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Abstract. To date, the neural decoding of time-evolving physical state –
for example, the path of a foraging rat or arm movements – has been
largely carried out using linear trajectory models, primarily due to their
computational efficiency. The possibility of better capturing the statis-
tics of the movements using nonlinear trajectory models, thereby yield-
ing more accurate decoded trajectories, is enticing. However, nonlinear
decoding usually carries a higher computational cost, which is an im-
portant consideration in real-time settings. In this paper, we present
techniques for nonlinear decoding employing modal Gaussian approxi-
mations, expectatation propagation, and Gaussian quadrature. We com-
pare their decoding accuracy versus computation time tradeoffs based
on high-dimensional simulated neural spike counts.

Keywords: Nonlinear dynamical models, nonlinear state estimation,
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1 Introduction

We consider the problem of decoding time-evolving physical state from neural
spike trains. Examples include decoding the path of a foraging rat from hip-
pocampal neurons [1,2] and decoding the arm trajectory from motor cortical
neurons [3,4,5,6,7,8]. Advances in this area have enabled the development of
neural prosthetic devices, which seek to allow disabled patients to regain mo-
tor function through the use of prosthetic limbs, or computer cursors, that are
controlled by neural activity [9,10,11,12,13,14,15].

Several of these prosthetic decoders, including population vectors [11] and
linear filters [10,12,15], linearly map the observed neural activity to the estimate
of physical state. Although these direct linear mappings are effective, recur-
sive Bayesian decoders have been shown to provide more accurate trajectory
estimates [1,6,7,16]. In addition, recursive Bayesian decoders provide confidence
regions on the trajectory estimates and allow for nonlinear relationships between
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the neural activity and the physical state variables. Recursive Bayesian decoders
are based on the specification of a probabilistic model comprising 1) a trajectory
model, which describes how the physical state variables change from one time
step to the next, and 2) an observation model, which describes how the observed
neural activity relates to the time-evolving physical state.

The function of the trajectory model is to build into the decoder prior knowl-
edge about the form of the trajectories. In the case of decoding arm movements,
the trajectory model may reflect 1) the hard, physical constraints of the limb
(for example, the elbow cannot bend backward), 2) the soft, control constraints
imposed by neural mechanisms (for example, the arm is more likely to move
smoothly than in a jerky motion), and 3) the physical surroundings of the per-
son and his/her objectives in that environment. The degree to which the trajec-
tory model captures the statistics of the actual movements directly affects the
accuracy with which trajectories can be decoded from neural data [8].

The most commonly-used trajectory models assume linear dynamics per-
turbed by Gaussian noise, which we refer to collectively as linear-Gaussian mod-
els. The family of linear-Gaussian models includes the random walk model [1,2,6],
those with a constant [8] or time-varying [17,18] forcing term, those without a
forcing term [7,16], those with a time-varying state transition matrix [19], and
those with higher-order Markov dependencies [20]. Linear-Gaussian models have
been successfully applied to decoding the path of a foraging rat [1,2], as well as
arm trajectories in ellipse-tracing [6], pursuit-tracking [7,20,16], “pinball” [7,16],
and center-out reach [8] tasks.

Linear-Gaussian models are widely used primarily due to their computational
efficiency, which is an important consideration for real-time decoding applica-
tions. However, for particular types of movements, the family of linear-Gaussian
models may be too restrictive and unable to capture salient properties of the
observed movements [8]. We recently proposed a general approach to construct-
ing trajectory models that can exhibit rather complex dynamical behaviors and
whose decoder can be implemented to have the same running time (using a par-
allel implementation) as simpler trajectory models [8]. In particular, we demon-
strated that a probabilistic mixture of linear-Gaussian trajectory models, each
accurate within a limited regime of movement, can capture the salient properties
of goal-directed reaches to multiple targets. This mixture model, which yielded
more accurate decoded trajectories than a single linear-Gaussian model, can be
viewed as a discrete approximation to a single, unified trajectory model with
nonlinear dynamics.

An alternate approach is to decode using this single, unified nonlinear tra-
jectory model without discretization. This makes the decoding problem more
difficult since nonlinear transformations of parametric distributions are typi-
cally no longer easily parametrized. State estimation in nonlinear dynamical
systems is a field of active research that has made substantial progress in recent
years, including the application of numerical quadrature techniques to dynami-
cal systems [21,22,23], the development of expectation-propagation (EP) [24] and
its application to dynamical systems [25,26,27,28], and the improvement in the
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computational efficiency of Monte Carlo techniques (e.g., [29,30,31]). However,
these techniques have not been rigorously tested and compared in the context of
neural decoding, which typically involves observations that are high-dimensional
vectors of non-negative integers. In particular, the tradeoff between decoding ac-
curacy and computational cost among different neural decoding algorithms has
not been studied in detail. Knowing the accuracy-computational cost tradeoff is
important for real-time applications, where one may need to select the most accu-
rate algorithm given a computational budget or the least computationally inten-
sive algorithm given a minimal acceptable decoding accuracy. This paper takes
a step in this direction by comparing three particular deterministic Gaussian
approximations. In Section 2, we first introduce the nonlinear dynamical model
for neural spike counts and the decoding problem. Sections 3 and 4 detail the
three deterministic Gaussian approximations that we focus on in this report:
global Laplace, Gaussian quadrature-EP (GQ-EP), and Laplace propagation
(LP). Finally, in Section 5, we compare the decoding accuracy versus computa-
tional cost of these three techniques.

