a system’s architecture, structure,
and behavior. Specifically, we need to know its tol-
erance for faults and failures, including its built-in
detection and recovery mechanisms,3 and we need
specific instruments and tools to inject faults, create
failures or errors, and monitor their effects.

DIFFERENT PHASES, DIFFERENT TECHNIQUES
Engineers most often use low-cost, simulation-

based fault injection to evaluate the dependability
of a system that is in the conceptual and design
phases. At this point, the system under study is only
a series of high-level abstractions; implementation
details have yet to be determined. Thus the system
is simulated on the basis of simplified assumptions. 

Simulation-based fault injection, which assumes
that errors or failures occur according to predeter-
mined distribution, is useful for evaluating the effec-
tiveness of fault-tolerant mechanisms and a system’s
dependability; it does provide timely feedback to sys-
tem engineers. However, it requires accurate input
parameters, which are difficult to supply: Design and
technology changes often complicate the use of past

measurements. Testing a prototype, on the other
hand, allows us to evaluate the system without any
assumptions about system design, which yields more
accurate results. In prototype-based fault injection,
we inject faults into the system to

• identify dependability bottlenecks,
• study system behavior in the presence of faults,
• determine the coverage of error detection and

recovery mechanisms, and
• evaluate the effectiveness of fault tolerance

mechanisms (such as reconfiguration schemes)
and performance loss.

To do prototype-based fault injection, faults are
injected either at the hardware level (logical or elec-
trical faults) or at the software level (code or data
corruption) and the effects are monitored. The sys-
tem used for evaluation can be either a prototype or
a fully operational system. Injecting faults into an
operational system can provide information about
the failure process. However, fault injection is suit-
able for studying emulated faults only. It also fails
to provide dependability measures such as mean
time between failures and availability.

Instead of injecting faults, engineers can directly
measure operational systems as they handle real
workloads.2 Measurement-based analysis uses actual
data, which contains much information about nat-
urally occurring errors and failures and sometimes
about recovery attempts. Analyzing these data can
provide understanding of actual error and failure
characteristics and insight for analytical models.
However, measurement-based analysis is limited to
detected errors. Furthermore, data must be collected
over a long time because errors and failures occur

Fault injection is important to evaluating the dependability of computer
systems. Researchers and engineers have created many novel methods to
inject faults, which can be implemented in both hardware and software. 
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infrequently. Field conditions can vary widely, thus
casting doubt on the statistical validity of the result.

Although each of the three experimental methods
has its limitations, their unique values complement
one another and allow for a wide spectrum of depend-
ability studies.

FAULT INJECTION TECHNIQUES
Engineers use fault injection to test fault-tolerant

systems or components. Fault injection tests fault
detection, fault isolation, and reconfiguration and
recovery capabilities.

Fault injection environment
Figure 1 shows a fault injection environment, which

typically consists of the target system plus a fault injec-
tor, fault library, workload generator, workload library,
controller, monitor, data collector, and data analyzer. 

The fault injector injects faults into the target system
as it executes commands from the workload generator
(applications, benchmarks, or synthetic workloads).
The monitor tracks the execution of the commands and
initiates data collection whenever necessary. The data
collector performs online data collection, and the data
analyzer, which can be offline, performs data process-
ing and analysis. The controller controls the experiment.

Physically, the controller is a program that can run
on the target system or on a separate computer. The
fault injector can be custom-built hardware or soft-
ware. The fault injector itself can support different
fault types, fault locations, fault times, and appropri-
ate hardware semantics or software structure—the
values of which are drawn from a fault library. The
fault library in Figure 1 is a separate component,
which allows for greater flexibility and portability.

The workload generator, monitor, and other compo-
nents can be implemented the same way.

