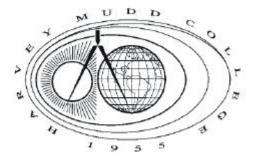
Timing Analysis with Clock Skew

David Harris, Mark Horowitz¹, & Dean Liu¹ David_Harris@hmc.edu, {horowitz, dliu}@vlsi.stanford.edu March, 1999

Harvey Mudd College

Claremont, CA

¹ (with Stanford University, Stanford, CA)



Outline

- Introduction
- Timing Analysis Formulation
- Timing Analysis with Clock Skew
- Timing Verification Algorithm
- Results
- Conclusion

Clock skew, as a fraction of the cycle time, is a growing problem for fast chips

- Fewer gate delays per cycle
- Poor transistor length, threshold tolerances
- Larger clock loads
- Bigger dice

Clock skew, as a fraction of the cycle time, is a growing problem for fast chips

- Fewer gate delays per cycle
- Poor transistor length, threshold tolerances
- Larger clock loads
- Bigger dice

The designer may:

Reduce skew

Very hard; clock networks are already well optimized

Clock skew, as a fraction of the cycle time, is a growing problem for fast chips

- Fewer gate delays per cycle
- Poor transistor length, threshold tolerances
- Larger clock loads
- Bigger dice

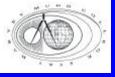
The designer may:

• Reduce skew

Very hard; clock networks are already well optimized

• Tolerate skew

Flip-flops and traditional domino circuits reduce cycle time by skew Latches and skew-tolerant domino can hide modest amounts of skew



Clock skew, as a fraction of the cycle time, is a growing problem for fast chips

- Fewer gate delays per cycle
- Poor transistor length, threshold tolerances
- Larger clock loads
- Bigger dice

The designer may:

Reduce skew

Very hard; clock networks are already well optimized

• Tolerate skew

Flip-flops and traditional domino circuits reduce cycle time by skew Latches and skew-tolerant domino can hide modest amounts of skew

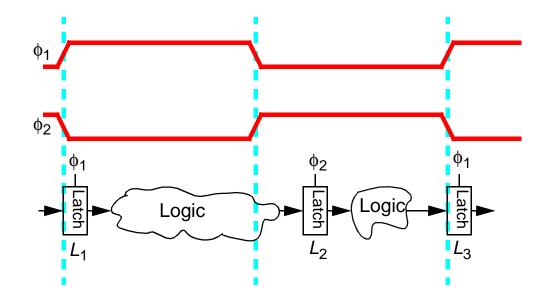
• Only budget necessary skews

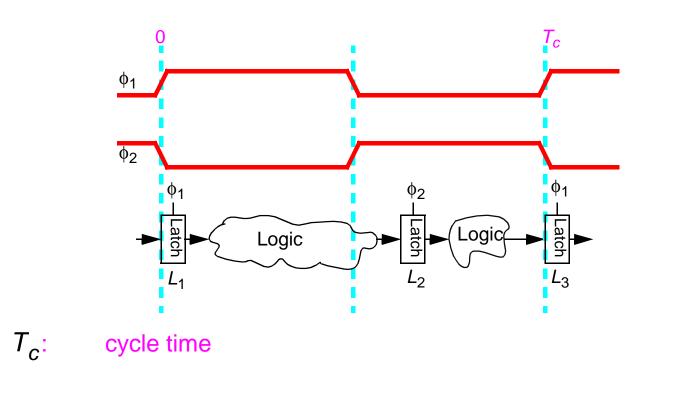
Skew between nearby latches is often much less than skew across die Need better timing analysis for different skews between different latches

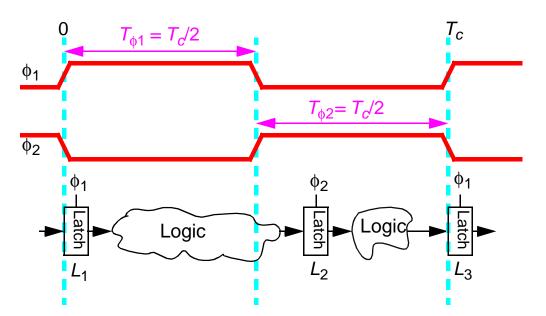
Timing Analysis Formulation

Build on Sakallah, Mudge, Olukotun (SMO) analysis of latch-based systems. System contains:

