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Abstract

We presennew testresultsfor our activeobjectrecanition
algorithmswhich are basedon the featule spacetrajectory
(FST) representationof objects and a neuml network
processorfor computationof distancesin global featue
space The algorithmsare usedto classify and estimate
the poseof objectsin different stable rest positionsand
automaticallyre-positionthe camen if the classor pose
of an objectis ambiguousin a givenimage. Multiple
objectviews are usedin determiningboth the final object
classand poseestimate An FSTin eigenspaceis used
to represent3-D distorted views of an object. FSTsare
constructedusingimagesrendeed from solid models.The
FSTsare analyzedto determinethe camen positionsthat
best resolveambiguitiesin classor pose Real objects
are then recanizedfrom intensityimages using the FST
representationslerivedfromrendeedimagery.

. INTRODUCTION

Objectrecanition involvesprocessingensodatain order

to assigna classlabel (e.g. a part number)from amonga

limited numberof valid possibilitiesand estimatethe pose
(i.e. positionandorientation)of athreedimensionabbject.

We consideractive object recaynition which implies the

ability to systematicallyrepositionthe sensorto make the

object recognitiontask easier In our work, we assume
thatwe have the ability to move a CCD camerarelative to

the objectandtake additionalimagesto reduceambiguity
in sceneinterpretation. This involves estimation of a

rigid object’s classand posefrom oneview andusingthis

information, and our object representationto determine
whereto look next. Considerthe problemof estimating
the poseof soclet 1 in Fig. 1b. The poseof the objectis

ambiguousecaus¢heappearancef theobjectis identical

at ®F and ITF; however, if the viewpoint is rotatedto

obtainthe [F or 1&F views, the poseof the object may

be determinedby the different hole sizesin the front

(Fig. 1a) or back (Fig. 1c) of the soclet. Active object
recognition has mary potential uses in manufcturing
including identifying, verifying or sorting parts, on-line

defectdetectionandvision-guidedassembly1].

(a) (b)

(©) (d)
Figurel: Socletl at: (a)f]= (front), (b)3tF (left) or TTF (right),
and1@]® (back).Soclet2 atQif or IT(f .

Our classificatiorandposeestimatiomalgorithmsarebased
on the FeatureSpaceTrajectory [2] (FST) representation
for different distortedviews (perspectie distortion) of an
object. The featuresare global onesnot local geometric
primitives such as edges, corners, or surfacestypically
usedin other methods [3]. In this paper we consider
global featuresderived from the Karhunen-Léwe (KL)
transform[4] (alsoknown asprinciplecomponenainalysis)
sincethis reducesthe dimensionalityof image datausing
eigenanalysisKL featuresare attractive asthey compress
dataandareeasilyupdatedvhennew objectsarelearned.

Consideran object viewed at a given rangeand camera
depressiorangleasthe aspectangle(rotationof the object
aboutthe axis normal to the planethat it restsupon)is

changed. Eachdifferentobjectview is a vertex in global

featurespace. Verticesfor adjacentviews are connected
by line sggmentsto producean FST. Different objects
are representedy distinct FSTs. An input objectto be
recognizeds representecs a testpoint in featurespace.



In orderto classifyit from its featuresthe FST processor
computeghe Euclideandistancein featurespacefrom the
inputtestpointto all FSTsknown to the system.The class
label correspondso the closestFST. The poseestimateis
computeddy findingthe projectionof thetestpointontothe
closestine sggmenton that FST andinterpolatingthe pose
from theknown posesof the verticesof theline sggment.

The FST neuralnet (NN) processorefficiently computes
thedistancefrom aninput testpoint to the piecaviselinear
approximationof eachobjects trajectory The architecture
for the FST processois shavn in Fig. 2; it containsneuron
planesh, Py, F, and Py with My, Mv;, etc. neuronsin
eachplane respectrely. Therearefy; inputneuronsvhose
activation levels correspondto the feature valuesof the
inputdata. Thenumberof B4 neuronsfiy, is thenumberof
verticeson all FSTs. The Py to B weightsarethe feature
vectorscorrespondingo the different training set object
aspectviews (FST vertices). The J% outputsarethe vector
innerproductsof theinput andthe featurespacevectorsfor
all vertices.The B outputsarethedistancego thedifferent
line segments, and the winner take all (WTA) output
denoteghe classandposeestimateof the A input. A very
efficient neuralnet algorithm[2] calculatesthe Euclidean
distancedqfor eight different objectsand 16 aspectviews
perobject,it requiresonly 10,7800n-line operations).
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Figure2: FSTneuralnetwork architecture.

