Derivation of Kalman Filtering and Smoothing Equations

Byron M. Yu

Department of Electrical Engineering Stanford University Stanford, CA 94305, USA byronyu@stanford.edu

Krishna V. Shenoy

Department of Electrical Engineering Neurosciences Program Stanford University Stanford, CA 94305, USA shenoy@stanford.edu

Maneesh Sahani

Gatsby Computational Neuroscience Unit University College London 17 Queen Square, London WC1N 3AR, UK maneesh@gatsby.ucl.ac.uk

October 19, 2004

Abstract

The Kalman filtering and smoothing problems can be solved by a series of forward and backward recursions, as presented in [1]–[3]. Here, we show how to derive these relationships from first principles.

1 Introduction

We consider linear time-invariant dynamical systems (LDS) of the following form:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t \tag{1}$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t \tag{2}$$

where \mathbf{x}_t and \mathbf{y}_t are the state and output, respectively, at time t. The noise terms, \mathbf{w}_t and \mathbf{v}_t , are zero-mean normally-distributed random variables with covariance matrices Q and R, respectively. The initial state, \mathbf{x}_1 , is normally-distributed with mean π_1 and variance V_1 .

In this work, we assume that the parameters of the linear dynamical system, namely A, C, Q, R, π_1 , and V_1 are known. Whereas the outputs are observed, the state and noise variables are hidden.

The goal is to determine $P(\mathbf{x}_t|\{\mathbf{y}\}_1^t)$ and $P(\mathbf{x}_t|\{\mathbf{y}\}_1^T)$ for $t=1,\ldots,T$. These are the solutions to the filtering and smoothing problems, respectively. Both distributions are normally-distributed for the system described by (1) and (2), so it suffices to find the mean and variance of each distribution.

We will use the same notation as in [1]. $E(\mathbf{x}_t|\{\mathbf{y}\}_1^{\tau})$ is denoted by \mathbf{x}_t^{τ} and $Var(\mathbf{x}_t|\{\mathbf{y}\}_1^{\tau})$ is denoted by V_t^{τ} . The sequence of T outputs $(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_T)$ is denoted by $\{\mathbf{y}\}$. A subsequence of outputs $(\mathbf{y}_{t_0}, \mathbf{y}_{t_0+1}, \dots, \mathbf{y}_{t_1})$ is denoted by $\{\mathbf{y}\}_{t_0}^{t_1}$.

2 Forward Recursions: Filtering

By the assumptions of the LDS described by (1) and (2), $P(\mathbf{x}_t | {\{\mathbf{y}\}_1^t})$ is a normal distribution. We seek its mean \mathbf{x}_t^t and variance V_t^t .

$$\log P(\mathbf{x}_{t}|\{\mathbf{y}\}_{1}^{t}) = \log P(\mathbf{x}_{t}|\{\mathbf{y}\}_{1}^{t-1}, \mathbf{y}_{t})$$

$$= \log P(\mathbf{y}_{t}|\mathbf{x}_{t}, \{\mathbf{y}\}_{1}^{t-1}) + \log P(\mathbf{x}_{t}|\{\mathbf{y}\}_{1}^{t-1}) + \dots$$

$$= \log P(\mathbf{y}_{t}|\mathbf{x}_{t}) + \log P(\mathbf{x}_{t}|\{\mathbf{y}\}_{1}^{t-1}) + \dots$$

$$= -\frac{1}{2}(\mathbf{y}_{t} - C\mathbf{x}_{t})'R^{-1}(\mathbf{y}_{t} - C\mathbf{x}_{t}) - \frac{1}{2}(\mathbf{x}_{t} - \mathbf{x}_{t}^{t-1})'(V_{t}^{t-1})^{-1}(\mathbf{x}_{t} - \mathbf{x}_{t}^{t-1}) + \dots$$

$$= -\frac{1}{2}\mathbf{x}_{t}'\left(C'R^{-1}C + (V_{t}^{t-1})^{-1}\right)\mathbf{x}_{t} + \mathbf{x}_{t}'\left(C'R^{-1}\mathbf{y}_{t} + (V_{t}^{t-1})^{-1}\mathbf{x}_{t}^{t-1}\right) + \dots$$
(3)

Note that, in general, if **z** is normally-distributed with mean μ and variance Σ ,

$$\log P(\mathbf{z}) = -\frac{1}{2} (\mathbf{z} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{z} - \boldsymbol{\mu}) + \dots$$
$$= -\frac{1}{2} \mathbf{z}' \Sigma^{-1} \mathbf{z} + \mathbf{z}' (\Sigma^{-1} \boldsymbol{\mu}) + \dots$$
(4)