- $k \operatorname{clocks} C = \{\phi_1, \phi_2, ..., \phi_k\}$
- *I* latches $L = \{L_1, L_2, ..., L_l\}$

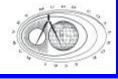




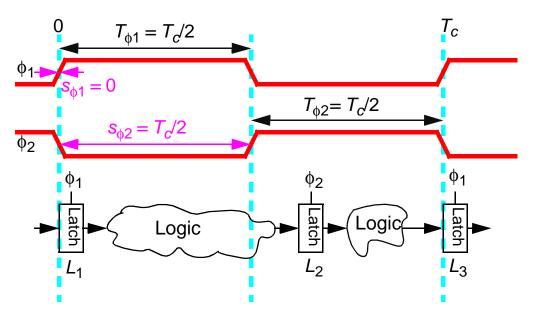


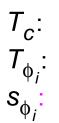
cycle time

duration for which ϕ_i is high



Timing Analysis with Clock Skew

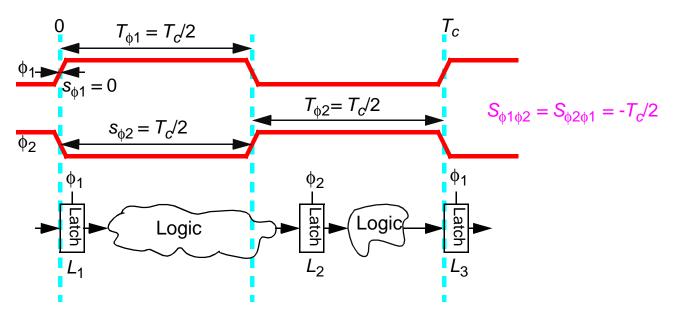




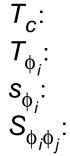
cycle time

duration for which ϕ_i is high

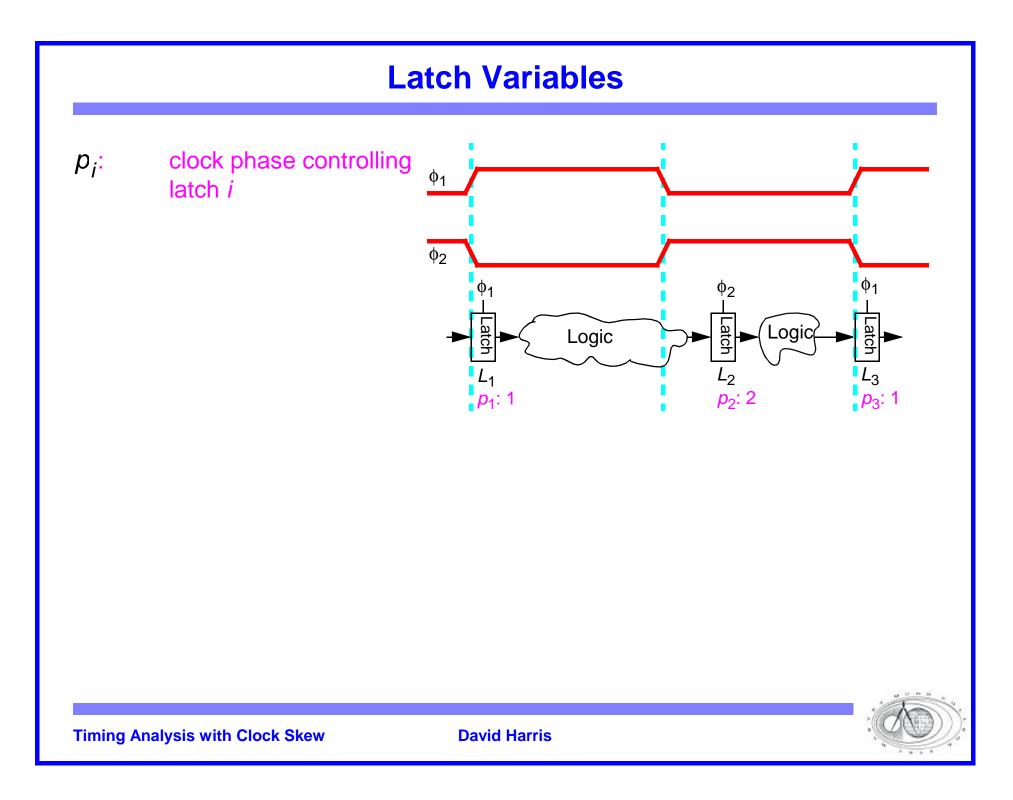
start time, relative to beginning of common clock, of ϕ_i being high