Injection method and implementation
Choosing between hardware and software fault

injection depends on the type of faults you are inter-
ested in and the effort required to create them. For
example, if you are interested in stuck-at faults (faults
that force a permanent value onto a point in a circuit),
a hardware injector is preferable because you can con-
trol the location of the fault. The injection of perma-
nent faults using software methods either incurs a high
overhead or is impossible, depending on the fault.
However, if you are interested in data corruption, the
software approach might suffice. Some faults, such as
bit-flips in memory cells, can be injected by either
method. In a case like this, additional requirements,
such as cost, accuracy, intrusiveness, and repeatabil-
ity may guide the choice of approach. Table 1 sum-
marizes commonly studied faults and injection
methods.

HARDWARE FAULT INJECTION
Hardware-implemented fault injection uses addi-

tional hardware to introduce faults into the target sys-
tem’s hardware. Depending on the faults and their
locations, hardware-implemented fault injection meth-
ods fall into two categories:

• Hardware fault injection with contact. The injec-
tor has direct physical contact with the target sys-
tem, producing voltage or current changes
externally to the target chip. Examples are meth-
ods that use pin-level probes and sockets.

• Hardware fault injection without contact. The

Figure 1. Basic 
components of a fault
injection
environment.
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injector has no direct physical contact with the
target system. Instead, an external source pro-
duces some physical phenomenon, such as heavy-
ion radiation and electromagnetic interference,
causing spurious currents inside the target chip.

These methods are well suited for studying the
dependability characteristics of prototypes that
require high time-resolution for hardware triggering
and monitoring (fault latency in the CPU, for exam-
ple) or require access to locations that cannot be eas-
ily reached by other fault injection methods.

Engineers generally model hardware methods on
low-level fault models; for example, a bridging fault
might be a short circuit. Hardware also triggers faults
and monitors their impact, thus providing high time-
resolution and low perturbation. Normally, the hard-
ware triggers faults after a specified time has expired
on a hardware timer or after it has detected an event,
such as a specified address on the address bus.

Injection with contact
Hardware fault injection using direct contact with

circuit pins, often called pin-level injection, is prob-
ably the most common method of hardware-
implemented fault injection. There are two main
techniques for altering electrical currents and volt-
ages at the pins:

• Active probes. This technique adds current via
the probes attached to the pins, altering their elec-
trical currents. The probe method is usually lim-
ited to stuck-at faults, although it is possible to
attain bridging faults by placing a probe across
two or more pins. Care must be taken when using
active probes to force additional current into the
target device, as an inordinate amount of current
can damage the target hardware. 

• Socket insertion. This technique inserts a socket
between the target hardware and its circuit
board. The inserted socket injects stuck-at, open,
or more complex logic faults into the target hard-
ware by forcing the analog signals that represent
desired logic values onto the pins of the target
hardware. The pin signals can be inverted,
ANDed, or ORed with adjacent pin signals or
even with previous signals on the same pin.

Both of these methods provide good controllabil-
ity of fault times and locations with little or no per-
turbation to the target system. Note that because
faults are modeled at the pin level, they are not iden-
tical to traditional stuck-at and bridging fault models
that generally occur inside the chip. Nonetheless, you
can achieve many of the same effects, like the exercise

of error detection circuits, using these injection meth-
ods. Active probes attached to the power supply hard-
ware inject power supply disturbance faults. However,
this can damage the injected device or increase the risk
of destructive injection.

Injection without contact
These faults are injected by creating heavy-ion radi-

ation. An ion passes through the depletion region of
the target device and generates current. Placing the
target hardware in or near an electromagnetic field
also injects faults. Engineers like these methods
because they mimic natural physical phenomena.
However, it is difficult to exactly trigger the time and
location of a fault injection using this technique
because you cannot precisely control the exact
moment of heavy-ion emission or electromagnetic
field creation. 

Selected tools
Messaline,4 developed at LAAS-CNRS, in Toulouse,

France, uses both active probes and sockets to con-
duct pin-level fault injection. Figure 2 on the next page
shows Messaline’s general architecture and its envi-
ronment. Messaline can inject stuck-at, open, bridg-
ing, and complex logical faults, among others. It can
also control the length of fault existence and the fre-
quency. Signals collected from the target system can
provide feedback to the injector. Also, a device is asso-
ciated with each injection point to sense when and if
each fault is activated and produces an error. It can
also inject up to 32 injection points simultaneously.
This tool has been used in experiments on a central-
ized, interlocking system employed in a computerized
railway control system and on a distributed system
for the Esprit Delta-4 Project.