2 Nonlinear Dynamical Model and Neural Decoding

In this report, we consider nonlinear dynamical models for neural spike counts
of the following form:

xt | xt−1 ∼ N (f (xt−1) , Q) (1a)

yi
t | xt ∼ Poisson(λi (xt) · Δ) , (1b)

where xt ∈ R
p×1 is a vector containing the physical state variables at time t =

1, . . . , T , yi
t ∈ {0, 1, 2, . . .} is the corresponding observed spike count for neuron

i = 1, . . . , q taken in a time bin of width Δ, and Q ∈ R
p×p is a covariance matrix.

The functions f : R
p×1 → R

p×1 and λi : R
p×1 → R+ are, in general, nonlinear.

The initial state x1 is Gaussian-distributed. For notational compactness, the
spike counts for all q simultaneously-recorded neurons are assembled into a q ×
1 vector yt, whose ith element is yi

t. Note that the observations are discrete-
valued and that, typically, q � p. Equations (1a) and (1b) are referred to as the
trajectory and observation models, respectively.

The task of neural decoding involves finding, at each timepoint t, the likely
physical states xt given the neural activity observed up to that time {y}t

1. In
other words, we seek to compute the filtered state posterior P (xt | {y}t

1) at each
t. We previously showed how to estimate the filtered state posterior when f is
a linear function [8]. Here, we consider how to compute P (xt | {y}t

1) when f is
nonlinear.

The extended Kalman filter (EKF) is a commonly-used technique for nonlin-
ear state estimation. Unfortunately, it cannot be directly applied to the current
problem because the observation noise in (1b) is not additive Gaussian. Possi-
ble alternatives are the unscented Kalman filter (UKF) [21,22] and the closely-
related quadrature Kalman filter (QKF) [23], both of which employ quadrature
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techniques to approximate Gaussian integrals that are analytically intractable.
While the UKF has been shown to outperform the EKF [21,22], the UKF re-
quires making Gaussian approximations in the observation space. This property
of the UKF is undesirable from the standpoint of the current problem because
the observed spike counts are typically 0 or 1 (due to the use of relatively short
binwidths Δ) and, therefore, distinctly non-Gaussian. As a result, the UKF
yielded substantially lower decoding accuracy than the techniques presented in
Sections 3 and 4 [28], which make Gaussian approximations only in the state
space. While we have not yet tested the QKF, the number of quadrature points
required grows geometrically with p+q, which quickly becomes impractical even
for moderate values of p and q. Thus, we will no longer consider the UKF and
QKF in the remainder of this paper.

The decoding techniques described in Sections 3 and 4 naturally yield the
smoothed state posterior P

(
xt | {y}T

1

)
, rather than the filtered state posterior

P (xt | {y}t
1). Thus, we will focus on the smoothed state posterior in this work.

However, the filtered state posterior at time t can be easily obtained by smooth-
ing using only observations from timepoints 1, . . . , t.

3 Global Laplace

The idea is to estimate the joint state posterior across the entire sequence (i.e.,
the global state posterior) as a Gaussian matched to the location and curvature of
a mode of P

({x}T
1 | {y}T

1

)
, as in Laplace’s method [32]. The mode is defined as

{x�}T
1 = argmax

{x}T
1

P
({x}T

1 | {y}T
1

)
= argmax

{x}T
1

L
({x}T

1

)
, (2)

where

L
({x}T

1

)
= log P

({x}T
1 , {y}T

1

)

= log P (x1) +
T∑

t=2

log P (xt | xt−1) +
T∑

t=1

q∑

i=1

log P
(
yi

t | xt

)
. (3)

Using the known distributions (1), the gradients of L
({x}T

1

)
can be computed

exactly and a local mode {x�}T
1 can be found by applying a gradient optimization

technique. The global state posterior is then approximated as:

P
({x}T

1 | {y}T
1

) ≈ N
(
{x�}T

1 , −∇2L
({x�}T

1

)−1
)

. (4)