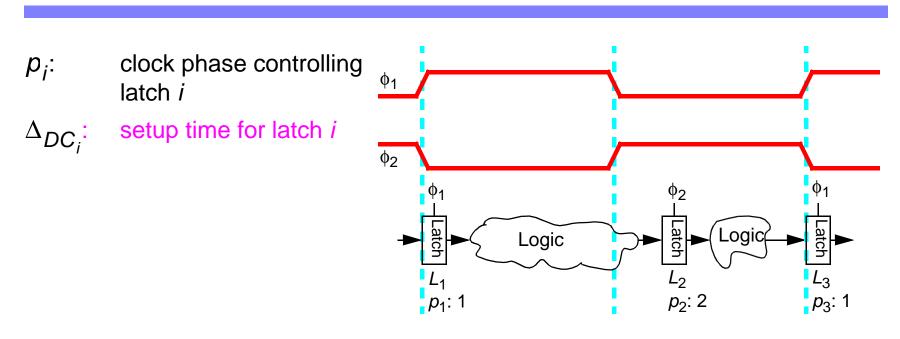


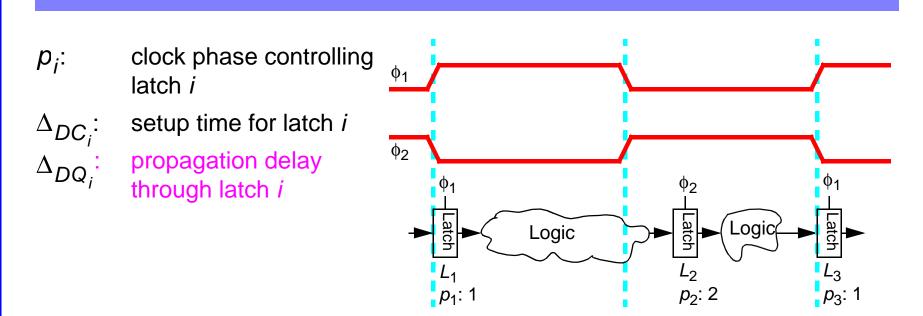
cycle time

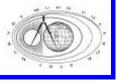


- duration for which ϕ_i is high
- start time, relative to beginning of common clock, of ϕ_i being high
- phase shift from ϕ_i to next occurrence of ϕ_j . Used to translate times relative to particular clock phases.

