Derivation of Extended Kalman Filtering and Smoothing Equations
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Abstract

State estimation for nonlinear dynamical systems can be performed via local linearization
of the nonlinearities. This Extended Kalman approach can be used for both filtering [1], [2]
and smoothing. We follow the approach in [3] to derive the forward and backward Extended
Kalman recursions. We assume that the reader is familiar with [3].

1 Introduction

We consider nonlinear dynamical systems of the following form:

Xi41 = £ (%) + wy (1)
yt = gt(xt) + Vi (2)

where x;, € R* and y; € R? are the state and output, respectively, at time ¢. The noise terms,
w; and vy, are zero-mean normally-distributed random variables with covariance matrices @@+ and
Ry, respectively. In general, the state update function f; : R¥ — R¥, the state-to-output mapping
function g; : R — RP, and the covariance matrices of the noise variables can all vary with time.
The initial state, x1, is normally-distributed with mean 7 and variance V;.

As in [3], we assume that the parameters of the nonlinear dynamical system, namely f;, g;, @,

R;, 1, and V7 are known. Whereas the outputs are observed, the state and noise variables are
hidden.



The Extended Kalman approach approximates the nonlinear system described by (1) and (2)
with a linear system using first-order Taylor approximations

fi(x;) ~ fi(x}) + Ay(x¢ — x7) (3)
ge(xt) = gt(Xi_l) + Cy(x — Xi_l)v (4)
where
_ O0fy(x)
At a 8X X—X%
. 8gt (X)
Ct - 8X x:x?l

Note that f; is linearized around x!, while g; is linearized around Xi_l because g; is involved in
generating the output yy.

Substituting (3) and (4) into (1) and (2), we obtain a linear time-varying system with input-like
terms

X1 = (Axe +dy) + wy (5)
yvi = (Cixy +€) + vy (6)
where
d; = fy(x;) — Aix; (7)
e = gt(xi_l) — Ctxi_l (8)

The goal is to determine P(x;|{y}}) and P(x;|{y}7) for t = 1,...,T. These are the solutions
to the filtering and smoothing problems, respectively. Both distributions are normally-distributed
for the linearized system, so it suffices to find the mean and variance of each distribution.

We will use the same notation as in [3]. We will simply state the final result or omit certain
steps for derivations that correspond exactly to those found in [3].

2 Forward Recursions: Filtering

For the linearized system described by (5) and (6), P(x¢|{y}}) is a normal distribution. We seek
its mean x! and variance V;!.

log P(x¢|{y}}) = log P(y:|x:) +log P(x;{y}i"") + ..

1
= —§(Yt — Cix¢ — €)' Ry H(y: — Cixy — )

(xe = x; D)'(VED e =% 1)+

x, (CIR;MCy + (VI H) ™) x

x; (CR; 'y — CiR; e + (V) 771+ (9)
Using the Matrix Inversion Lemma,

V! = (CIR7'Co+ (Vi Hy ™™
= Vi - KO V! (10)



where .
K, =V/7'0l (Re+ GV o) (11)

To find the time update for the variance, we use the fact that Ax;_; and w;_; are independent
and treat d;_; as a constant

VIt = Var(Apixi—1 + dea[{y} ) + Var(we1 [{y})
= A VI AL+ Qi (12)

As in [3], we will use the matrix identity
(I-(A+B)'AB'=A+B). (13)
Applying (13) and substituting the definition of e; from (8),

xi = V! (CIR; My —er) + (V1) ')
= Kt(yt — et) + (I — KtC’t)xi_l
= Xi_l -+ Kt (yt — gt(Xi_l)) . (14)

The time update for the mean can be found by conditioning on x; 1 and substituting the definition
of d; from (7)

xi_l = Fy, , (E(Xt|Xt—1, {Y}tfl) Hy}i_l)
= Fy,, (Apm1x—1 +diy Hy}i_l)
= Aaxi"] +di
= £, (xI7h). (15)

The recursions start with x{ = m; and V = V;. Equations (10), (11), (12), (14), and (15)
together form the Extended Kalman filter forward recursions, as shown in [1], [2].

3 Backward Recursions: Smoothing

Like the filtered posterior distribution P(x|{y}}), the smoothed posterior distribution P(x;|{y}?)

is also normal. We seek its mean x; and variance V,. We are also interested in the covariance of

the joint posterior distribution P(x;11,%;[{y}7), denoted V;_TH’t.

log P(x¢1,%:|{y}1) = log P(x¢11]x¢) + log P(x¢|{y}}) — log P(x41/{y}}) +log P(xi1|{y}1)

1 _
- _§(Xt+1 — Apxe — o) Qy (e — Apxe — dy)

_ 1 _
(e =) (V) ™Mo = 30) + 5 (e = x00) (Vi) ™ (et = %0)

2
1 T T \— T
- §(Xt+1 - Xt—l—l)/(Vt—H) 1(Xt+1 —Xpq1) toe
/
1

1 _ _ _
= 75Xt (Qt b (WH) T+ (Vﬁl) 1) X¢41
1,

_ 1 _
- §Xt+1(—Qt YAx, — §X:€(_A:€Qt D41

1 _ _ _ _
- gx; (AQ Ar + (VH ™) x¢ + %) (—A;Q7 'y + (V) 'x}) +... (16)



From (16), the covariance matrix of (x:41,x¢) is
-1
[ Vi Vi ] _ [ S11 Si2 ]
|7 7 So1 S2

[ Qt_l - (Vtt+1)_1 ‘t (Vﬁl)_l :Qt_lAt
—AQy AQy A+ (VH T

Apart from the inclusion of the time subscripts on A and C, (18) through (24) are identical to
those found in [3], so we will we will simply state the results here.

(17)

St = Vi = IV Ji, (18)
where we define
Jo=VIAWVED) T (19)
SaotSo1 = —Jj (20)
VI = Vi + J(VE) — Vi) (21)
Vi =V (22)

The covariance can also be computed recursively
Viter = VI + Vi, = AV iy, (23)
where the recursion is initialized with
Viry = —KrCr)Ar— Vi (24)
The mean can be found using the same approach as in [3] and substituting the definition of d; from
(7)
x| = =Sy Suxipy + Sy (—AQ i+ (V) ')
= — S5 So1x/, 1 + Sp' (So1d; + (Vtt)_lxi)
= Jixty, — Jedy + (I — JLA)x]
= xi + J; (xﬁ_l - ft(xi)) . (25)

Equations (19), (21), (23), (24), and (25) together form the Extended Kalman smoother back-
ward recursions. Equivalently, (22) can be used in the place of (23) and (24) to reduce the compu-
tation required to find the covariance.
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