FIST5 (Fault Injection System for Study of Transient
Fault Effect), developed at the Chalmers University of
Technology in Sweden, employs both contact and con-
tactless methods to create transient faults inside the
target system. This tool uses heavy-ion radiation to
create transient faults at random locations inside a
chip when the chip is exposed to the radiation and
can thus cause single- or multiple-bit-flips. The radi-
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Table 1. Fault-injection implementation methods by fault model.

Hardware Software

Open Storage data corruption
Bridging (such as register, memory, and disk)
Bit-flip Communication data corruption 
Spurious current (such as bus and communication network)
Power surge Manifestation of software defects
Stuck-at (such as machine level and higher levels)
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ation source is mounted inside a vacuum chamber
together with a small two-processor computer sys-
tem. The computer is positioned so that one of the
processors is exposed directly under the radiation.
The other processor is used as a reference for detect-
ing whether the radiation results in any bit-flips.
Figure 3 illustrates the FIST environment. 

FIST can inject faults directly inside a chip, which
cannot be done with pin-level injections. It can pro-
duce transient faults at random locations evenly in a
chip, which leads to a large variation in the errors seen
on the output pins. In addition to radiation, FIST
allows for the injection of power disturbance faults.
This is done by placing a MOS transistor between the
power supply and the Vcc pin of the processor chip to
control the amplitude of the voltage drop. Power sup-
ply disturbances usually affect multiple locations within
a chip and can cause gate propagation delay faults. The
experimental results show that the errors resulting from
both methods cause similar effects on program con-
trol-flow and data errors. However, heavy-ion radia-
tion causes mostly address bus errors, while power
supply disturbances affect mostly control signals.

MARS6 (Maintainable Real-Time System) is a dis-
tributed, fault-tolerant architecture developed at the
Technical University of Vienna. In addition to using
heavy-ion radiation as is used in FIST, MARS uses
electromagnetic fields to conduct contactless fault
injection: A circuit board placed between two charged
plates or a chip placed near a charged probe causes
fault injection. Dangling wires that act as antennas
placed on individual chip pins accentuate the electro-
magnetic field effect on those pins. Researchers com-
pared these three methods (heavy-ion radiation,
pin-level injection, and electromagnetic interference)

in terms of their capability to exercise the MARS error
detection mechanisms. Results showed that the three
methods are complementary and generate different
types of errors. Pin-level injections cause error detec-
tion mechanisms outside the CPU to be exercised more
effectively than heavy-ion radiation or electromag-
netic interference. The latter two methods were bet-
ter suited for exercising software and application-level
error detection mechanisms.

SOFTWARE FAULT INJECTION
In recent years, researchers have taken more inter-

est in developing software-implemented fault injec-
tion tools. Software fault-injection techniques are
attractive because they don’t require expensive hard-
ware. Furthermore, they can be used to target appli-
cations and operating systems, which is difficult to do
with hardware fault injection.

If the target is an application, the fault injector is
inserted into the application itself or layered between
the application and the operating system. If the target
is the operating system, the fault injector must be
embedded in the operating system, as it is very difficult
to add a layer between the machine and the operating
system.

Although the software approach is flexible, it has
its shortcomings. 

• It cannot inject faults into locations that are inac-
cessible to software. 

• The software instrumentation may disturb the
workload running on the target system and even
change the structure of original software. Careful
design of the injection environment can minimize
perturbation to the workload.