When object orientation has more than one degree of
freedom (e.g., aspectand depressionangles), separate
FSTsmay be generatedo cover the degreesof freedom
(a separatd=ST for eachdepressiorangle)or the feature
spacetrajectory may be extendedto a multidimensional
FeatureSpaceManifold (FSM). In this paper we usea
separatd-ST to represeneachstablerestingpositionof an
object.

Prior work [2] addressethe numberof aspectviews (FST
vertices)requiredto representin object,selectionof which
aspectviews to use, and an adaptve algorithmto adjust
FST vertex positions(f, to Py weightsin Fig. 2). The
ability of the FST to utilize a reducednumberof object
views givesit a majoradvantageover otherdistortedobject

representations:whetherthe FST is constructedfrom a
prototypeobjector a computeraideddesign(CAD) model,
a continuumof training views is possibleand somemeans
of selectingviewsis necessaryb, €.

We useimagesenderedrom CAD solid objectmodelsasa
corvenienttestvehiclefor our algorithms.We cansimulate
widervariationsin motion,lighting, andmaterialproperties
onawiderarrayof objectswith modelgthanis possiblewith
realimages.We alsoconstruct-STsfrom renderedmages
andusethemto processealimagedatafrom actualobjects.
This increasegosteffectivenessinceit is not necessaryo
take amanufcturingsystenoff-line to learnanew part [1].

The FST was originally applied to automatic target

recognitionof distortedviews of differentmilitary vehicles
in infrared images [7]. There, the emphasiswas on

classificationrather than pose estimation. Prior work

shavedthatthe FST gave superiorperformancecompared
to other classifiers [7,8], and overcomesproblemsthat
otherclassifiershave including: smalltraining setsize,ad

hoc parameteselection,poor generalizationselectingthe

numberof hiddenlayers,estimatingdistributionsetc.

Our prior work [9] describedin detail our FST-based
probabilistic object representationand our Bayesian
methodsfor estimatingpose from a single object view,
classificationfrom multiple views, and determiningwhere
to look next for morereliableclassor poseestimates.

1. PROBABILISTIC OBJECT
REPRESENTATION

TheFSTNN processodescribedn Sect.| classifieobjects
andestimategheir pose.In this sectionwe extendthe FST
conceptto accountfor ambiguityin the classificationand
poseestimatiorprocess.

There are two fundamental causesfor ambiguity and
error in classificationand pose estimation. The first is
lack of informationin theimage(e.g. it is not possibleto
unambiguoushdeterminethe poseof soclet 1 in Fig. 1b).
The secondis distortionsother than pose; such as small
variationsin illumination, variationsin objecttexture (dirt,
rust, material properties, etc.), and sensornoise. Our
methodsconsideroth of thesefactors. In this section,we
directly addressthe issue of non-posedistortionsand in
Sect.lll we make the connectiorto the lack of information
issue.

The FSTNN classificatiormethodaccountdor perspectie
distortions, but not for other sourcesof distortion. We
collectively refer to non-posedistortionsas “noise” since
they causeundesirablevariationsin the featuresobsenred,
and ultimately cause errors in both classification and
pose estimation. We have detailed a probabilistic FST
description [9] in which the obsered feature values
are random variableswhere zero-mean,white Gaussian



noise (with standarddeviation &) is addedto the point
on the FST determinedby the class (x) and aspect
angle (¥ of the object. The resultcan be describedby a
probability densityfunction (PDF) for the obsenred vector
of featuresx conditionedon wy and®. We have used
this conditional PDF to show that the FST classification
procedurediscussedn the introduction approximateghe
minimum probability of error classifierand that the FST
pose estimationalgorithm approximateghe maximum a
posterioriposeestimate[9].

We have appliedBayesiarestimatiorandhypothesigesting
theoryto theseconditionalPDFsin orderto derive the new
functionsfor active objectrecognition[9]. Thenext section
highlightstheresults.

[11. ACTIVE OBJECT RECOGNITION

This sectionhighlightsthe new functionsfor active object
recognition: confidence and uncertainty measuresfor
estimatesof the class and pose of an object, the best
viewpoints of an object to use for resolving ambiguity
(low confidenceor high uncertainty),and fusing multiple
obsenationsfrom differentviewpointswhenestimatingthe
classandposeof anobject.