Comparing the first terms in (3) and (4) and using the Matrix Inversion Lemma,

$$V_t^t = \left(C' R^{-1} C + (V_t^{t-1})^{-1} \right)^{-1}$$

= $V_t^{t-1} - K_t C V_t^{t-1}$ (5)

where

$$K_t = V_t^{t-1} C' \left(R + C V_t^{t-1} C' \right)^{-1}. \tag{6}$$

To find the time update for the variance, we use the fact that $A\mathbf{x}_{t-1}$ and \mathbf{w}_{t-1} are independent

$$V_t^{t-1} = \operatorname{Var}(A\mathbf{x}_{t-1}|\{\mathbf{y}\}_1^{t-1}) + \operatorname{Var}(\mathbf{w}_{t-1}|\{\mathbf{y}\}_1^{t-1})$$

= $AV_{t-1}^{t-1}A' + Q$. (7)

Before finding the mean of the normal distribution, we derive the following matrix identity

$$(A+B)^{-1}(A+B) = I$$

$$I - (A+B)^{-1}A = (A+B)^{-1}B$$

$$(I - (A+B)^{-1}A)B^{-1} = (A+B)^{-1}.$$
(8)

Comparing the second terms in (3) and (4) and applying the matrix identity (8),

$$\mathbf{x}_{t}^{t} = V_{t}^{t} \left(C' R^{-1} \mathbf{y}_{t} + (V_{t}^{t-1})^{-1} \mathbf{x}_{t}^{t-1} \right)$$

$$= V_{t}^{t-1} C' \left(I - \left(R + C V_{t}^{t-1} C' \right)^{-1} C V_{t}^{t-1} C' \right) R^{-1} \mathbf{y}_{t} + (I - K_{t} C) \mathbf{x}_{t}^{t-1}$$

$$= V_{t}^{t-1} C' \left(R + C V_{t}^{t-1} C' \right)^{-1} \mathbf{y}_{t} + (I - K_{t} C) \mathbf{x}_{t}^{t-1}$$

$$= K_{t} \mathbf{y}_{t} + (I - K_{t} C) \mathbf{x}_{t}^{t-1}$$

$$= \mathbf{x}_{t}^{t-1} + K_{t} (\mathbf{y}_{t} - C \mathbf{x}_{t}^{t-1}). \tag{9}$$

The time update for the mean can be found by conditioning on \mathbf{x}_{t-1}

$$\mathbf{x}_{t}^{t-1} = E_{\mathbf{x}_{t-1}} \left(E(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \{\mathbf{y}\}_{1}^{t-1}) | \{\mathbf{y}\}_{1}^{t-1} \right)$$

$$= E_{\mathbf{x}_{t-1}} \left(A\mathbf{x}_{t-1} | \{\mathbf{y}\}_{1}^{t-1} \right)$$

$$= A\mathbf{x}_{t-1}^{t-1}.$$
(10)

The recursions start with $\mathbf{x}_1^0 = \boldsymbol{\pi}_1$ and $V_1^0 = V_1$. Equations (5), (6), (7), (9), and (10) together form the Kalman filter forward recursions, as shown in [1].

3 Backward Recursions: Smoothing

Like the filtered posterior distribution $P(\mathbf{x}_t|\{\mathbf{y}\}_1^t)$, the smoothed posterior distribution $P(\mathbf{x}_t|\{\mathbf{y}\}_1^T)$ is also normal. We seek its mean \mathbf{x}_t^T and variance V_t^T . We are also interested in the covariance of the joint posterior distribution $P(\mathbf{x}_{t+1}, \mathbf{x}_t|\{\mathbf{y}\}_1^T)$, denoted $V_{t+1,t}^T$.