Figure 2. General
architecture of 
Messaline.
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• The poor time-resolution of the approach may
cause fidelity problems. For long latency faults,
such as memory faults, the low time-resolution
may not be a problem. For short latency faults,
such as bus and CPU faults, the approach may fail
to capture certain error behavior, like propagation.
Engineers can solve this problem by taking a
hybrid approach, which combines the versatility
of software fault injection and the accuracy of
hardware monitoring. The hybrid approach is well
suited for measuring extremely short latencies.
However, the hardware monitoring involved can
cost more and decrease flexibility by limiting
observation points and data storage size.

We can categorize software injection methods on
the basis of when the faults are injected: during com-
pile-time or during runtime.

Compile-time injection
To inject faults at compile-time, the program

instruction must be modified before the program
image is loaded and executed. Rather than injecting
faults into the hardware of the target system, this
method injects errors into the source code or assem-
bly code of the target program to emulate the effect
of hardware, software, and transient faults. The mod-
ified code alters the target program instructions, caus-

ing injection. Injection generates an erroneous soft-
ware image, and when the system executes the fault
image, it activates the fault. 

This method requires the modification of the pro-
gram that will evaluate fault effect, and it requires no
additional software during runtime. In addition, it
causes no perturbation to the target system during
execution. Because the fault effect is hard-coded, engi-
neers can use it to emulate permanent faults. This
method’s implementation is very simple, but it does
not allow the injection of faults as the workload pro-
gram runs.

Runtime injections
During runtime, a mechanism is needed to trigger

fault injection. Commonly used triggering mecha-
nisms include:

• Time-out. In this simplest of techniques, a timer
expires at a predetermined time, triggering injec-
tion. Specifically, the time-out event generates an
interrupt to invoke fault injection. The timer
can be a hardware or software timer. This
method requires no modification to the applica-
tion or workload program. A hardware timer
must be linked to the system’s interrupt handler
vector. Since it injects faults on the basis of time
rather than specific events or system state, it pro-
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duces unpredictable fault effects and program
behavior. It is, however, suitable for emulating
transient faults and intermittent hardware faults.

• Exception/trap. In this case, a hardware excep-
tion or a software trap transfer control to the
fault injector. Unlike time-out, exception/trap can
inject the fault whenever certain events or con-
ditions occur. For example, a software trap
instruction inserted into a target program will
invoke the fault injection before the program exe-
cutes a particular instruction. When the trap exe-
cutes, an interrupt is generated that transfers
control to an interrupt handler. A hardware
exception invokes injection when a hardware-
observed event occurs (when a particular mem-
ory location is accessed, for example). Both
mechanisms must be linked to the interrupt han-
dler vector.

• Code insertion. In this technique, instructions are
added to the target program that allow fault
injection to occur before particular instructions,
much like the code-modification method. Unlike
code modification, code insertion performs fault
injection during runtime and adds instructions
rather than changing original instructions. Unlike
the trap method, the fault injector may exist as
part of the target program and run at user mode
rather than system mode.

Selected tools
Ferrari7 (Fault and Error Automatic Real-Time

Injection), developed at the University of Texas at
Austin, uses software traps to inject CPU, memory,
and bus faults. Ferrari consists of four components:
the initializer and activator, the user information, the
fault-and-error injector, and the data collector and
analyzer.

The fault-and-error injector uses software trap and
trap handling routines. Software traps are triggered
either by the program counter when it points to the
desired program locations or by a timer. When the
traps are triggered, the trap handling routines inject
faults at the specific fault locations, typically by chang-
ing the content of selected registers or memory loca-
tions to emulate actual data corruptions. The faults
injected can be those permanent or transient faults
that result in an address line error, a data line error,
and a condition bit error.

Experiments conducted on Sun SparcStations
showed that error detection is highly dependent on
the fault type. Faults in the task memory resulted in
the highest level of detection, due mainly to the
repeated injection of faults when trap instructions
were placed in program loops. Also, many faults
injected into I/O routines and system libraries went
undetected because these routines were less frequently
exercised.7

The Fault Tolerance and Performance Evaluator
(Ftape),8 developed at the University of Illinois, con-
sists of the components shown in Figure 4. Engineers
can inject faults into user-accessible registers in CPU
modules, memory locations, and the disk subsystem.