A. Classification

We determine class and classification confidence by

computingthea posterioriclassprobability(conditionedbn

the obsenation=). The objectlabel chosenis the onewith

the largesta posteriori probability (this is, approximately
the classwhoseFST is closestto the obsenation) andthe
a posteriori probability itself is usedas the classification
confidence. We denotethe classificationconfidencefor a
particularclass:t, givenanobsenationx, by (., [x]. Each
time we take an obsenation, we computefi,,; for the most
likely classid;. We continueto take new obsenrationsuntil

theconfidencdl,, is sufficiently high (f,; = 0.85).

Now we addresshe questionof whee to collectadditional
data, i.e. which new aspectview, or viewpoint, do we
chooseto resohe classambiguity (., < 8%). Consider
thetaskof discriminatingsoclet1, shovnin Fig. 1a-c,from
soclet2 in Fig. 1d. Soclets1 and?2 areidenticalexceptfor
slight differencesn the spacingof the two holesandin the
thicknessof the centralmountingbraclet. Discriminating
betweenthe two socletsis easiestat W or ZTF where
the thicknessof the mountingbraclet is mostobvious. We
selectthebestview to distinguishbetweerdifferentobjects
algorithmicallyandautomatically We computethecamera
motion (&%) required for the active object recognition
systemsuch that the probability of correct classification
is maximized. In the two classcase,we maximizethe
probability of correct classification approximately by
choosingthe next viewpointso asto maximizethe distance
betweenthe two FSTs This is whereinformationin the

imagetiesin: thelargerthedifferencebetweenimagesthe
moredistantcorrespondingointsonthe FSTswill be.

We denotethe bestposeof an objectof classei to usein

distinguishingit from an object of classw; as &.[£, §1.

The valuesof &.[¥,#] (computedoff-line and storedfor

each pair of objects)form a matrix which specifiesthe
best cameraview for resolving class ambiguity between
ary pair of objectsknown to the recognitionsystem. In

each iteration of an active object recognition scenario,
the systemmakes an obsenation. If the classification
confidencé,,,; is notsufiiciently high afterthe obsenation,
the systemnotesthe two most likely classes,looks up
the bestview for distinguishingthem, andthendrivesthe
camerato that viewpoint usingthe poseestimatefrom the
currentobsenation.

Although we consideronly the two mostlikely classesat

eachstep,our active objectrecognitionsystenstill resohes
casesvhenmorethantwo objectsmay be confused.Often

thereis a single salientview which distinguishesa set of

similar parts.Evenif thisis notthe casemoving thesensor
to the bestviewpoint to discriminatebetweentwo objects
aftereachobsenationtendsto discriminatemultiple similar

objectsby a proces®f elimination.

B. PoseEstimation

We now describeanuncertaintymeasur@f.(x) for apose
estimatebasedon an obsenationx. We usethis measure
to decideif it is necessaryo collectadditionaldatabefore
reportinga poseestimate.

We use the expected value of the pose estimation
error magnitude, conditioned on obsenation x, as our
uncertaintymeasurdl,, (x]. A smallervalue of I{,, (x]
indicatesa morereliable poseestimate. If I... [x] exceeds
3.5°, we considerthe poseestimateto be unreliableand
examinethe objectfrom anothewiewpoint.

We now discussselectionof the bestobjectview to usein
resolving poseambiguity Errorsin poseestimationare
likely to belargerat viewpointswheredifferentpartsof the
sameFST areclosein featurespacebut far apartin aspect
angle. In the caseof soclet 1 objectin Fig. 1b, the section
of the FST for views nearF is very closeto the section
of the FST for views aroundTiF, sincethe differentiating
objectcharacteristics the differentsizedholesin the front
(Fig. 1a) and back (Fig. 1c) - are barely visible in these
aspectview ranges. Thus, we expect large errorsin the
pose estimatearound ®FF and ZTF; and smaller errors
aroundf and 1&)F. Theseobsenations may be rather
obviousto a human;however, the FSTis attractive sinceit
providesanautomatedvay to achieve suchananalysis.To
automaticallyfind the view of anobjectthatresultsin pose
estimateswith the leastuncertainty we use Monte Carlo
simulationtechniqueso find theviewpoint (&al(t4]) which



minimizesthe expectedvalue of the poseestimationerror
magnitude.We computeandstore &k (5] for eachobject
aspartof theoff-line trainingprocess.