4 Expectation Propagation

We briefly summarize here the application of EP [24] to dynamical models
[25,26,27,28]. More details can be found in the cited references. The two pri-
mary distributions of interest here are the marginal P

(
xt | {y}T

1

)
and pairwise
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joint P
(
xt−1,xt | {y}T

1

)
state posteriors. These distributions can be expressed

in terms of forward αt and backward βt messages as follows

P
(
xt | {y}T

1

)
=

1
P

({y}T
1

)αt (xt)βt (xt) (5)

P
(
xt−1,xt | {y}T

1

)
=

αt−1 (xt−1)P (xt | xt−1)P (yt | xt)βt (xt)
P

({y}T
1

) , (6)

where αt (xt) = P (xt, {y}t
1) and βt (xt) = P

({y}T
t+1 | xt

)
. The messages αt and

βt are typically approximated by an exponential family density; in this paper,
we use an unnormalized Gaussian. These approximate messages are iteratively
updated by matching the expected sufficient statistics1 of the marginal posterior
(5) with those of the pairwise joint posterior (6). The updates are usually per-
formed sequentially via multiple forward-backward passes. During the forward
pass, the αt are updated while the βt remain fixed:

P
(
xt | {y}T

1

)
=

∫
αt−1 (xt−1)P (xt | xt−1)P (yt | xt)βt (xt)

P
({y}T

1

) dxt−1 (7)

≈
∫

P̂ (xt−1,xt) dxt−1 (8)

αt (xt) ∝
∫

P̂ (xt,xt−1) dxt−1

/
βt (xt) , (9)

where P̂ (xt−1,xt) is an exponential family distribution whose expected sufficient
statistics are matched to those of P

(
xt−1,xt | {y}T

1

)
. In this paper, P̂ (xt−1,xt)

is assumed to be Gaussian. The backward pass proceeds similarly, where the βt

are updated while the αt remain fixed. The decoded trajectory is obtained by
combining the messages αt and βt, as shown in (5), after completing the forward-
backward passes. In Section 5, we investigate the accuracy-computational cost
tradeoff of using different numbers of forward-backward iterations.

Although the expected sufficient statistics (or moments) of P
(
xt−1,xt | {y}T

1

)

cannot typically be computed analytically for the nonlinear dynamical model (1),
they can be approximated using Gaussian quadrature [26,28]. This EP-based
decoder is referred to as GQ-EP. By applying the ideas of Laplace propaga-
tion (LP) [33], a closely-related decoder has been developed that uses a modal
Gaussian approximation of P

(
xt−1,xt | {y}T

1

)
rather than matching moments

[27,28]. This technique, which uses the same message-passing scheme as GQ-EP,
is referred to here as LP.

In practice, it is possible to encounter invalid message updates. For example,
if the variance of xt in the numerator is larger than that in the denominator in
(9) due to approximation error in the choice of P̂ , the update rule would assign
αt (xt) a negative variance. A way around this problem is to simply skip that
message update and hope that the update is no longer invalid during the next
1 If the approximating distributions are assumed to be Gaussian, this is equivalent to

matching the first two moments.
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forward-backward iteration [34]. An alternative is to set βt (xt) = 1 in (7) and
(9), which guarantees a valid update for αt (xt). This is referred to as the one-
sided update and its implications for decoding accuracy and computation time
are considered in Section 5.

5 Results

We evaluated decoding accuracy versus computational cost of the techniques
described in Sections 3 and 4. These performance comparisons were based on
the model (1), where

f(x) = (1 − k)x + k · W · erf(x) (10)

λi(x) = log
(
1 + ec′

ix+di

)
(11)

with parameters W ∈ R
p×p, ci ∈ R

p×1, and di ∈ R. The error function (erf)
in (10) acts element-by-element on its argument. We have chosen the dynam-
ics (10) of a fully-connected recurrent network due to its nonlinear nature; we
make no claims in this work about its suitability for particular decoding applica-
tions, such as for rat paths or arm trajectories. Because recurrent networks are
often used to directly model neural activity, it is important to emphasize that
x is a vector of physical state variables to be decoded, not a vector of neural
activity.

We generated 50 state trajectories, each with 50 time points, and correspond-
ing spike counts from the model (1), where the model parameters were randomly
chosen within a range that provided biologically realistic spike counts (typically,
0 or 1 spike in each bin). The time constant k ∈ R was set to 0.1. To understand
how these algorithms scale with different numbers of physical state variables
and observed neurons, we considered all pairings (p, q), where p ∈ {3, 10} and
q ∈ {20, 100, 500}. For each pairing, we repeated the above procedure three
times.