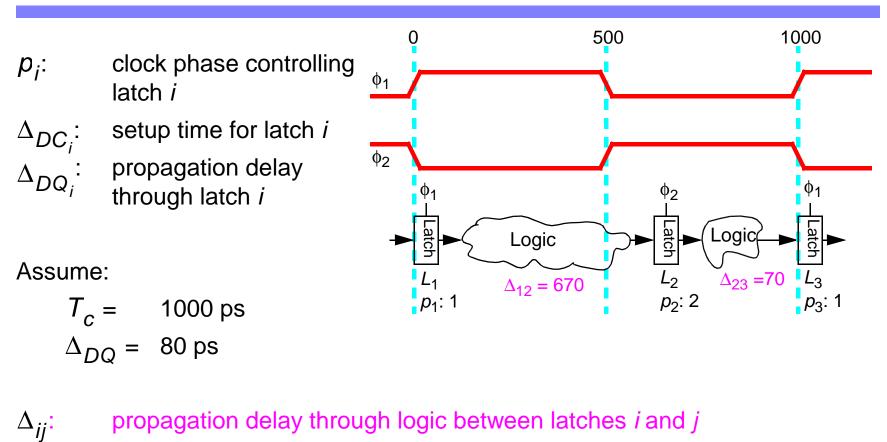


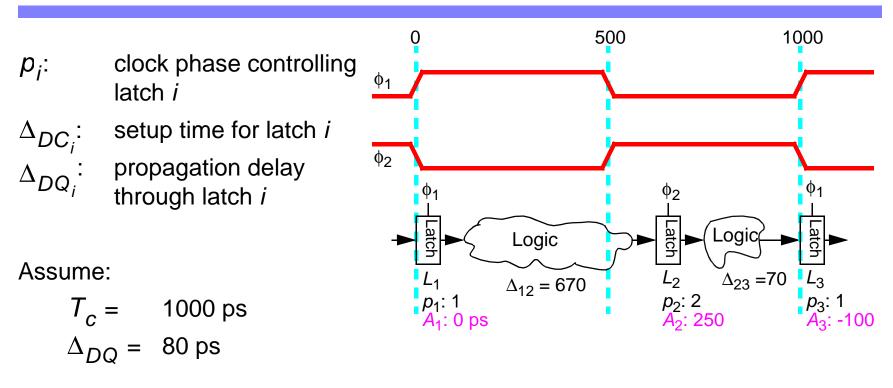




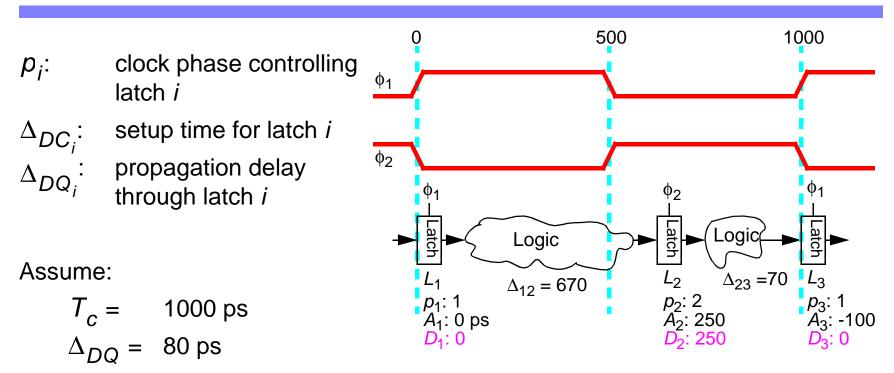


Timing Analysis with Clock Skew



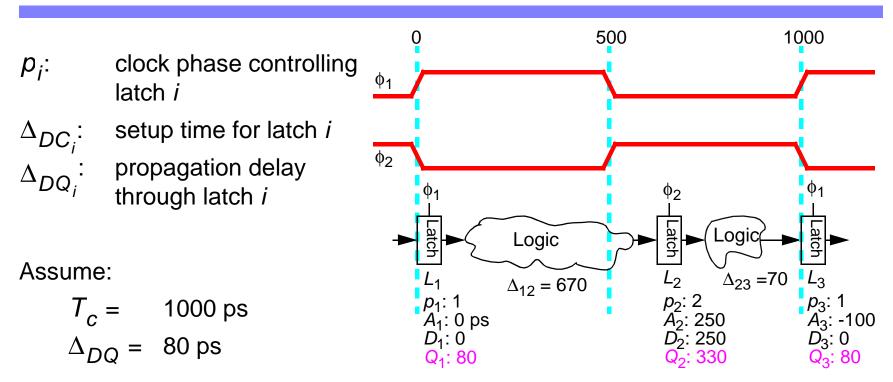


 $\Delta_{ij}: \qquad \text{propagation delay through logic between latches } i \text{ and } j$ $A_i: \qquad \text{arrival time at latch } i, \text{ relative to start of } p_i$



- propagation delay through logic between latches *i* and *j*
- Δ_{ij} : A_i : arrival time at latch *i*, relative to start of p_i

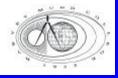
 D_i : departure time from latch *i*



- Δ_{ij} : propagation delay through logic between latches *i* and *j*
- A_i : arrival time at latch *i*, relative to start of p_i
- D_i : departure time from latch *i*
 - output time of latch i

