Optimizing Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions

2007 IEEE Communication Theory Workshop

Christian R. Berger1, Shengli Zhou1, Yonggang Wen2, Peter Willett1 and Krishna Pattipati1

1Department of Electrical and Computer Engineering, University of Connecticut
2Laboratory for Information and Decision Systems, Massachusetts Institute of Technology
Motivation

- Often data has to be transmitted through a series of wireless and wired links.

- Performance bottleneck is then the wireless link:
 - Unreliable due to fading
 - Less bandwidth
 - Subject to interference

- Powerful and efficient coding possible across the whole data block.

- Individual packets are subject to fading when traveling across the wireless link:
 - Outage corrupts complete packet, otherwise negligible error rate
 - Not efficient to forward corrupted packets

- Use error-correction coding per packet -> view as an erasure channel.
Digital Fountain Codes

- Efficient erasure-correction codes now available
 - Digital Fountain principle - generate practically endless streams of encoded packets
 - Reception of a sufficient number of correct packets leads to high decoding probability
 - Small overhead (about 5% for reasonable size)

System Model – Assumptions

- End-to-end transport of a finite-size data block
 - Performance is dominated by a wireless link
 - Wireless link is well characterized by block fading model
 \[y = hs + w \]

- Average signal-to-noise ratio on wireless link
 \[\gamma = E[|s|^2] / |w|^2 \]

- Large feed-back delay
 - Usage of automatic repeat request (ARQ) not possible
Layered coding approach
- Erasure-correction coding across the data packets
- Error-correction coding per packet on the physical layer

Erasure-correction coding
- Block of N_{data} bits is partitioned into k packets
- Generate K encoded packets with rate r_n

Error-correction coding
- Each packet of N_s symbols carries N_b bits
- Define coding rate as non-vanishing fraction of ergodic Capacity C

\[N_{data} = kN_b \]
\[r_n = \frac{k}{K} \]
\[R_{phy} = \frac{N_b}{N_s} \]
\[r_p = \frac{R_{phy}}{C} \]
System Model – Nakagami Model

- Capacity on Nakagami-m block fading channel
 - Mutual information assuming Capacity achieving Gaussian codebooks
 - Ergodic capacity defined as average mutual information

\[I = \log_2 \left(1 + \gamma |h|^2 \right) \]

\[C(\gamma, m) = E \left[\log_2(1 + \gamma |h|^2) \right] = \log_2(e) e^{m/\gamma} \sum_{k=0}^{m-1} \left(\frac{m}{\gamma} \right)^k \Gamma \left(-k, \frac{m}{\gamma} \right) \]

- Correct physical layer decoding is achieved, if mutual information is above transmission rate

\[p = \Pr (I < R_{\text{phy}}) \]
\[= \Pr (|h|^2 < \alpha = \left(2 R_{\text{phy}} - 1 \right) / \gamma) \]
\[= 1 - \sum_{k=0}^{m-1} \frac{1}{k!} (m\alpha)^k e^{-m\alpha} \]
System Model – Performance

- Total outage probability of transmission
 - Depends on number of correctly received packets \(k' > k \)
 - Packet error detection based on CRC is perfect

\[
P_{\text{outage}} = \sum_{i=0}^{k'-1} \binom{K}{i} (1 - p)^i \cdot p^{K-i}
\]

- Define efficiency of data transfer

\[
\eta = \frac{N_{\text{data}}}{KN_sC} = \frac{k}{K} \cdot \frac{N_b}{N_sC} = r_n \cdot r_p
\]
Problem Statement

- Obvious trade-off necessary between r_p and r_n
 - Smaller physical rate leads to less corrupted packets
 - Low network rate reduces vulnerability to packet loss

- Investigate two dual problems:
 1. Optimizing Performance under Resource Const.
 - Fix overall efficiency
 - Split resources between coding layers
 - Adhere to prescribed outage probability
 - Combine strengths of coding layers
Preliminaries