Figure 4. Ftape 
environment.
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The faults are injected as bit-flips to emulate error as
a result of faults.

Disk system faults are injected by executing a rou-
tine in the driver code that emulates I/O errors (bus
error and timer error, for example). Fault injection dri-
vers added to the operating system inject the faults,
so no additional hardware or modification of appli-
cation code is needed. A synthetic workload genera-
tor creates a workload containing specified amounts
of CPU, memory, and I/O activity, and faults are
injected with a strategy that considers the character-
istics of the workload at the time of injection (which
components are experiencing the greatest amount of
workload activity, for example). Ftape has been used
on several Tandem fault-tolerant computers and serves
as the basis of a benchmark for fault tolerance, which
measures the occurrence of system failures and the
amount of performance degradation under fault con-
ditions.

Doctor9 (Integrated Software Fault Injection
Environment), developed at the University of
Michigan, allows injection of CPU faults, memory
faults, and network communication faults. It uses three
triggering methods—time-out, trap, and code modifi-
cation—to trigger fault injection. Time-out triggers
memory fault injection. Once time-out occurs, it trig-
gers the fault injector to overwrite the memory con-
tent to emulate occurrence of a memory fault. For
nonpermanent CPU faults, traps trigger fault injection.
For permanent CPU faults, fault injection is done by
changing program instructions during compilation to
emulate instruction and data corruptions due to the
faults. Doctor has been used on Harts, a distributed,
real-time system, to investigate the effect of intermit-
tent message losses between two adjacent nodes and
the effect of routing using failure data. The researchers
used experimental results to validate a message deliv-

ery model and to evaluate different message delivery
methods.

Xception,10 developed at the University of
Coimbra in Portugal, takes advantage of the
advanced debugging and performance monitoring
features present in many modern processors to inject
more realistic faults. It requires no modification in
application software and no insertion of software
traps. Xception, in fact, uses a processor’s built-in
hardware exception triggers to trigger fault injection.
The fault injector is implemented as an exception
handler and requires modification of the interrupt
handler vector. Xception faults are triggered based
on access to specific addresses (rather than on a time
period following an event), so the experiments are
reproducible. The following events can trigger fault
injection: 

• opcode fetch from a specified address, 
• operand load from a specified address, 
• operand store to a specified address, 
• a specified time passed since start-up, and 
• a combination of the above fault triggers. 

Each fault has a specified fault mask: a set of bits
that determines which corresponding bits in the tar-
get location will be injected. Bits in the fault mask set
to 1 can use several bit-level operations: stuck-at-zero,
stuck-at-one, bit-flip, and bridging. Xception has been
implemented on a Parsytec parallel machine based on
the PowerPC 601 processor. Experiments revealed the
deficiency in the error detection mechanisms by show-
ing that up to 73 percent of injected faults resulted in
incorrect results that were undetected for certain
processor functional units.

Table 2 classifies the hardware and software fault
injection methods.
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Table 2. Characteristics of fault injection methods.

Hardware Software
With contact Without contact Compilation Runtime

Cost High High Low Low

Perturbation None None Low High

Risk of damage High Low None None

Monitoring High High High Low
time- 
resolution

Accessibility of Chip pin Chip internal Register memory Register memory
fault injection software I/O controller/port
points

Controllability High Low High High

Trigger Yes No Yes Yes

Repeatability High Low High High
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The contrast between the hardware and software
methods lies mainly in the fault injection points
they can access, cost, and level of perturbation.

Hardware methods can inject faults into chip pins
and internal components, such as combinational cir-
cuits and registers that are not software-addressable.
On the other hand, software methods are convenient
for directly producing changes at the software-state
level (memory, register, for example). Thus, we use
hardware methods to evaluate low-level error detec-
tion and masking mechanisms and software meth-
ods to test higher level mechanisms. Software
methods are less expensive, but they also incur a
higher perturbation overhead because they execute
software on the target system. ❖
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