Timing Analysis with Clock Skew

 Q_i :



Latch Departure:

 $\forall i \in L \qquad D_i = max(0, A_i)$

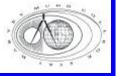
Timing Analysis with Clock Skew

Latch Departure:

$$\forall i \in L$$
 $D_i = max(0, A_i)$

Latch Output:

$$\forall i \in L \qquad Q_i = D_i + \Delta_{DQ_i}$$



Timing Analysis with Clock Skew

Latch Departure:

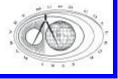
$$\forall i \in L \qquad D_i = max(0, A_i)$$

Latch Output:

$$\forall i \in L \qquad Q_i = D_i + \Delta_{DQ_i}$$

Latch Arrival:

$$\forall i, j \in L \qquad A_i = max(Q_j + \Delta_{ji} + S_{p_jp_i})$$



Timing Analysis with Clock Skew

Latch Departure:

$$\forall i \in L \qquad D_i = max(0, A_i)$$

Latch Output:

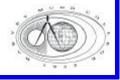
$$\forall i \in L \qquad Q_i = D_i + \Delta_{DQ_i}$$

Latch Arrival:

$$\forall i, j \in L \qquad A_i = max(Q_j + \Delta_{ji} + S_{p_jp_i})$$

Propagation Constraints:

$$\forall i, j \in L \qquad D_i = max(0, max(D_j + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i}))$$



Timing Analysis with Clock Skew

Latch Departure:

$$\forall i \in L \qquad D_i = max(0, A_i)$$

Latch Output:

$$\forall i \in L \qquad Q_i = D_i + \Delta_{DQ_i}$$

Latch Arrival:

$$\forall i, j \in L \qquad A_i = max(Q_j + \Delta_{ji} + S_{p_jp_i})$$

Propagation Constraints:

$$\forall i, j \in L \qquad D_i = max(0, max(D_j + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i}))$$

Setup Constraints:

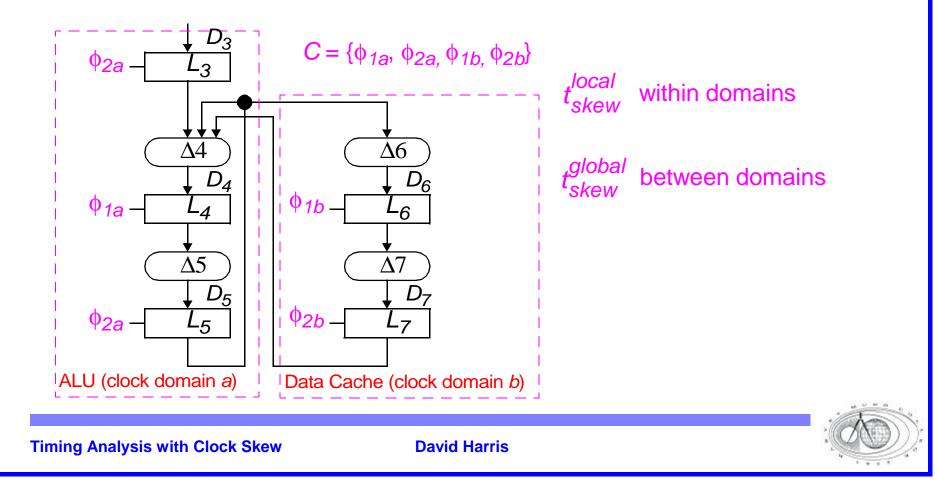
$$\forall i \in L \qquad D_i + \Delta_{DC_i} \leq T_{p_i}$$

Timing Analysis with Clock Skew

Timing Analysis with Clock Skew

Clock skew is the difference between nominal and actual interarrival times of a pair of clocks.