C. Multi-ObservationFusion

In active objectrecognition,we may take more thanone
obsenation of anobjectbeforeassigninga final classlabel
andposeestimate.We useall of the availableinformation
(multiple obsenations and the known relationships
betweerthem)to computethe classandposeestimatesthe
classificatiorconfidenceandthe poseestimatauncertainty

We computethe joint PDF for the setof obsened feature
vectors, conditionedon the class and final pose of the
object, by using the known cameramotion to transform
each obsenation into a common coordinateframe (with
respecto the final cameraposition). We alsoassumehat
the additive noiseis independentor eachobsenation. We
usetheresultingjoint conditionalPDF to derive all of the
desiredrecognitionsystemoutputsusingall of theavailable
information.

V. EXPERIMENTS

The images in Fig. la-c were rendered (using ray-
tracing [10]) to resemblea real prototype of soclet 1
fabricatedrom metal(we describethe proces®f rendering
imagesto resemblerealimagesin a prior paper [11]). In
our testing, we consideredsoclets 1 and 2, eachin two
differentrest positions(the secondrest positionis shavn
in Fig. 6), andtwo differentbraclet parts (not shavn) in
threedifferentrestpositionseach. Imagesof eachobject,
in eachrest position were renderedover the ¥ aspect
anglerangein 37 increments. Real and renderedmages
were processedn a similar manner First, the objectwas
segmentedrom the backgroundisingsimplethresholding.
Thenthe objectwas scaleduniformly in both dimensions
until it filled at least one dimensionof the input frame
size (128x128pixels). Finally the enegy in eachimage
was normalizedto accountfor global lighting differences.
Eighty KL featureg(retaining95% of the variability in the
renderedraining data)were usedto extract featuresfrom
both renderedandrealimages. Sincethe training setwas
large, the eigenspaceaipdatemethod[12] was used. An
FSTwasconstructedor eachobject,in eachrestposition,
(for atotal of 10 FSTs)from therenderedhaspectviews. In
orderto identify objectsin differentrestpositionsthe FSTs
werelabeledaccordingto a schemédn which the first digit
indicategheobjects classandthe secondts restposition.

We usedtheseFSTs - createdfrom CAD models- to
recognizereal objectsfrom real imagescapturedin the
CalibratedmagingLaboratory(CIL) [13]. In thefollowing
subsectionsye presentsampleresultsfrom the extensve
testingwe have performedn theCIL.

A. Classification

In the training processwe determine and store, for
eachobject class, the pose & of the object which best
distinguishesthat object from eachof the other objects.
€[z, 5] is the training poseof the objectit; whoseFST
vertex is mostdistantfrom the FST of a secondobjecte.y.
The graphsin Fig. 3 shav the distancefrom the FST for
soclet 1 in rest position 1 to soclet 1 in rest position 2
(Fig. 3a),andto soclet? in restpositionl (Fig. 3b). In both
casesgiscriminationis expectedo beeasiesataroundF
or T asindicatedby the peaksin the graphsin Fig. 3.
This is so becausethe best cue for distinguishingrest
positionl from restposition2 is thatthelargeslotis on the
top in position1, andon the bottomin position2; andthe
thicknessof the centermountingbraclet bestdistinguishes
soclet 1 from soclet 2 in the samerestposition. Both of
thesecharacteristicaremostclearlyvisible at fF or ZTiF.

(a) Soclet 1, RestPositionl to Soclet 1, RestPosition2
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(b) Soclet 1, RestPositionl to Soclet 2, RestPositionl
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Figure3: InterFST distancedor FSTsproducedfrom rendered
images.

We now discusgheresultsof atestin whichtherealsoclet
1 wasinitially viewedin restpositionat® = 1287 (Fig. 4a).
At this viewpoint, it is difficult to distinguish between
soclets1 and?2 (or to determinethe restpositionof either
soclet). Therearealsosggmentatiorerrorsnearthe bottom
of theimagein Fig. 4a(obsenationx.). For thesereasons,
our algorithms incorrectly identified soclet 1 in rest
position2 (class12) asthe mostlikely objectclass(class
22, soclet 2 in rest position 2, was the next most likely
class)andthes estimated = #)5.3" is off by nearly18F;
however, sincef.,(xi] = 0580 is low, our active object
recognitionalgorithmrequestsanotherimageof the object
at §-[wna, waa) = WF. Sincetherotationis relative to an
erroneougoseestimate this sensormovementproduceda
viewpoint nearZfF (at? = H@.T") instead.Eventhough
this is not the best viewpoint that we identified in the