$$\log P(\mathbf{x}_{t+1}, \mathbf{x}_{t} | \{\mathbf{y}\}_{1}^{T}) = \log P(\mathbf{x}_{t} | \mathbf{x}_{t+1}, \{\mathbf{y}\}_{1}^{T}) + \log P(\mathbf{x}_{t+1} | \{\mathbf{y}\}_{1}^{T})$$

$$= \log P(\mathbf{x}_{t} | \mathbf{x}_{t+1}, \{\mathbf{y}\}_{1}^{t}) + \log P(\mathbf{x}_{t+1} | \{\mathbf{y}\}_{1}^{T})$$

$$= \log P(\mathbf{x}_{t+1} | \mathbf{x}_{t}) + \log P(\mathbf{x}_{t} | \{\mathbf{y}\}_{1}^{t}) - \log P(\mathbf{x}_{t+1} | \{\mathbf{y}\}_{1}^{t}) + \log P(\mathbf{x}_{t+1} | \{\mathbf{y}\}_{1}^{T})$$

$$= -\frac{1}{2} (\mathbf{x}_{t+1} - A\mathbf{x}_{t})' Q^{-1} (\mathbf{x}_{t+1} - A\mathbf{x}_{t}) - \frac{1}{2} (\mathbf{x}_{t} - \mathbf{x}_{t}')' (V_{t}^{t})^{-1} (\mathbf{x}_{t} - \mathbf{x}_{t}')$$

$$+ \frac{1}{2} (\mathbf{x}_{t+1} - \mathbf{x}_{t+1}^{t})' (V_{t+1}^{t})^{-1} (\mathbf{x}_{t+1} - \mathbf{x}_{t+1}^{t})$$

$$- \frac{1}{2} (\mathbf{x}_{t+1} - \mathbf{x}_{t+1}^{T})' (V_{t+1}^{T})^{-1} (\mathbf{x}_{t+1} - \mathbf{x}_{t+1}^{T}) + \dots$$

$$= -\frac{1}{2} \mathbf{x}'_{t+1} (Q^{-1} - (V_{t+1}^{t})^{-1} + (V_{t+1}^{T})^{-1}) \mathbf{x}_{t+1}$$

$$- \frac{1}{2} \mathbf{x}'_{t+1} (-Q^{-1}A) \mathbf{x}_{t} - \frac{1}{2} \mathbf{x}'_{t} (-A'Q^{-1}) \mathbf{x}_{t+1}$$

$$- \frac{1}{2} \mathbf{x}'_{t} (A'Q^{-1}A + (V_{t}^{t})^{-1}) \mathbf{x}_{t} + \mathbf{x}'_{t} ((V_{t}^{t})^{-1} \mathbf{x}_{t}^{t}) + \dots$$
(11)

Note that, in general, if $[\mathbf{z}_1' \ \mathbf{z}_2']'$ is normally-distributed with mean $[\boldsymbol{\mu}_1' \ \boldsymbol{\mu}_2']'$, then the log density can be expressed in the form

$$\log P(\mathbf{z}_{1}, \mathbf{z}_{2}) = -\frac{1}{2} \begin{bmatrix} \mathbf{z}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{z}_{2} - \boldsymbol{\mu}_{2} \end{bmatrix}' \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{z}_{2} - \boldsymbol{\mu}_{2} \end{bmatrix} + \dots$$

$$= -\frac{1}{2} \mathbf{z}_{1}' S_{11} \mathbf{z}_{1} - \frac{1}{2} \mathbf{z}_{1}' S_{12} \mathbf{z}_{2} - \frac{1}{2} \mathbf{z}_{2}' S_{21} \mathbf{z}_{1} - \frac{1}{2} \mathbf{z}_{2}' S_{22} \mathbf{z}_{2} + \mathbf{z}_{2}' (S_{21} \boldsymbol{\mu}_{1} + S_{22} \boldsymbol{\mu}_{2}) + \dots$$
(12)

The covariance of $[\mathbf{z}'_1 \ \mathbf{z}'_2]'$ is

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} F_{11}^{-1} & -F_{11}^{-1} S_{12} S_{22}^{-1} \\ -S_{22}^{-1} S_{21} F_{11}^{-1} & F_{22}^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} S_{11}^{-1} + S_{11}^{-1} S_{12} F_{22}^{-1} S_{21} S_{11}^{-1} & -F_{11}^{-1} S_{12} S_{22}^{-1} \\ -S_{22}^{-1} S_{21} F_{11}^{-1} & S_{22}^{-1} + S_{21}^{-1} S_{21} F_{11}^{-1} S_{12} S_{22}^{-1} \end{bmatrix},$$

$$(13)$$

where

$$F_{11} = S_{11} - S_{12}S_{22}^{-1}S_{21}$$
$$F_{22} = S_{22} - S_{21}S_{11}^{-1}S_{12}.$$

Comparing the first four terms in (11) and (12), we can write

$$\begin{bmatrix} V_{t+1}^T & V_{t+1,t}^T \\ V_{t,t+1}^T & V_t^T \end{bmatrix} = \begin{bmatrix} Q^{-1} - (V_{t+1}^t)^{-1} + (V_{t+1}^T)^{-1} & -Q^{-1}A \\ -A'Q^{-1} & A'Q^{-1}A + (V_t^t)^{-1} \end{bmatrix}^{-1}$$
(15)

