Derivation of Kalman Filtering and Smoothing Equations
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Abstract

The Kalman filtering and smoothing problems can be solved by a series of forward and
backward recursions, as presented in [1]-[3]. Here, we show how to derive these relationships
from first principles.

1 Introduction

We consider linear time-invariant dynamical systems (LDS) of the following form:

Xt41 = AXt + Wy (1)
yt = COx¢ + vy (2)

where x; and y; are the state and output, respectively, at time ¢. The noise terms, w; and vy, are
zero-mean normally-distributed random variables with covariance matrices () and R, respectively.
The initial state, x1, is normally-distributed with mean 7| and variance Vj.

In this work, we assume that the parameters of the linear dynamical system, namely A, C, @,
R, w1, and V; are known. Whereas the outputs are observed, the state and noise variables are
hidden.

The goal is to determine P(x;|{y}}) and P(x;|{y}¥) for t = 1,...,T. These are the solutions to
the filtering and smoothing problems, respectively. Both distributions are normally-distributed for
the system described by (1) and (2), so it suffices to find the mean and variance of each distribution.



We will use the same notation as in [1]. E(x¢|{y}]) is denoted by x] and Var(x:|{y}]) is
denoted by V;7. The sequence of T' outputs (y1,y2,...,yr) is denoted by {y}. A subsequence of

outputs (yt07Yt0+17 s aytl) is denoted by {y}i(l)

2 Forward Recursions: Filtering

By the assumptions of the LDS described by (1) and (2), P(x;|{y}!) is a normal distribution. We
seek its mean x| and variance V.
log P(x¢|{y}1) =log P(x:/{y}i " 1)
= log P(yilx:, {y}17) +log P [{y}i™) + ...
= log P(y[x¢) +log P(x/[{y}i™") + ...

1 _ 1 _ T _
:—g(yt—Cxt)'R 1(yt_CXt)—§(Xt—X§ 1)/(‘/; 1) 1(Xt—X:ft 1)+
L,

= 5%, (C'R'C+ (Vi) D% +x (C'R Yy + (VY +..0 (3)
Note that, in general, if z is normally-distributed with mean g and variance 3,

log P(z) = —%(z )Y Nz —p) + ...

_ —%Z'E_lz L)+ ()

Comparing the first terms in (3) and (4) and using the Matrix Inversion Lemma,

‘/;t — (CIR—IC+ (‘/tt_l)_l)_l

— Yl KoV (5)
where
K =V~ (R+CV/ e (6)
To find the time update for the variance, we use the fact that Ax;_; and w;_; are independent
Vi = Var(Ax [{y}) + Var(we—i [{y 1)
= AV A+ Q. (7)
Before finding the mean of the normal distribution, we derive the following matrix identity
(A+B)"YA+B) =1
I-(A+B)'A=(A+B)™'B
(I—(A+B)'A)B'=A+B)1 (8)
Comparing the second terms in (3) and (4) and applying the matrix identity (8),
xp =V (CR ye+ (V) )
— vl (I — (R+cVien™ cv;—lc') Rly, + (I — K,C)x!™!
= VIO (R4 V) y 4+ (T - Ky O)xt!
= Ky + (I — K,C)x, !
=xI7t ¢ Ky(y: — Oxih). 9)



The time update for the mean can be found by conditioning on x; 1

Xt = By, (B(xelx—1, {y}H) [y
= Ex, , (Ax— [{y}7)
= Ax!~1 (10)

The recursions start with x{ =y and V{? = V;. Equations (5), (6), (7), (9), and (10) together
form the Kalman filter forward recursions, as shown in [1].

3 Backward Recursions: Smoothing

Like the filtered posterior distribution P(x;|{y}}), the smoothed posterior distribution P(x;|{y}T)
is also normal. We seek its mean x! and variance V;I. We are also interested in the covariance of
the joint posterior distribution P(x;11,%¢[{y}7), denoted V;_TH’t.

log P(x¢41,%:[{y}1) = log P(x¢|x¢11,{y}1) +log P(xe1|{y}1)
= log P(x¢[x¢41, {y}}) +log P(xe1|{y}1)
= log P(x¢+1|x¢) + log P(x|{y}}) — log P(x¢11|{y}}) + log P(x¢41/{y}])

= 5 (xen — A% Q™ (xurn — Axe) — g~ X ()7 e — D)
g0 = X (V) ™ G — xba)
3G = XE Y (V) e —xE) +
= —%Xéﬂ (@7 = (V4™ + (Vik) ™) xen
- X (@ A — SXUAQ e
- %x; (AQTA+(VH ™) xe+x (V) 'xp) + ... (11)

Note that, in general, if [z} z)]’

can be expressed in the form

1l z1—p "TSy S Z1— U
log Play.z) — —+ | 21~ M 11 12}[ 1— 1]+
0g P(21,22) 2 [ Z2 — Mo ] [521 So2 Zo — Mo

1 1 1 1
= —§Z,1511Z1 — §Z/1512Z2 — §Z/2521Z1 — §Z,2522Z2 + Z,2 (521111 + 522U2) 4 ... (12)

is normally-distributed with mean [p} pf]’, then the log density

The covariance of [z} z)] is

- -1
[ Y11 Y12 ] _ | Su Sw2 ]
Yo1 Yog | S21 S22
PR (13
L _522 S21F11 F22
—52_2 S21F1_1 52_2 + 52_2 521F1_1 51252_2 ’



where
Fi1 = Si1 — 51255, Sa1
Fhy = Say — S2157;' S1a.

Comparing the first four terms in (11) and (12), we can write

[ Vit Vi ] _ [ Q' = (Vi) +(VEDT! -Q7'A
Via W —AQ! AQTA+ (V™

-1
(15)

We first simplify two expressions that will appear when inverting the block matrix in (15). First,
using the Matrix Inversion Lemma,
52—21 — (AIQ—1A+ (*‘/tt)—l)_
=V} = VA (Vi) Ay
=V — Vi T, (16)

1

where we define
= ViAW) (a7)

Second, applying the matrix identity (8),
Sy So1 = =(V} = JVE TDA'Q™!

— _V*ttAl ([ _ (Q + A‘/ttAl)—lAv*ttAl) Q—l

—_ _V*ttAl(Q _{_A‘/;tA/)—l

= —J;. (18)
Now, we invert the block matrix in (15). Using (16),(18), and the fact that F;;' = V;I; from (13),

Vi' = S5t + S35 Sa1 Fi ' S1255;'
= (Vi = JVEa i) + (= )V (=)

=V + (Vi — V) (19)
and
Vg—l,t = _F1_11512S2_21
= Vi Ji- (20)

Using (17), (19), and (20), we can also derive a recursive formulation for the covariance
Vi = Vit gl
= (Vi + 2V = VED ) T
= (V} + BV, — AV) Ty
= VI 4 B (Vi — AV I (21)
Using (5), (17), and (20), this recursion is initialized with
VCI;’:T—l = Vi Jr_
= (I - KrC)V3 Y Jr
= (I — K7C)AV; . (22)



To find the mean, we compare the last terms in (11) and (12). Using (16), (17), and (18),

T T t—1_t
S21Xt+1 + Soox; = (Vi)™ 'xy

X} = — Sy Soxlyy + St (V) 'xd
= Jixpq + (I — JA)x
= XE + Jt(Xg:i-l - AX%) (23)

Equations (17), (19), (21), (22), and (23) together form the Kalman smoother backward recur-
sions, as shown in [1]. Equivalently, (20) can be used in the place of (21) and (22) to reduce the
computation required to find the covariance.
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