For the global Laplace decoder, the modal trajectory was found using Polack-
Ribière conjugate gradients with quadratic/cubic line searches and Wolfe-Powell
stopping criteria (minimize.m by Carl Rasmussen, available at http://www.kyb.
tuebingen.mpg.de/bs/people/carl/code/minimize/). To stabilize GQ-EP,
weused amodalGaussianproposal distribution and the customprecision3quadra-
ture rule with non-negative quadrature weights, as described in [28]. For both GQ-
EP and LP, minimize.mwas used to find a mode of P

(
xt−1,xt | {y}T

1

)
.

Fig. 1 illustrates the decoding accuracy versus computation time of the pre-
sented techniques. Decoding accuracy was measured by evaluating the marginal
state posteriors P

(
xt | {y}T

1

)
at the actual trajectory. The higher the log prob-

ability, the more accurate the decoder. Each panel corresponds to a different
number of state variables and observed neurons. For GQ-EP (dotted line) and
LP (solid line), we varied the number of forward-backward iterations between
one and three; thus, there are three circles for each of these decoders. Across
all panels, global Laplace required the least computation time and yielded state

http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
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Fig. 1. Decoding accuracy versus computation time of global Laplace (no line), GQ-
EP (dotted line), and LP (solid line). (a) p = 3, q = 20, (b) p = 3, q = 100, (c)
p = 3, q = 500, (d) p = 10, q = 20, (e) p = 10, q = 100, (f) p = 10, q = 500. The circles
and bars represent mean±SEM. Variability in computation time is not represented on
the plots because they were negligible. The computation times were obtained using
a 2.2-GHz AMD Athlon 64 processor with 2 GB RAM running MATLAB R14. Note
that the scale of the vertical axes is not the same in each panel and that some error
bars are so small that they can’t be seen.

estimates as accurate as, or more accurate than, the other techniques. This is
the key result of this report.

We also implemented a basic particle smoother [35], where the number of
particles (500 to 1500) was chosen such that its computation time was on the
same order as those shown in Fig. 1 (results not shown). Although this particle
smoother yielded substantially lower decoding accuracy than global Laplace,
GQ-EP, and LP, the three deterministic techniques should be compared to more
recently-developed Monte Carlo techniques, as described in Section 6.

Fig. 1 shows that all three techniques have computation times that scale well
with the number of state variables p and neurons q. In particular, the required
computational time typically scales sub-linearly with increases in p and far sub-
linearly with increases in q. As the q increases, the accuracies of the techniques
become more similar (note that different panels have different vertical scales),
and there is less advantage to performing multiple forward-backward iterations
for GQ-EP and LP. The decoding accuracy and required computation time both
typically increase with the number of iterations. In a few cases (e.g., GQ-EP in
Fig. 1(b)), it is possible for the accuracy to decrease slightly when going from
two to three iterations, presumably due to one-sided updates.

In theory, GQ-EP should require greater computation time than LP because
it needs to perform the same modal Gaussian approximation, then use it as a
proposal distribution for Gaussian quadrature. In practice, it is possible for LP
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to be slower if it needs many one-sided updates (cf. Fig. 1(d)), since one-sided
updates are used only when the usual update (9) fails. Furthermore, LP required
greater computation time in Fig. 1(d) than in Fig. 1(e) due to the need for many
more one-sided updates, despite having five times fewer neurons.

It was previously shown that {x�}T
1 is a local optimum of P

({x}T
1 | {y}T

1

)

(i.e., a solution of global Laplace) if and only if it is a fixed-point of LP [33]. Be-
cause the modal Gaussian approximation matches local curvature up to second
order, it can also be shown that the estimated covariances using global Laplace
and LP are equal at {x�}T

1 [33]. Empirically, we found both statements to be
true if few one-sided updates were required for LP. Due to these connections be-
tween global Laplace and LP, the accuracy of LP after three forward-backward
iterations was similar to that of global Laplace in all panels in Fig. 1. Although
LP may have computational savings compared to global Laplace in certain ap-
plications [33], we found that global Laplace was substantially faster for the
particular graph structure described by (1).

6 Conclusion

We have presented three deterministic techniques for nonlinear state estimation
(global Laplace, GQ-EP, LP) and compared their decoding accuracy versus
computation cost in the context of neural decoding, involving high-dimensional
observations of non-negative integers. This work can be extended in the follow-
ing directions. First, the deterministic techniques presented here should be com-
pared to recently-developed Monte Carlo techniques that have yielded increased
accuracy and/or reduced computational cost compared to the basic particle fil-
ter/smoother in applications other than neural decoding [29]. Examples include
the Gaussian particle filter [31], sigma-point particle filter [30], and embedded hid-
den Markov model [36]. Second, we have compared these decoders based on one
particular non-linear trajectory model (10). Other non-linear trajectory models
(e.g., a model describing primate arm movements [37]) should be tested to see if
the decoders have similar accuracy-computational cost tradeoffs as shown here.
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