(a):ﬂ;ﬁ: g, Cuc (X)) = 055, 8 = 1257,
= 30037 I (x,) =875
— Rotateby 144.77 —=

(b) ek = i, (g [, Xa) = 1.0, # = D6D.T,
# = 2717, I, (X1, xa) = 0.T°
Figure 4: Active recognitionscenariofor real soclet 1 in rest
position1 (classw ) at# =14F .

training processthe correctclassandrestpositionarealso
obvious from this view. Given the combinedinformation
from thesetwo views, we obtainedhigh classconfidence
(Cu: [x, x3) = 085) and acceptedthe estimates(class
&l; = iy, is correctandd is within 1.3= from Fig. 4b). It is

interestingto notethat neitherobservationalone provided
areliablef* estimatgbothwerein errorby nearly 18§ and
bothgave highfd.,, of &T.5" for x, and®&.87 for x3 alone).
However, the combinationof both observationsusingthe

knownobjectrotation, yieldedan accurate and reliable &

estimate

B. PoseEstimation

The method of Sect. Ill.B was usedto automatically
establistthe bestaspectangleto usefor poseestimationof
eachobject. Theseaspecianglesare storedby our system
so thatthe active recognitionsystemmay be drivento the
bestviewpoint for estimatingthe poseof a given object.
The estimatedexpectedpose estimationerror magnitude
for soclet 1 in restposition 2 is plotted as a function of
posein Fig. 5. As expected,poseestimationis predicted
to be very unreliablenearthe sides(# = ) or ZTiF) of
this object. Thereareviewpointswherethe poseestimates
are expectedto be better but estimatingthe poseof this
objectis difficult from ary viewpointdueto the highdegree
of (imperfect) rotational symmetry The object features
which distinguishbetweerthe front andbackof the object

are rather subtle, resultingin significant 18)F ambiguity
in # even at the bestviewpoints. This point is reflected
in the large minimum value (16.1%) of the expectederror
in Fig. 5. Thus,we do not expectthat we will be ableto
estimatef* with acceptablauncertaintyf.,; for this object
using any single obseration. However, when multiple
obsenationsare combined,we have seenthat ¢, canbe
reducedto acceptabldimits andthe poseestimationerror
reducedsignificantly Fromthe plot, &g for soclet 1 in rest
position 2 is 147" (correspondingo the lowest expected
errormagnitude).
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Figure5: Estimatedexpectedabsoluteposeestimationerrorasa
functionof posefor soclet 1 in restposition2.

Considerthe 95" aspectview of the soclet 1 objectin

rest position 2 (t.3) as shovn in Fig. 6a. This is not a

training view; it is a good view for classification; but,

since the holes bored through the front and back of the
soclet are not visible, it is not possiblefor the pose
estimatorto reliably determineif the imageis from the
right or left side of the object. The objectis classified
correctly(il; =t 3) afterthefirst obsenationx, (Fig. 6a),

and the confidencelevel £,..[x,] = 1.0 is very high,

so the class decisionis accepted. The pose estimate
# = ITg.3" is off by nearly 1&{F as anticipated, but

the pose estimateuncertaintyl,. [x,] = 888" is very

high, which indicatesthe needfor anotherobsenation to

improve the poseestimate. Using the initial poseestimate
and the correctclass,we computethe viewpoint rotation
A8 = fplina) —# = M7 - 63 = -1MF

neededo arrive at the bestviewpoint of &e[tna) = 117

Becausdhe poseestimationerroris —1T&.7- afterthefirst

obsenation, the systemmissesthe bestviewpoint (1477)

by 1T&.7°. Sincethe classof the objectis known reliably

from thefirst obsenation,only the FSTfor L is processed
to recomputehe poseestimatgthis savesprocessingime).

Although not the best viewpoint, the 257" viewpoint

(Fig. 6b) is relatively good (a local minimum of Fig. 5)

andyielded an accurate(é = 12G.67) poseestimate,and

the low P, (x1, x3] = QLG7 indicatesthis automatically
Thus,is wasnot necessaryo move againto obtainthe best
viewpoint #g. This test demonstates the ability of our

active objectrecanition systemto improve the # estimate
by moving the viewpoint



(@)ids = tna, Cu; [x1) = 1.00
f= 057, 0 = IT63" 1. (x,) = 8897
— Rotateby —1M.3"7 —+

(b) el = cona, G (X1, %a) = 1.00)
B = 32577, 6 = 32667, M. (X1, x3) = 0.6,

Figure 6: Active recognitionscenariofor real soclet 1 in rest
position2 (classung ) atd =93¢,
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