We first simplify two expressions that will appear when inverting the block matrix in (15). First, using the Matrix Inversion Lemma,

$$S_{22}^{-1} = (A'Q^{-1}A + (V_t^t)^{-1})^{-1}$$

$$= V_t^t - V_t^t A' (V_{t+1}^t)^{-1} A V_t^t$$

$$= V_t^t - J_t V_{t+1}^t J_t', \tag{16}$$

where we define

$$J_t = V_t^t A'(V_{t+1}^t)^{-1}. (17)$$

Second, applying the matrix identity (8),

$$S_{22}^{-1}S_{21} = -(V_t^t - J_t V_{t+1}^t J_t') A' Q^{-1}$$

$$= -V_t^t A' \left(I - (Q + A V_t^t A')^{-1} A V_t^t A' \right) Q^{-1}$$

$$= -V_t^t A' (Q + A V_t^t A')^{-1}$$

$$= -J_t. \tag{18}$$

Now, we invert the block matrix in (15). Using (16),(18), and the fact that $F_{11}^{-1} = V_{t+1}^T$ from (13),

$$V_{t}^{T} = S_{22}^{-1} + S_{22}^{-1} S_{21} F_{11}^{-1} S_{12} S_{22}^{-1}$$

$$= (V_{t}^{t} - J_{t} V_{t+1}^{t} J_{t}^{t}) + (-J_{t}) V_{t+1}^{T} (-J_{t}^{t})$$

$$= V_{t}^{t} + J_{t} (V_{t+1}^{T} - V_{t+1}^{t}) J_{t}^{t}$$
(19)

and

$$V_{t+1,t}^T = -F_{11}^{-1} S_{12} S_{22}^{-1}$$

$$= V_{t+1}^T J_t'. \tag{20}$$

Using (17), (19), and (20), we can also derive a recursive formulation for the covariance

$$V_{t,t-1}^{T} = V_{t}^{T} J_{t-1}'$$

$$= \left(V_{t}^{t} + J_{t}(V_{t+1}^{T} - V_{t+1}^{t})J_{t}'\right) J_{t-1}'$$

$$= \left(V_{t}^{t} + J_{t}(V_{t+1,t}^{T} - AV_{t}^{t})\right) J_{t-1}'$$

$$= V_{t}^{t} J_{t-1}' + J_{t}(V_{t+1,t}^{T} - AV_{t}^{t})J_{t-1}'.$$
(21)

Using (5), (17), and (20), this recursion is initialized with

$$V_{T,T-1}^{T} = V_{T}^{T} J_{T-1}'$$

$$= (I - K_{T}C)V_{T}^{T-1} J_{T-1}'$$

$$= (I - K_{T}C)AV_{T-1}^{T-1}.$$
(22)

To find the mean, we compare the last terms in (11) and (12). Using (16), (17), and (18),

$$S_{21}\mathbf{x}_{t+1}^{T} + S_{22}\mathbf{x}_{t}^{T} = (V_{t}^{t})^{-1}\mathbf{x}_{t}^{t}$$

$$\mathbf{x}_{t}^{T} = -S_{22}^{-1}S_{21}\mathbf{x}_{t+1}^{T} + S_{22}^{-1}(V_{t}^{t})^{-1}\mathbf{x}_{t}^{t}$$

$$= J_{t}\mathbf{x}_{t+1}^{T} + (I - J_{t}A)\mathbf{x}_{t}^{t}$$

$$= \mathbf{x}_{t}^{t} + J_{t}(\mathbf{x}_{t+1}^{T} - A\mathbf{x}_{t}^{t}).$$
(23)

Equations (17), (19), (21), (22), and (23) together form the Kalman smoother backward recursions, as shown in [1]. Equivalently, (20) can be used in the place of (21) and (22) to reduce the computation required to find the covariance.

References

- [1] Z. Ghahramani and G.E. Hinton. Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2, University of Toronto, 1996.
- [2] R.H. Shumway and D.S. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. *Journal of Time Series Analysis*, 3(4):253–264, 1982.
- [3] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.