- For large k' and K approximate P_{outage} as Gaussian

$$P_{\text{outage}} \approx Q\left(\frac{Kq - k'}{\sqrt{Kpq}}\right)$$

- Probability of correct transmission q

$$q = 1 - p$$

- Define a constant ρ

$$\rho = \frac{k'}{k}$$

- Portion of variable redundancy in r_n

$$\tilde{r}_n = \frac{k'}{K} = \rho r_n$$

- Simplify P_{outage} using the definitions

$$P_{\text{outage}} = Q\left(\sqrt{\frac{\rho N}{N s C}} \frac{q - \tilde{r}_n}{\sqrt{\tilde{r}_n r_p pq}}\right)$$
Optimal Combining of Inter- and Intra-Packet Coding – Solution 1.

- Optimizing performance under resource constraint
 - Use equivalent obj. function
 \[\max J(r_p, \tilde{r}_n) := \frac{q - \tilde{r}_n}{\sqrt{r_p \tilde{r}_n (1 - q) q}} \]
 - The Lagrange approach leads to:
 \[\tilde{r}_n = \frac{-r_p q \dot{q}}{2q(1 - q) - r_p (2q - 1) \dot{q}} \]
 \[\dot{q} = \frac{\partial q}{\partial r_p} \]
 - Solution is intersection with constraint

- Numerical Example
 - \(P_{\text{outage}} = 1 \) for \(r_p < 0.5 \)
 - Clear minimum for average SNR around \(r_p = 0.8 \)
 \[\tilde{\eta}_0 = 0.5 \quad \frac{\rho N}{CN_s} = 2^8 \]
Minimizing efficiency under performance constraint
- Constraint and objective exchanged: dual problem
- Intersect with performance constraint instead

Numerical Example
- Plot looks concave with global maximum for all SNR
Optimal rates for Rayleigh and Nakagami-4 fading channel
Rayleigh PER is above 10^{-1} while Nakagami-4 is much lower
Consider an infinite data stream
- Outage probability goes to zero

\[
\lim_{N_{\text{data}} \to \infty} Q \left(\sqrt{\frac{\rho N_{\text{data}}}{N_s C}} \frac{q - \tilde{r}_n}{\sqrt{\tilde{r}_n r_p q (1 - q)}} \right) = 0
\]

- If erasure coding rate is below success \(r_n < q \)

This leads to a simpler optimization problem
- Outage problem is zero
- Erasure coding replaces lost packages

\[
\max \eta = \max_{r_p} r_p q
\]
Rate Optimization in a Special Case

Result I

On a Rayleigh fading channel, the physical rate maximizing $\eta = r_p q$ is given by:

$$r_p = \frac{W(\gamma)}{\ln(2)C}$$

With the Lambert-w function $W(\gamma)$

This leads to a network rate as:

$$\tilde{r}_n = \exp \left[-\frac{1}{W(\gamma)} + \frac{1}{\gamma} \right]$$

At high SNR, we have:

$$\lim_{\gamma \to \infty} r_p = 1, \quad \lim_{\gamma \to \infty} \tilde{r}_n = 1$$

Using Results I and numerical optimization we plot r_p

Rayleigh shows distinctly different behavior for $m > 2$
For general Nakagami-m fading channels, the optimal rates maximizing $\eta = r_p q$ at vanishing SNR are constant.

<table>
<thead>
<tr>
<th>m</th>
<th>r_p</th>
<th>r_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$e^{-1}\approx 0.368$</td>
</tr>
<tr>
<td>2</td>
<td>0.809</td>
<td>0.519</td>
</tr>
<tr>
<td>3</td>
<td>0.757</td>
<td>0.660</td>
</tr>
<tr>
<td>4</td>
<td>0.736</td>
<td>0.729</td>
</tr>
</tbody>
</table>
Layered coding approach leads to practical and efficient transmission scheme

A well-defined tradeoff exists, optimally allocating resources to both coding levels
- On severe fading channels, tendency is to use more erasure coding
- Investing in physical layer coding has worse payoff

For infinite data streams, closed form solutions show specific behavior for severe fading channels