Enlarge set of physical clocks *C* to model skew between nominally identical clocks. Example:



Single Skew Formulation

Easy and conservative to budget global skew everywhere

Effectively increases setup time at each latch

Setup Constraints:

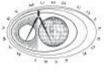
$$\forall i \in L$$
 $D_i + \Delta_{DC_i} + t_{skew}^{global} \leq T_{p_i}$

Too conservative for high-speed designs with big global skews

Timing Analysis with Clock Skew

Exact Skew Budgets How much skew must be budgeted? local skew • L_3 to L_4 : D_3 ¢2а – -3 $\Delta 6$ $\Delta 4$ D_6 D_4 ф1b-¢1а--4 6 Δ5 $\Delta 7$ D_5 D_7 ¢2а-Ф<u>2</u>b- L_5 -7 ALU (clock domain a) Data Cache (clock domain b)

Timing Analysis with Clock Skew

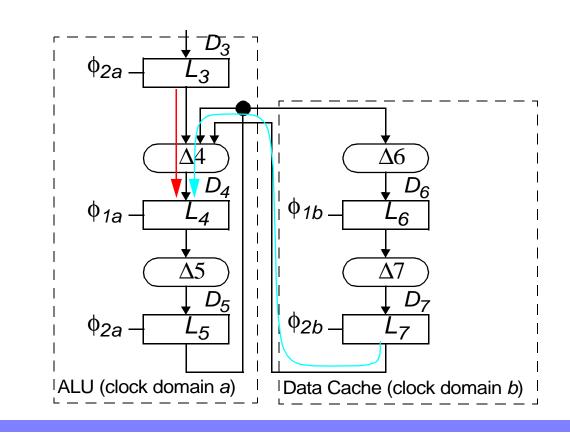


Exact Skew Budgets

How much skew must be budgeted?

- *L*₃ to *L*₄:
- *L*₇ to *L*₄:

local skew global skew



Timing Analysis with Clock Skew

Exact Skew Budgets

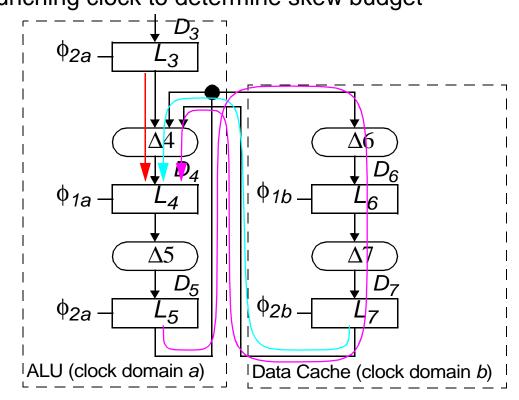
local skew

global skew

How much skew must be budgeted?

- L_3 to L_4 :
- *L*₇ to *L*₄:
- L_5 to L_4 through transparent L_6 , L_7 : local skew

Must track launching clock to determine skew budget



Timing Analysis with Clock Skew

Exact Skew Formulation

Define arrival and departure times with respect to launching clocks:

- A_i^c : arrival time at latch *i* for path launched by clock *c*
 - departure time from latch *i* for path launched by clock c

 $t_{skew}^{\phi_{j},\phi_{j}}$:

 D_i^C :

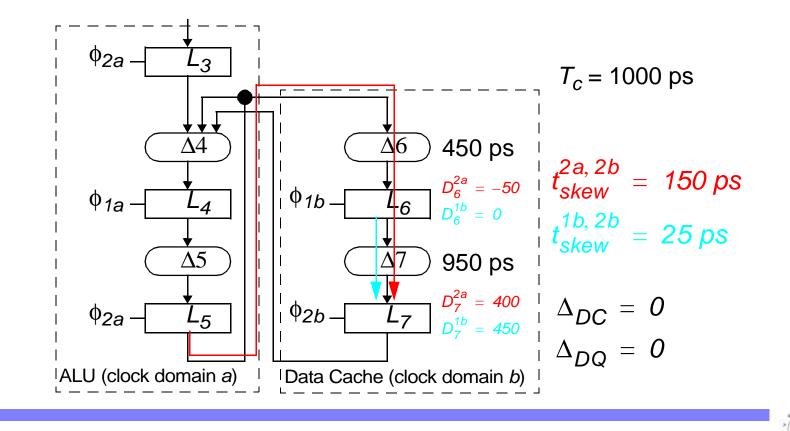
: skew between clocks ϕ_i , ϕ_j

Negative Departure Times

Must now allow negative departure times with respect to other clocks:

- Path from L_5 to L_7 is earlier than L_6 to L_7 , but sees more skew, miss setup
- Reaches L_6 at -50 ps, but L_6 may be transparent by then because of skew

Departure times w.r.t. latch's own clock still must be nonnegative



Timing Analysis with Clock Skew

Exact Constraints with Skew:

Propagation Constraints (single skew):

$$\forall i, j \in L \qquad D_i = max(0, max(D_j + \Delta_{DQ_i} + \Delta_{ji} + S_{p_ip_i}))$$

Setup Constraints (single skew):

$$\forall i \in L$$
 $D_i + \Delta_{DC_i} + t_{skew}^{global} \leq T_{p_i}$

Propagation Constraints (exact skew): $\forall i, j \in L, c \in C$ if $c = p_i$ then $D_i^c = max(0, max(D_j^c + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i}))$ else $D_i^c = max(D_j^c + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i})$

Setup Constraints (exact skew):

$$\forall i \in L, c \in C$$
 $D_i^c + \Delta_{DC_i} + t_{skew}^{c, p_i} \leq T_{p_i}$

Timing Analysis with Clock Skew

Other Timing Constraints

Flip-flops:

- No transparency, easier than latches
- Still budget skew between launching and receiving clocks

Min-delay:

- Only requires checks between consecutive pairs of clocked elements
- Standard verification algorithms work if proper skew is used

Verification Algorithm

Check constraints with generalized Szymanski-Shenoy relaxation algorithm

1 For each latch *i*:
2
$$D_i^{p_i} = 0$$
; $D_i^{max} = 0$; $c_i^{max} = p_i$ // initialize departure times
3 Enqueue $D_i^{p_i}$
4 While queue is not empty
5 Dequeue D_j^c
6 For each latch *i* in fanout of *j*
7 $A = D_j^c + \Delta_{DQj} + \Delta_{ji} + S_{p,p_i}$ // calculate arrival time
8 If $(A > D_i^c)$ AND $(A + t_{skew}^{cmax} > D_i^{max})$ // is it possibly critical?
9 If $(A + \Delta_{DCi} + t_{skew}^{c,p_i} > T_{p_i})$ // does it violate setup time?
10 Report setup time violation
11 Else
12 $D_i^c = A$; Enqueue D_i^c // keep following path
13 If $(A > D_i^{max}) D_i^{max} = A$; $c_i^{max} = c$

Timing Analysis with Clock Skew

Results

Analyzed MAGIC: Memory & General Interconnect Controller of FLASH supercomputer

Assume $t_{skew}^{local} = 250 ps t_{skew}^{global} = 500 ps$

Model A:

• As designed, from MAGIC .sdf database

Model B:

• Flops converted to latch pairs, logic balanced between pairs

Results

Analyzed MAGIC: Memory & General Interconnect Controller of FLASH supercomputer

Assume $t_{skew}^{local} = 250 ps t_{skew}^{global} = 500 ps$

Model A:

• As designed, from MAGIC .sdf database

Model B:

• Flops converted to latch pairs, logic balanced between pairs

		Model A	Model B
# Flip-Flops		10559	0
# Latches		1819	22937
Single Skew	T _c	9.43 ns	8.05 ns
	# Latch Departures Checked	3866	24995
Exact Skew	T _c	9.38	7.96
	# Latch Departures Checked	4009	25328

CPU time < 1 second in all cases

Timing Analysis with Clock Skew

Conclusions

Global skews will be too large for GHz + systems

- Use skew-tolerant circuit techniques such as latches
- Take advantage of smaller local skews where possible

Requires support of timing analyzer

- Budget appropriate skew at each receiver
- Track departure times with respect to launching clocks
- Allow negative departure times with respect to other clocks

Leads to explosion in number of timing constraints. However...

- Most are not tight because most critical paths do not borrow time across many latches
- Relaxation algorithm automatically prunes loose constraints
- Very small increase in runtime

Expect synchronous systems well beyond 1 GHz

